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15 mars 2022

J. Lelong (Univ. Grenoble Alpes, LJK) 15/03/2022 1 / 28



Introduction The Longstaff Schwartz algorithm Numerical experiments

A gambling problem

Consider a gambling game such that at each step n you are offered a gain Zn.
▶ you can either take it and leave the game,
▶ or turn down your potential gain and keep playing.

Question: How to maximize your gain if you know the distribution of (Zn)n?

Our framework
▶ Finite time horizon N
▶ For all n ∈ {0, . . . ,N}, Zn = ϕn(Xn) where X is Markov chain in Rd

and ϕn : Rd → R+.
The above question is equivalent to finding τ⋆ maximizing

sup
τ∈T0

E[Zτ |X0].
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A gambling problem

For k ∈ {0, . . . ,N}, define

Uk = sup
τ∈Tk

E[Zτ |Xk]

where Tk is the set of all stopping times with values in {k, k + 1, . . .N}.
The Snell enveloppe theory yields that U solves

(1)

{
UN = ZN

Uk = max (Zk,E[Uk+1|Xk])

We are more interested in the stopping rule.
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A gambling problem
Let τk be the smallest optimal stopping time after k.{

τN = N
τk = k1{Zk≥E[Uk+1|Xk]} + τk+11{Zk<E[Uk+1|Xk]}.

Note that E[Uk+1|Xk] = E[E[Zk+1|Xk+1]|Xk] = E[Zτk+1 |Xk].

(2)

{
τN = N
τk = k1{Zk≥E[Zτk+1 |Xk]} + τk+11{Zk<E[Zτk+1 |Xk]}.

Question: How to compute the conditional expectation?
Assume square integrability, any solution to

inf
ψ∈L2(L(Xk))

E
[∣∣Zτk+1 − ψ(Xk)

∣∣2]
satisfies E[Uk+1|Xk] = ψ(Xk).
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American options

▶ The above gambling game is an American option.
▶ The process Z is the discounted payoff process, X is typically the

underlying asset.
▶ We are equally interested in τ0 and U0.
▶ U0 can be deduced from τ0 by using Monte Carlo.
▶ The least square problem

inf
ψ∈L2(L(Xk))

E
[∣∣Zτk+1 − ψ(Xk)

∣∣2]
is solved by approximating the space L2 by a finite dimensional vector
space (polynomials, local functions, . . . )

▶ We investigate two alternative approximations: neural networks and
random forest
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Some related works

▶ Some previous works using NN for optimal stopping

▶ Michael Kohler, Adam Krzyżak, and Nebojsa Todorovic. Pricing of
high-dimensional american options by neural networks.
Mathematical Finance: An International Journal of Mathematics, Statistics and
Financial Economics, 20(3):383–410, 2010

▶ S. Becker, P. Cheridito, and A. Jentzen. Deep optimal stopping.
Journal of Machine Learning Research, 20(74):1–25, 2019a

▶ Sebastian Becker, Patrick Cheridito, Arnulf Jentzen, and Timo Welti. Solving
high-dimensional optimal stopping problems using deep learning, 2019b
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LS: truncation step
Longstaff-Schwartz type algorithms rely on direct approximation of
stopping times and use of the same sample paths for all time steps (large
computational savings).
▶ (gk, k ≥ 1) is an L2(L(X)) basis and Φp(X, θ) =

∑p
k=1 θk gk(X).

▶ Backward approximation of iteration policy using (2),{
τ̂ p,

N = N
τ̂ p

n = n 1{Zn≥Φp(Xn;θ̂
p
n)} + τ̂ p

n+1 1{Zn<Φp(Xn;θ̂
p
n)}

▶ with conditional expectation computed using a Monte Carlo
minimization problem: θ̂p

n is a minimizer of

inf
θ
E
(∣∣∣Φp(Xn; θ)− Zτ̂ p

n+1

∣∣∣2) .
▶ Price approximation: Up

0 = max
(

Z0,E
(

Zτ̂ p
1

))
.
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The LS algorithm
▶ (gk, k ≥ 1) is an L2(L(X)) basis and Φp(X, θ) =

∑p
k=1 θk gk(X).

▶ Paths X(m)
0 ,X(m)

1 , . . . ,X(m)
N and payoff paths Z(m)

0 ,Z(m)
1 , . . . ,Z(m)

N ,
m = 1, . . . ,M.

▶ Backward approximation of iteration policy,τ̂
p,(m)
N = N
τ̂

p,(m)
n = n1{

Z(m)
n ≥Φp(X(m)

n ;θ̂p,M
n )

} + τ̂
p,(m)
n+1 1{

Z(m)
n <Φp(X(m)

n ;θ̂p,M
n )

}
▶ with conditional expectation computed using a Monte Carlo

minimization problem: θ̂p,M
n is a minimizer of

inf
θ

1
M

M∑
m=1

∣∣∣∣Φp(X(m)
n ; θ)− Z(m)

τ
p,(m)
n+1

∣∣∣∣2 .
▶ Price approximation: Up,M

0 = 1
M

∑M
m=1 Z(m)

τ̂
p,(m)
0

.
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Some related works

▶ Description of the algorithm: F.A. Longstaff and R.S. Schwartz.

Valuing American options by simulation : A simple least-square
approach.
Review of Financial Studies, 14:113–147, 2001.

▶ Rigorous approach: Emmanuelle Clément, Damien Lamberton, and

Philip Protter. An analysis of a least squares regression method for
american option pricing.
Finance and Stochastics, 6(4):449–471, 2002.

- Up
0 converge to U0, p → +∞

- Up,M
0 converge to Up

0 , M → +∞ a.s.
- A central limit theorem but the limiting variance is unknown.
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The modified algorithm

▶ In LS algorithm replace the approximation on a Hilbert basis Φp(.; θ)
by a neural network or a random forest. This is not a vector space
approximation (non linear).

▶ The linear structure played a key role in Clément et al. [2002]’s
analysis.

▶ The neural network is obtained as the solution of a non convex
optimization problem.

▶ A random tree does not even write as the solution of a minimization
problem.

▶ Our aim: extending the proof of (a.s.) convergence results and
performing some numerical tests.
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The result

Theorem 1
Under good assumptions
▶ Convergence of the NN or RF approximation

lim
p→∞

E[Zτ p
n
|Fn] = E[Zτn |Fn] in L2(Ω) (i.e. Up

0 → U0).

▶ SLLN: for every k = 1, . . . ,N,

lim
M→∞

1
M

M∑
m=1

Z(m)

τ̂
p,(m)
k

= E
[
Zτ p

k

]
a.s. (i.e. Up,M

0 → Up
0)
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A quick view of Neural Networks

▶ In short, a NN is a non-linear mapping x → Φp(x, θ) ∈ R, with θ ∈ Rd,
d large

▶ Φp = AL ◦ σa ◦ AL−1 ◦ · · · ◦ σa ◦ A1, L ≥ 2
▶ Al(xl) = wlxl + βl (affine functions)
▶ L − 2 “number of hidden layers”
▶ p “maximum number of neurons per layer” (i.e. sizes of the wl matrix)
▶ σa a fixed non linear (called activation function) applied component

wise
▶ θ := (wl, βl)l=1,...,L parameters of all the layers
▶ Restrict to a compact set Θp = {θ : |θ| ≤ γp} and assume

limp→∞ γp = ∞. → use the USLLN.
▶ NN p = {Φp(·, θ) : θ ∈ Θp} and NN∞ = ∪p∈NNN p
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Hypotheses

▶ For every p, there exists q ≥ 1

∀θ ∈ Θp, |Φp(x, θ)| ≤ κq(1 + |x|q)

a.s. the random function θ ∈ Θp 7−→ Φp(Xn, θ) are continuous.

▶ E[|Xn|2q
] <∞ for all 0 ≤ n ≤ N.

▶ For all p, n < N, P (Zn = Φp(Xn; θ
p
n)) = 0.

▶ If θ1 and θ2 solve

inf
θ∈Θp

E
(∣∣∣Φp(Xn; θ)− Zτ̂ p

n+1

∣∣∣2) ,
then Φp(x, θ1) = Φp(x, θ2) for almost all x
No need for a unique minimizer but only of the represented function.
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Convergence of the NN approximation

A simple consequence of Hornik [1991], also known as the “Universal
Approximation Theorem”.

Theorem 2 (Hornik)
Assume that the function σa is non constant and bounded. Let µ denote a
probability measure on Rr, then NN∞ is dense in L2(Rr, µ).

Corollary 3
If for every p, θ∗p ∈ Θp is a minimizer of

inf
θ∈Θp

E[|Φp(X; θ)− Y|2],

(Φp(X; θ∗p ))p converges to E[Y|X] in L2(Ω) when p → ∞.
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Convergence of the Monte-Carlo approximation

▶ p is fixed, N → +∞
▶ Now, minimisation problems are non linear, need more abstract

arguments to prove convergence
▶ Two ingredients (quite “old” results)
▶ First result: approximation of minimization problems

Lemma 4 (Rubinstein and Shapiro [1993])

▶ (fn)n defined on a compact set K ⊂ Rd. vn = infx∈K fn(x)

▶ xn a sequence of minimizers fn(xn) = infx∈K fn(x).

▶ v⋆ = infx∈K f (x) and S⋆ = {x ∈ K : f (x) = v⋆}.

If (fn)n converges uniformly on K to a continuous function f , then
vn → v⋆ and d(xn,S⋆) → 0 a.s.
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Convergence of the Monte-Carlo approximation

▶ Second result: SLLN in Banach spaces (Ledoux and Talagrand [1991],
goes back to Mourier [1953]).

Lemma 5
Let (ξi)i≥1 i.i.d. Rm-valued, h : Rd × Rm → R. If

▶ a.s., θ ∈ Rd 7→ h(θ, ξ1) is continuous,

▶ ∀K > 0, E
[
sup|θ|≤K |h(θ, ξ1)|

]
< +∞.

Then

lim
n→∞

sup
|θ|≤K

∣∣∣∣∣1
n

n∑
i=1

h(θ, ξi)− E[h(θ, ξ1)]

∣∣∣∣∣ = 0 a.s.
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Implementation details

▶ Python code with TensorFlow.
▶ We use ADAM algorithm to fit the neural network at each time step.
▶ We use the same NN through all time steps: take θ̂p,M

n+1, as the starting
point of the training algorithm at time time n.

▶ No use of setting epochs> 1 for n < N − 1. This allows for huge
computational time savings.
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Regression trees

Consider some samples (Zm,Xm)1≤m≤M values in R× [0, 1]. We want to
approximate E[Z|X]. The iterative procedure writes as

inf
z,z′,x∗

M∑
m=1

(
Zm − (z1{Xm>x∗} + z′1{Xm≤x∗})

)2
.

For a fixed x∗,

z =

∑M
i=1 Zi1{Xi>x∗}∑M

i=1 1{Xi>x∗}
; z′ =

∑M
i=1 Zi1{Xi≤x∗}∑M

i=1 1{Xi≤x∗}
.

Repeat this procedure on each subset {(Zm,Xm)m : Xm ≤ x∗} and
{(Zm,Xm)m : Xm > x∗} up to a given depth p or as long as there are enough
samples left.
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Regression trees
▶ It is sufficient to determine x∗ at each level, known as the split point.
▶ To ensure convergence of the tree, we modify the procedure

▶ With a small probability q, choose x∗ as the midpoint;
▶ With probability 1 − q, choose the optimal x∗.

▶ When M goes to infinity,

z = E[Z|1{X>x∗}]; z′ = E[Z|1{X≤x∗}].

▶ When X is multidimensional, we first choose (at random) the direction
of the new split and then apply the one dimensional procedure.

▶ If for every p, αp ∈ Θp is a minimizer of

inf
θ∈Θp

E[|Φp(X; θ)− Y|2],

(Φp(X;αp))p converges to E[Y|X] in L2(Ω) when p → ∞.
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Regression trees

A regression tree Tp(X) can be written as follows

Tp(X) =
2p∑

i=1

αi
p1{X∈

∏d
j=1[a

i
p(j)−ai−1

p (j))}

with
(
[ai−1

p , ai
p)
)

1≤i≤2p forming a partition of [0, 1]d and

αi
p = E

[
Z|X ∈ [ai−1

p , ai
p)
]
.

It fits in our framework by considering θp = (ai
ℓ)0≤i≤2ℓ,1≤ℓ≤p.

Beware that the value of θp produced by the regression tree does come from
an optimization problem.
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Convergence of the regression tree approximation

Proposition

lim
p→∞

E
[
|Tp(X)− E[Y|X]|2

]
= 0.

Proposition
For p fixed, limM→∞ TM

p (X1; θ
p,M) → Tp(X1; θ

p) a.s.
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In practice, use random forests

Consider a fraction of the initial data and build a regression tree TM
p,k. Repeat

this procedure, to obtain a collection of B trees: (TM
p,k)1≤k≤B. The random

forest approximation is defined by

1
B

B∑
k=1

TM
p,k(X).

It is an ensemble method so it looses explainability but provides a more
accurate approximation.
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Put option in the Heston model
L dl epochs=1 epochs=5 epochs=10
2 32 1.69 (± 0.017) 1.7 (± 0.017) 1.7 (± 0.016)
2 128 1.69 (± 0.017) 1.7 (± 0.019) 1.7 (± 0.019)
2 512 1.69 (± 0.019) 1.69 (± 0.019) 1.69 (± 0.018)
4 32 1.69 (± 0.022) 1.69 (± 0.017) 1.7 (± 0.018)
4 128 1.69 (± 0.024) 1.69 (± 0.02) 1.7 (± 0.016)
4 512 1.68 (± 0.025) 1.69 (± 0.022) 1.69 (± 0.022)
8 32 1.69 (± 0.023) 1.69 (± 0.02) 1.69 (± 0.019)
8 128 1.68 (± 0.03) 1.69 (± 0.022) 1.69 (± 0.02)
8 512 1.68 (± 0.03) 1.68 (± 0.041) 1.68 (± 0.053)

Table: Prices using NN for put option in the Heston model with parameters the
geometric basket put option with parameters with S0 = K = 100, T = 1, σ0 = 0.01,
ξ = 0.2, θ = 0.01, κ = 2, ρ = −0.3, r = 0.1, N = 10 and M = 105. The standard
Longstaff Schwartz algorithm yields 1.70 ± 0.008 (resp. 1.675 ± 0.005) for an
order 6 (resp. 1) polynomial regression.
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Put option in the Heston model

Figure: Regression trees Figure: Random forests
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A call on maximum in the Black Scholes model

L dl epochs=1 epochs=5 epochs=10
2 128 68.99 (± 0.179) 69.26 (± 0.164) 69.42 (± 0.169)
2 256 69.07 (± 0.149) 69.42 (± 0.125) 69.45 (± 0.138)
2 512 69.11 (± 0.194) 69.43 (± 0.18) 69.51 (± 0.167)
4 128 68.91 (± 0.365) 69.29 (± 0.334) 69.55 (± 0.339)
4 256 68.72 (± 0.358) 69.24 (± 0.341) 69.5 (± 0.369)
4 512 68.54 (± 0.548) 69.17 (± 0.356) 69.34 (± 0.359)
8 128 68.59 (± 0.613) 69.32 (± 0.348) 69.71 (± 0.497)
8 256 68.57 (± 0.797) 69.25 (± 0.564) 69.4 (± 0.484)
8 512 68.32 (± 1.444) 69.01 (± 0.738) 69.49 (± 0.487)

Table: Prices using NN for the call option on the maximum of 50 assets with
parameters Sj

0 = 100, T = 3, r = 0.05, K = 100, ρ = 0, σj = 0.2, δj = 0.1, N = 9
and M = 105.
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A call on maximum in the Black Scholes model

L dl epochs=1 epochs=5 epochs=10
2 128 68.85 (± 0.074) 68.96 (± 0.095) 69.01 (± 0.119)
2 256 68.87 (± 0.1) 69.0 (± 0.143) 69.07 (± 0.146)
2 512 68.82 (± 0.082) 69.05 (± 0.128) 69.19 (± 0.136)
4 128 68.84 (± 0.221) 69.28 (± 0.153) 69.41 (± 0.211)
4 256 68.75 (± 0.342) 69.14 (± 0.296) 69.38 (± 0.342)
4 512 68.7 (± 0.426) 69.05 (± 0.317) 69.35 (± 0.254)
8 128 68.81 (± 0.277) 69.28 (± 0.291) 69.64 (± 0.22)
8 256 68.57 (± 0.512) 69.34 (± 0.378) 69.65 (± 0.414)

Table: Same parameters but M = 106.
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A call on maximum in the Black Scholes model

depth samples per price
leaf

50 50 66,89
50 100 66.88

100 50 67.13
100 100 67.31
200 50 67.16
200 100 67.28

Table: A call option on the
maximum of 50 asset with
regression trees

nb trees sample fraction price
10 50% 68,32
10 70% 68,32
10 90% 68,29

Table: A call option on the
maximum of 50 asset with
random forests
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Conclusion

▶ Learn the continuation value using a NN or a RF instead of a
polynomial regression.

▶ NN and RF do not help much for low dimensional problems but do
scale better.

▶ Relatively small NN provide very accurate results (a few hundred
neurons with 1 or 2 hidden layers)

▶ Setting epochs = 1 is fine for all dates but the last one.
▶ NN have proved to be a very versatile and efficient tool to compute

Bermudan option prices. . .
▶ . . . but keep in mind that using large NN is not green!
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