From optimal stopping to stochastic optimization

Jérôme Lelong

Université Grenoble Alpes

Journées MAS, Grenoble, 29–31 août 2016
Outline

1. The optimal stopping problem
2. An optimization point of view
3. How to effectively solve the optimization problem
4. Numerical experiments
Framework

Consider the optimal stopping problem with time—t value

$$U_t = \text{esssup}_{\tau \in \mathcal{T}_t} \mathbb{E}[Z_{\tau} | \mathcal{F}_t]$$

- The non–negative process Z is càdlàg and adapted to the natural filtration \mathcal{F} of d—dimensional Brownian motion. Assume $\mathbb{E} \left[\sup_t Z_t^2 \right] < \infty$.
- The set \mathcal{T}_t is the set of all \mathcal{F}—stopping times with values in $[t, T]$.
- A typical example is the pricing of an American option with discounted payoff Z.
Dual approach (1)

The Snell envelope process \((U_t)_{0 \leq t \leq T}\) admits a Doob–Meyer decomposition

\[
U_t = U_0 + M^*_t - A^*_t.
\]

[Rogers, 2002]: \(U_0 = \inf_{M \in H^1_0} \mathbb{E} \left[\sup_{0 \leq t \leq T} (Z_t - M_t) \right] = \mathbb{E} \left[\sup_{0 \leq t \leq T} (Z_t - M^*_t) \right] \)

- This problem admits more than a single solution.
- For any stopping time \(\tau\) smaller than the largest optimal strategy,

\[
U_0 = \inf_{M \in H^1_0} \mathbb{E} \left[\sup_{\tau \leq t \leq T} (Z_t - M_t) \right] = \mathbb{E} \left[\sup_{\tau \leq t \leq T} (Z_t - M^*_t) \right].
\]
Dual approach (2)

- Some of the martingales M attaining the infimum are surely optimal

$$U_0 = \sup_{0 \leq t \leq T} (Z_t - M_t) \quad a.s.$$

- From [Schoenmakers et al., 2013], any martingale satisfying

$$\text{Var} \left(\sup_{0 \leq t \leq T} (Z_t - M_t) \right) = 0$$

is surely optimal.

- From [Jamshidian, 2007], for any optimal stopping time τ and any surely optimal martingale M,

$$\left(M_{t \wedge \tau} \right)_t = \left(M^*_{t \wedge \tau} \right)_t.$$
Dual approach (3)

With our square integrability assumption, we can rewrite the minimization problem as

\[
U_0 = \inf_{X \in L^2(\Omega, \mathcal{F}_T, \mathbb{P})} \mathbb{E} \left[\sup_{0 \leq t \leq T} (Z_t - \mathbb{E}[X|\mathcal{F}_t]) \right].
\]

s.t. \(\mathbb{E}[X] = 0 \)

How to approximate \(L^2(\Omega, \mathcal{F}_T, \mathbb{P}) \) by a finite dimensional vector space in which conditional expectations are tractable in a closed form?
Truncated Wiener chaos expansion ($d = 1$)

Let H_i the i-th Hermite polynomial.

Take a regular grid $0 = t_0 < t_1 < \cdots < t_n = T$ and $G_i = \frac{B_{t_i} - B_{t_{i-1}}}{\sqrt{t_i - t_{i-1}}}$.

Define the truncated Wiener chaos space of order p

$$\mathcal{H}_p = \text{span} \left\{ \prod_{i=1}^n H_{\alpha_i}(G_i) : \alpha \in \mathbb{N}^n, \|\alpha\|_1 = p \right\}$$

For $F \in L^2(\Omega, \mathcal{F}_T)$, we introduce the truncated chaos expansion of order p

$$C_{p,n}(F) = \sum_{\alpha \in A_{p,n}} \lambda_{\alpha} \prod_{i \geq 1} H_{\alpha_i}(G_i) = \sum_{\alpha \in A_{p,n}} \lambda_{\alpha} \hat{H}_{\alpha}(G_1, \ldots, G_n)$$

where $A_{p,n} = \{ \alpha \in \mathbb{N}^n : \|\alpha\|_1 \leq p \}$ with $\|\alpha\|_1 = \sum_{i \geq 0} \alpha_i$.
Key property of the truncated Wiener chaos expansion

For $k \leq n$,

$$
\mathbb{E}[C_{p,n}(F) | \mathcal{F}_{tk}] = \sum_{\alpha \in A_{p,n}^k} \lambda_\alpha \hat{H}_\alpha(G_1, \ldots, G_n)
$$

with $A_{p,n}^k = \{ \alpha \in \mathbb{N}^n : \|\alpha\|_1 \leq p, \alpha_\ell = 0 \ \forall \ell > k \}$.

“Computing $\mathbb{E}[\cdot | \mathcal{F}_{tk}]$” \Leftrightarrow “Dropping all non \mathcal{F}_{tk} – measurable terms”
Extension to the multi–dimensional case

The truncated chaos expansion of order p of $F \in L^2(\Omega, \mathcal{F}_T)$ is given by

$$C_{p,n}(F) = \sum_{\alpha \in A_{p,n}} \lambda_{\alpha} \hat{H}_{\alpha} \otimes \lambda(G_1, \ldots, G_n) = C_{p,n}(\lambda)$$

where

$$\hat{H}_{\alpha} \otimes \lambda(G_1, \ldots, G_n) = \prod_{j=1}^{d} \hat{H}_{\alpha_j}(G_{1}^{j}, \ldots, G_{n}^{j}) \quad \forall \alpha \in (\mathbb{N}^n)^d,$$

$$A_{p,n} \otimes \alpha = \{ \alpha \in (\mathbb{N}^n)^d : \|\alpha\|_1 \leq p \}.$$
Return to the optimal stopping problem

We approximate the original problem

$$\inf_{X \in L^2(\Omega, \mathcal{F}_T, \mathbb{P})} \mathbb{E} \left[\sup_{0 \leq t \leq T} (Z_t - \mathbb{E}[X|\mathcal{F}_t]) \right]$$

s.t. $\mathbb{E}[X] = 0$

by

$$\inf_{\lambda \in \mathbb{R}^{A_{p,n}}} V_{p,n}(\lambda) \quad (1)$$

s.t. $\lambda_0 = 0$

with

$$V_{p,n}(\lambda) = \mathbb{E} \left[\max_{0 \leq k \leq n} (Z_{t_k} - \mathbb{E}[C_{p,n}(\lambda)|\mathcal{F}_{t_k}]) \right].$$
Properties of the minimization problem (1)

Proposition 1

The minimization problem (1) has at least one solution.

- The function $V_{p,n}$ is clearly convex (maximum of affine functions).
- Not strongly convex but,

$$V_{p,n}(\lambda) \geq \frac{|\lambda|}{2} \inf_{\mu \in \mathbb{R}^{A_p,n}, |\mu|=1} \mathbb{E} \left[|C_{p,n}(\mu)| \right].$$
Properties of the minimization problem (2)

\[\mathcal{I}(\lambda, Z, G) = \{0 \leq k \leq n : \text{the pathwise maximum is attained at time } k\} . \]

Proposition 2

Let \(p \geq 1 \). *Assume that*

\[
\forall 1 \leq r \leq k \leq n, \ \forall F \in \mathcal{C}_{p-1,n}, \ F \neq 0, \\
\exists 1 \leq q \leq d \text{ s.t. } \mathbb{P}\left(\forall t \in [t_{r-1}, t_r], \ D_t^q Z_{tk} + F = 0 \mid Z_{tk} > 0 \right) = 0.
\]

Then, the function \(V_{p,n} \) *is differentiable at all points* \(\lambda \in \mathbb{R}^{A_{p,n}} \) *with no zero component and its gradient* \(\nabla V_{p,n} \) *is given by*

\[
\nabla V_{p,n}(\lambda) = \mathbb{E} \left[\mathbb{E} \left[\hat{H}^d(G_1, \ldots, G_n) \mid \mathcal{F}_{t_i} \right] \mid i = \mathcal{I}(\lambda, Z, G) \right] .
\]
Properties of the minimization problem (3)

- Differentiability is ensured as soon as \(I(\lambda, Z, G) \) is a.s. reduced to a unique element: purpose of the blue condition.

- Let \(\lambda_{p,n}^\# \) be a solution, \(V_{p,n}(\lambda_{p,n}^\#) = \inf_\lambda V_{p,n}(\lambda) \). Then,

\[
\nabla V_{p,n}(\lambda_{p,n}^\#) = 0.
\]
Convergence to the true solution

Proposition 3

The solution of the minimization problem (1), $V_{p,n}(\lambda_{p,n}^\#)$, converges to the optimal stopping value U_0 when both p and n go to infinity and moreover

$$0 \leq V_{p,n}(\lambda_{p,n}^\#) - U_0 \leq 2 \|M_T^* - C_{p,n}(M_T^*)\|_2.$$
Practically solving the optimization problem (1)

We approximate the solution of

\[V_{p,n}(\lambda_{p,n}^{\#}) = \inf_{\lambda \in A_{p,n}} V_{p,n}(\lambda) = \inf_{\lambda \in A_{p,n}} \mathbb{E} \left[\max_{0 \leq k \leq n} (Z_{t_k} - \mathbb{E}[C_{p,n}(\lambda)|F_{t_k}]) \right] \]

by introducing the well–known *Sample Average Approximation* (see [Rubinstein and Shapiro, 1993]) of \(V_{p,n} \) defined by

\[V_{p,n}^{m}(\lambda) = \frac{1}{m} \sum_{i=1}^{m} \max_{0 \leq k \leq n} (Z_{t_k}^{(i)} - \mathbb{E}[C_{p,n}^{(i)}(\lambda)|F_{t_k}]). \]

Note that the conditional expectation boils down to truncating the chaos expansion and hence is tractable in a closed form.
Practically solving the optimization problem (2)

For large enough m, $V_{p,N}^m$ is convex, a.s. differentiable and tends to infinity at infinity. Then, there exists $\lambda_{p,n}^m$ such that

$$V_{p,n}^m(\lambda_{p,n}^m) = \inf_{\lambda \in \mathbb{R}^{A_{p,n}}} V_{p,n}^m(\lambda).$$

Proposition 4

$V_{p,n}^m(\lambda_{p,n}^m)$ converges a.s. to $V_{p,n}(\lambda_{p,N}^#)$ when $m \to \infty$. The distance from $\lambda_{p,n}^m$ to the set of minimizers of $V_{p,n}$ converges to zero as m goes to infinity.
Practically solving the optimization problem (3)

Write $M_k(\lambda) = \mathbb{E}[C_{p,n}(\lambda)|\mathcal{F}_k]$ for $0 \leq k \leq n$.

Proposition 5

Assume $\lambda_{p,n}^\#$ is unique. Then,

$$\frac{1}{m} \sum_{i=1}^{m} \left(\max_{0 \leq k \leq n} Z_{tk}^{(i)} - M_k^{(i)}(\lambda_{p,n}^m) \right)^2 - \mathbb{V}_{p,n}(\lambda_{p,n}^m)^2$$

is a convergent estimator of $\text{Var}(\max_{0 \leq k \leq n} Z_{tk} - M_k(\lambda_{p,n}^\#))$ and moreover, if $\lambda_{p,n}^m$ is bounded,

$$\lim_{m \to \infty} m \text{Var} \left(\mathbb{V}_{p,n}(\lambda_{p,n}^m) \right) = \text{Var}(\max_{0 \leq k \leq n} Z_{tk} - M_k(\lambda_{p,n}^\#)).$$
The algorithm: bespoke martingales

Define the first time the option goes in the money by

\[\tau_0 = \inf\{k \geq 0 : Z_{t_k} > 0\} \land n. \]

Consider martingales only starting once the option has been in the money

\[N_k(\lambda) = M_k(\lambda) - M_{k \land \tau_0}(\lambda). \]

In the dual price, \(\max_{0 \leq k \leq n} \) can be shrunk to \(\max_{\tau_0 \leq k \leq n} \).

Using Doob’s stopping theorem, we have

\[
\mathbb{E} \left[\max_{\tau_0 \leq k \leq n} (Z_{t_k} - M_k(\lambda)) \right] = \mathbb{E} \left[\max_{\tau_0 \leq k \leq n} (Z_{t_k} - (M_k(\lambda) - M_{\tau_0}(\lambda))) \right]
\]

The martingales \(M(\lambda) \) or \(N(\lambda) \) lead to the same minimum value.

The set of martingales \(N^\lambda \) is far more efficient from a practical point of view.
The algorithm: a gradient descent with line search

\[
x_0 \leftarrow 0, \ k \leftarrow 0, \ \gamma \leftarrow 1, \ d_0 \leftarrow 0, \ v_0 \leftarrow \infty ;
\]

\[
\text{while True do}
\]

\[
\text{Compute } v_{k+1/2} \leftarrow V^m_{p,n}(x_k - \gamma \alpha_k d_k) ;
\]

\[
\text{if } v_{k+1/2} < v_k \text{ then}
\]

\[
x_{k+1} \leftarrow x_k - \gamma \alpha_k d_k ;
\]

\[
v_{k+1} \leftarrow v_{k+1/2} ;
\]

\[
d_{k+1} \leftarrow \nabla V^m_{p,n}(x_{k+1}) ;
\]

\[
\text{if } \left| \frac{v_{k+1} - v_k}{v_k} \right| \leq \varepsilon \text{ then return;}
\]

\[
\text{else}
\]

\[
\gamma \leftarrow \gamma / 2 ;
\]

\[
\text{end}
\]

\[
\text{end}
\]
The algorithm: a gradient descent with line search

\[x_0 \leftarrow 0, \ k \leftarrow 0, \ \gamma \leftarrow 1, \ d_0 \leftarrow 0, \ v_0 \leftarrow \infty ; \]

while True do

Compute \(v_{k+1/2} \leftarrow V_{p,n}^m(x_k - \gamma \alpha_k d_k) \);

if \(v_{k+1/2} < v_k \) then

\[x_{k+1} \leftarrow x_k - \gamma \alpha_k d_k ; \]

\[v_{k+1} \leftarrow v_{k+1/2} ; \]

\[d_{k+1} \leftarrow \nabla V_{p,n}^m(x_{k+1}) ; \]

if \(\frac{|v_{k+1} - v_k|}{v_k} \leq \varepsilon \) then return;

else

\[\gamma \leftarrow \gamma / 2 ; \]

end

end

Take \(\alpha_\ell = \frac{V_{p,n}^m(x_\ell) - \mathbb{E}[Z_T]}{\| \nabla \tilde{V}_{p,n}^m(x_\ell) \|^2} \), see [Polyak, 1987].
Some remarks on the algorithm

- Given the expression of $V_{p,n}^m$, both the value function and its gradient are computed at the same time without extra cost.

\[
V_{p,n}(\lambda) = \mathbb{E} \left[\max_{\tau_0 \leq k \leq n} \left(Z_{t_k} - \mathbb{E}[\lambda \cdot H^\otimes_d (G_1, \cdots, G_n) | \mathcal{F}_{t_k}] \right) \right],
\]

\[
= \mathbb{E}[Z_{t_{\mathcal{I}(\lambda,z,G)}}] - \lambda \cdot \nabla \tilde{V}_{p,n}(\lambda).
\]

- Checking the admissibility of a step γ costs as much as updating x_k.

- The algorithm is *almost* embarrassingly parallel:
 - Few iterations of the gradient descent are required (≈ 10).
 - Each iteration is fully parallel: each process treats its bunch of paths.
 - No demanding centralized computations
 - Very little communication: a few broadcasts only.
Parallel implementation

In parallel Generate \((G^{(1)}, Z^{(1)}), \ldots, (G^{(m)}, Z^{(m)})\) \(m \ x_0 \leftarrow 0 \in \mathbb{R}^{A_p, n} \);

while True do

 Broadcast \(x_\ell, d_\ell, \gamma, \alpha_\ell\);

 In parallel Compute \(\max_{\tau_0 \leq k \leq n} (Z_{t_k}^{(i)} - N_k^{(i)} (x_\ell - \gamma \alpha_\ell d_\ell))\);

 Make a reduction of the above contributions to obtain \(V_{p,n}^m (x_\ell+1/2)\) and

 \[
 \nabla V_{p,n}^m (x_\ell+1/2);
 \]

 \(v_{\ell+1/2} \leftarrow V_{p,n}^m (x_\ell - \gamma \alpha_\ell d_\ell)\);

 if \(v_{\ell+1/2} < v_\ell\) then

 \(x_{\ell+1} \leftarrow x_\ell - \gamma \alpha_\ell d_\ell\);

 \(v_{\ell+1} \leftarrow v_{\ell+1/2}; \quad d_{\ell+1} \leftarrow \nabla V_{p,n}^m (x_{\ell+1})\);

 if \(\frac{|v_{\ell+1} - v_\ell|}{v_\ell} \leq \varepsilon\) then return;

 else

 \(\gamma \leftarrow \gamma / 2\);

 end

end
Basket option in the BS model

<table>
<thead>
<tr>
<th>p</th>
<th>n</th>
<th>S_0</th>
<th>price</th>
<th>Stdev</th>
<th>time (sec.)</th>
<th>reference price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>100</td>
<td>2.27</td>
<td>0.029</td>
<td>0.17</td>
<td>2.17</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>100</td>
<td>2.23</td>
<td>0.025</td>
<td>0.9</td>
<td>2.17</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>110</td>
<td>0.56</td>
<td>0.014</td>
<td>0.07</td>
<td>0.55</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>110</td>
<td>0.53</td>
<td>0.012</td>
<td>0.048</td>
<td>0.55</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>100</td>
<td>2.62</td>
<td>0.021</td>
<td>0.91</td>
<td>2.43</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>100</td>
<td>2.42</td>
<td>0.021</td>
<td>14</td>
<td>2.43</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>110</td>
<td>0.61</td>
<td>0.012</td>
<td>0.33</td>
<td>0.61</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>110</td>
<td>0.55</td>
<td>0.008</td>
<td>10</td>
<td>0.61</td>
</tr>
</tbody>
</table>

Tab.: Prices for the put basket option with parameters $T = 3$, $r = 0.05$, $K = 100$, $\rho = 0$, $\sigma^j = 0.2$, $\delta^j = 0$, $d = 5$, $\omega^j = 1/d$, $m = 20,000$.
Scalability of the parallel algorithm

The tests were run on a BullX DLC supercomputer containing 3204 cores.

<table>
<thead>
<tr>
<th>#processes</th>
<th>time (sec.)</th>
<th>efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4365</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2481</td>
<td>0.99</td>
</tr>
<tr>
<td>4</td>
<td>1362</td>
<td>0.90</td>
</tr>
<tr>
<td>16</td>
<td>282</td>
<td>0.84</td>
</tr>
<tr>
<td>32</td>
<td>272</td>
<td>0.75</td>
</tr>
<tr>
<td>64</td>
<td>87</td>
<td>0.78</td>
</tr>
<tr>
<td>128</td>
<td>52</td>
<td>0.73</td>
</tr>
<tr>
<td>256</td>
<td>34</td>
<td>0.69</td>
</tr>
<tr>
<td>512</td>
<td>10.7</td>
<td>0.59</td>
</tr>
</tbody>
</table>

TAB.: Scalability of the parallel algorithm on the 40—dimensional geometric put option described above with $T = 1$, $r = 0.0488$, $K = 100$, $\sigma^j = 0.3$, $\rho = 0.1$, $\delta^j = 0$, $n = 9$, $p = 2$, $m = 200,000$.
Conclusion

- Purely optimization approach. No need of an optimal strategy.
- The problem is in large dimension but convex.
- *Almost* embarrassingly parallel and scales very well.
- Can deal with path dependent options
Solving optimal stopping problems via empirical dual optimization.

The duality of optimal exercise and domineering claims: a Doob-Meyer decomposition approach to the Snell envelope.

Smooth minimization of non-smooth functions.

Introduction to optimization.
Optimization Software.

Monte Carlo valuation of American options.