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Computing Bermudan options prices

▶ A discrete time (discounted) payoff process (ZTk)0≤k≤N adapted to
(FTk)0≤k≤N . max0≤k≤N |ZTk | ∈ L2.

▶ The time-Tk discounted value of the Bermudan option is given by

UTk = esssupτ∈TTk
E[Zτ |FTk ]

where Tt is the set of all F− stopping times with values in
{Tk,Tk+1, ...,T}.

▶ From the Snell enveloppe theory, we derive the standard dynamic
programming algorithm (→ “Tsistsiklis-Van Roy” type algorithms).

(1)

{
UTN = ZTN

UTk = max
(
ZTk ,E[UTk+1 |FTk ]

)
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The policy iteration approach. . .

Let τk be the smallest optimal stopping time after Tk.

(2)

{
τN = TN

τk = Tk1{ZTk≥E[Zτk+1 |FTk ]} + τk+11{ZTk<E[Zτk+1 |FTk ]}.

This is a dynamic programming principle on the policy not on the value
function → “Longstaff-Schwartz” algorithm.
This approach has the practitioners’ favour for its robustness.

Difficulty: how to compute the conditional expectations?
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. . . in a Markovian context

▶ Markovian context: (Xt)0≤t≤T is a Markov process and ZTk = ϕk(XTk).

E[Zτk+1 |FTk ] = E[Zτk+1 |XTk ] = ψk(XTk)

where ψk is a measurable function.
▶ Thanks to the L2 assumption, ψk can be computed by a least-square

problem
inf

ψ∈L2(L(XTk ))
E
[∣∣Zτk+1 − ψ(XTk)

∣∣2]
How to approximate L2(L(XTk))?
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Many different numerical strategies

▶ The standard numerical (LS) approach: approximate the space L2 by a
finite dimensional vector space (polynomials, local polynomials, . . . )

▶ Some previous works using deep learning for optimal stopping

▶ Michael Kohler, Adam Krzyżak, and Nebojsa Todorovic. Pricing of
high-dimensional american options by neural networks.
Mathematical Finance: An International Journal of Mathematics, Statistics and
Financial Economics, 20(3):383–410, 2010

▶ S. Becker, P. Cheridito, and A. Jentzen. Deep optimal stopping.
Journal of Machine Learning Research, 20(74):1–25, 2019a

▶ Sebastian Becker, Patrick Cheridito, Arnulf Jentzen, and Timo Welti. Solving
high-dimensional optimal stopping problems using deep learning, 2019b

▶ Bernard Lapeyre and Jérôme Lelong. Neural network regression for Bermudan
option pricing.
Monte Carlo Methods Appl., 27(3):227–247, 2021
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From local approximations to regression trees

▶ Local approximations look appealing but they do not scale in high
dimension.

▶ In high dimension, the main difficulty is to determine the underlying
partition. → it cannot be a regular grid.

▶ Actually, no need of a fine approximation away from the exercising
boundary.

▶ Regression trees provide an algorithmic way to find a “good” grid.
▶ Theoretical difficulties:

▶ Not a linear approximation
▶ The approximation does not solve a minimization problem
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Regression trees

Consider some samples (Zm,Xm)1≤m≤M with values in R× [0, 1]. We want
to approximate E[Z|X]. The iterative procedure writes as

inf
z,z′,x∗

M∑
m=1

(
Zm − (z1{Xm>x∗} + z′1{Xm≤x∗})

)2
.

For a fixed x∗, z and z′ are known explicitly

z =

∑M
i=1 Zi1{Xi>x∗}∑M

i=1 1{Xi>x∗}
; z′ =

∑M
i=1 Zi1{Xi≤x∗}∑M

i=1 1{Xi≤x∗}
.
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Regression trees

{(Zm,Xm)1≤l≤M}

{(Zm,Xm)1≤l≤M : Xm < x∗1}

{Xm < x∗1,1} {x∗1,1 ≤ Xm < x∗1}

{(Zm,Xm)1≤l≤M : Xm ≥ x∗1}

{x∗1 ≤ Xm < x∗1,2} {x∗1,2 ≤ Xm}
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Regression trees

▶ It is sufficient to determine x∗ at each level, known as the split point.
▶ To ensure convergence of the tree, we modify the procedure

▶ With a small probability q, choose x∗ as the midpoint;
▶ With probability 1 − q, choose the optimal x∗.

▶ When M goes to infinity,

z = E[Z|1{X>x∗}]; z′ = E[Z|1{X≤x∗}].

▶ When X is multidimensional, we first choose (at random) the direction
of the new split and then apply the one dimensional procedure.
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Regression trees

A regression tree Tp(X) can be written as follows

Tp(X) =
2p∑

i=1

αi
p1{X∈

∏d
j=1[a

i
p(j)−ai−1

p (j))}

with
(
[ai−1

p , ai
p)
)

1≤i≤2p forming a partition of [0, 1]d and

αi
p = E

[
Z|X ∈ [ai−1

p , ai
p)
]
.

T M
p denotes the tree built on the sample of size M.
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Convergence of the regression tree approximation

Proposition

lim
p→∞

E
[
|Tp(X)− E[Y|X]|2

]
= 0.

Proposition
For every p, limM→∞ T M

p (X1) → Tp(X1) a.s.
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In practice, use random forests

Consider a fraction of the initial data chosen at random and build a
regression tree T M

p,k. Repeat this procedure, to obtain a collection of B trees:
(T M

p,k)1≤k≤B. The random forest approximation is defined by

1
B

B∑
k=1

T M
p,k(X).

It is an ensemble method so it looses explainability but provides a more
accurate approximation.
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The LS algorithm

Longstaff-Schwartz type algorithms rely on direct approximation of
stopping times and use of the same sample paths for all time steps (large
computational savings).
▶ Backward approximation of iteration policy using (2),{

τ̂ p,
N = N
τ̂ p

k = Tk 1{ZTk≥Tp(XTk )} + τ̂ p
k+1 1{Zk<Tp(XTk )}

▶ where Tp(XTk) is a regression tree approximation of E[Zτ̂ p
k+1

|XTk ].

▶ Price approximation: Up
0 = max

(
Z0,E

(
Zτ̂ p

1

))
.
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The LS algorithm

▶ Paths X(m)
T0
,X(m)

T1
, . . . ,X(m)

TN
and payoff paths Z(m)

T0
,Z(m)

T1
, . . . ,Z(m)

TN
,

m = 1, . . . ,M.
▶ Backward approximation of iteration policy,τ̂

p,(m)
N = TN

τ̂
p,(m)
k = Tn1{

Z(m)
Tk

≥T M
p (X(m)

Tk
)
} + τ̂

p,(m)
k+1 1{

Z(m)
Tn
<T M

p (X(m)
Tk

)
}

▶ whee T M
p (X(m)

Tk
) is a regression tree approximation of “E[Zτ̂ p,M

k+1
|X(m)

Tk
]”.

▶ Price approximation: Up,M
0 = max

(
Z0,

1
M

∑M
m=1 Z(m)

τ̂
p,(m)
1

)
.
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Some related works

▶ Description of the algorithm: F.A. Longstaff and R.S. Schwartz.

Valuing American options by simulation : A simple least-square
approach.
Review of Financial Studies, 14:113–147, 2001.

▶ Rigorous approach: Emmanuelle Clément, Damien Lamberton, and

Philip Protter. An analysis of a least squares regression method for
american option pricing.
Finance and Stochastics, 6(4):449–471, 2002.

- Up
0 converge to U0, p → +∞

- Up,M
0 converge to Up

0 , M → +∞ a.s.
- A central limit theorem but the limiting variance is unknown.
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The modified algorithm

▶ In LS algorithm replace the approximation on a Hilbert basis Φp(.; θ)
by a random forest. This is not a vector space approximation (non
linear).

▶ A random tree does not even write as the solution of a minimization
problem.

▶ Our aim: extending the proof of the (a.s.) convergence results and
performing some numerical tests. The linear structure played a key role
in Clément et al. [2002]’s analysis.
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The result

Theorem 1
Under good assumptions
▶ The RF approximation converges when the depth p of the trees goes to

infinity.

lim
p→∞

E[Zτ p
n
|Fn] = E[Zτn |Fn] in L2(Ω) (i.e. Up

0 → U0).

▶ SLLN: For every p and k = 1, . . . ,N,

lim
M→∞

1
M

M∑
m=1

Z(m)

τ̂
p,(m)
k

= E
[
Zτ p

k

]
a.s. (i.e. Up,M

0 → Up
0)
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Put option in the Heston model

Figure: Regression trees Figure: Random forests
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A call on maximum in the Black Scholes model

depth samples per price
leaf

50 50 66,89
50 100 66.88

100 50 67.13
100 100 67.31
200 50 67.16
200 100 67.28

Table: A call option on the
maximum of 50 assets with
regression trees

nb trees sample fraction price
10 50% 68,32
10 70% 68,32
10 90% 68,29

Table: A call option on the
maximum of 50 assets with
random forests
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Conclusion

▶ Learn the continuation value using a RF instead of a polynomial
regression.

▶ RF do not help much for low dimensional problems but do scale better.
▶ Reasonable local approximation in high dimension.
▶ Use random forests with many “small” trees.
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