Longstaff Schwartz algorithm and Neural Network regression

Jérôme Lelong (joint work with B. Lapeyre)

Univ. Grenoble Alpes

Advances in Financial Mathematics 2020

Introduction

- Computing an American option involving a large number of assets remains numerically challenging.
- A hope: Neural Network (NN) can (may) help to reduce the computational burden.
- Some previous works using NN for optimal stopping (not LS algorithm though)
 - Michael Kohler, Adam Krzyżak, and Nebojsa Todorovic. Pricing of high-dimensional american options by neural networks.
 Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics, 20(3):383–410, 2010
 - S. Becker, P. Cheridito, and A. Jentzen. Deep optimal stopping. Journal of Machine Learning Research, 20(74):1–25, 2019

Computing Bermudan options prices

- ► A discrete time (discounted) payoff process $(Z_{T_k})_{0 \le k \le N}$ adapted to $(\mathcal{F}_{T_k})_{0 \le k \le N}$. $\max_{0 \le k \le N} |Z_{T_k}| \in L^2$.
- The time- T_k discounted value of the Bermudan option is given by

$$U_{T_k} = \operatorname{esssup}_{\tau \in \mathcal{T}_{T_k}} \mathbb{E}[Z_{\tau} | \mathcal{F}_{T_k}]$$

where \mathcal{T}_t is the set of all \mathcal{F} - stopping times with values in $\{T_k, T_{k+1}, ..., T\}$.

► From the Snell enveloppe theory, we derive the standard dynamic programming algorithm (→ "Tsistsiklis-Van Roy" type algorithms).

(1)
$$\begin{cases} U_{T_N} = Z_{T_N} \\ U_{T_k} = \max\left(Z_{T_k}, \mathbb{E}[U_{T_{k+1}} | \mathcal{F}_{T_k}]\right) \end{cases}$$

The policy iteration approach...

Let τ_k be the smallest optimal stopping time after T_k .

(2)
$$\begin{cases} \tau_N = T_N \\ \tau_k = T_k \mathbf{1}_{\left\{Z_{T_k} \geq \mathbb{E}[Z_{\tau_{k+1}} | \mathcal{F}_{T_k}]\right\}} + \tau_{k+1} \mathbf{1}_{\left\{Z_{T_k} < \mathbb{E}[Z_{\tau_{k+1}} | \mathcal{F}_{T_k}]\right\}}. \end{cases}$$

This is a dynamic programming principle on the policy not on the value function \rightarrow "Longstaff-Schwartz" algorithm. This approach has the practitioners' favour for its robustness.

Difficulty: how to compute the conditional expectations?

... in a Markovian context

▶ Markovian context: $(X_t)_{0 \le t \le T}$ is a Markov process and $Z_{T_k} = \phi_k(X_{T_k})$.

$$\mathbb{E}[Z_{\tau_{k+1}}|\mathcal{F}_{T_k}] = \mathbb{E}[Z_{\tau_{k+1}}|X_{T_k}] = \psi_k(X_{T_k})$$

where ψ_k is a measurable function.

Because of the L^2 assumption, ψ_k can be computed by a least-square problem

$$\inf_{\psi \in L^2(\mathcal{L}(X_{T_k}))} \mathbb{E}\left[\left|Z_{ au_{k+1}} - \psi(X_{T_k})
ight|^2
ight]$$

Different numerical strategies

- The standard numerical (LS) approach: approximate the space L² by a finite dimensional vector space (polynomials, ...)
- We investigate the use of Neural Networks to approximate ψ_k .
- Kohler et al. [2010]: neural networks but in a different context (approximation of the value function Tsitsiklis and Roy [2001], equation (1)) and re-simulation of the paths at each time steps.

The Longstaff Schwartz algorithm

LS: truncation step

Longstaff-Schwartz type algorithms rely on direct approximation of *stopping times* and use of *the same simulated paths* for all time steps (obvious and large computational gains).

- $(g_k, k \ge 1)$ is an $L^2(\mathcal{L}(X))$ basis and $\Phi_p(X, \theta) = \sum_{k=1}^p \theta_k g_k(X)$.
- Backward approximation of iteration policy using (2),

$$\begin{cases} \widehat{\tau}_N^{p,} = T_N \\ \widehat{\tau}_n^p = T_n \, \mathbf{1}_{\left\{Z_{T_n} \ge \Phi_p(X_{T_n}; \widehat{\theta}_n^p)\right\}} + \widehat{\tau}_{n+1}^p \, \mathbf{1}_{\left\{Z_{T_n} < \Phi_p(X_{T_n}; \widehat{\theta}_n^p)\right\}} \end{cases}$$

 with conditional expectation computed using a Monte Carlo minimization problem: θ^p_n is a minimizer of

$$\inf_{\theta} \mathbb{E} \left(\left| \Phi_p(X_{T_n}; \theta) - Z_{\widehat{\tau}_{n+1}^p} \right|^2 \right).$$

• Price approximation: $U_0^p = \max\left(Z_0, \mathbb{E}\left(Z_{\widehat{\tau}_1^p}\right)\right).$

The Longstaff Schwartz algorithm 0000000000

The LS algorithm

- (g_k, k ≥ 1) is an L²(L(X)) basis and Φ_p(X, θ) = Σ^p_{k=1} θ_k g_k(X).
 Paths X^(m)_{T0}, X^(m)_{T1},..., X^(m)_{TN} and payoff paths Z^(m)_{T0}, Z^(m)_{T1},..., Z^(m)_{TN}, m = 1,..., M.
- Backward approximation of iteration policy,

$$\begin{cases} \widehat{\tau}_{N}^{p,(m)} = T_{N} \\ \widehat{\tau}_{n}^{p,(m)} = T_{n} \mathbf{1}_{\left\{ Z_{T_{n}}^{(m)} \ge \Phi_{p}(X_{T_{n}}^{(m)};\widehat{\theta}_{n}^{p,M}) \right\}} + \widehat{\tau}_{n+1}^{p,(m)} \mathbf{1}_{\left\{ Z_{T_{n}}^{(m)} < \Phi_{p}(X_{T_{n}}^{(m)};\widehat{\theta}_{n}^{p,M}) \right\}} \end{cases}$$

with conditional expectation computed using a Monte Carlo minimization problem:
 *θ*_n^{p,M} is a minimizer of

$$\inf_{\theta} \frac{1}{M} \sum_{m=1}^{M} \left| \Phi_p(X_{T_n}^{(m)}; \theta) - Z_{\tau_{n+1}^{p,(m)}}^{(m)} \right|^2.$$

• Price approximation:
$$U_0^{p,M} = \max\left(Z_0, \frac{1}{M}\sum_{m=1}^M Z_{\widehat{\tau}_1^{p,(m)}}^{(m)}\right)$$

Reference papers

• Description of the algorithm:

F.A. Longstaff and R.S. Schwartz. Valuing American options by simulation : A simple least-square approach. *Review of Financial Studies*, 14:113–147, 2001.

Rigorous approach:

Emmanuelle Clément, Damien Lamberton, and Philip Protter. An analysis of a least squares regression method for american option pricing.

Finance and Stochastics, 6(4):449-471, 2002.

- U^p_0 converge to $U_0, p
 ightarrow +\infty$
- $U_0^{p,M}$ converge to $U_0^p, M \to +\infty$ a.s.
- "almost" a central limit theorem

The modified algorithm

- In LS algorithm replace the approximation on a Hilbert basis Φ_p(.; θ) by a Neural Network. This is not a vector space approximation (non linear).
- ▶ The optimization problem is non linear, non convex, ...
- Aim: extending the proof of (a.s.) convergence results

A quick view of Neural Networks

- ▶ In short, a NN: $x \to \Phi_p(x, \theta) \in \mathbb{R}$, with $\theta \in \mathbb{R}^d$, d large
- $\bullet \ \Phi_p = A_L \circ \sigma_a \circ A_{L-1} \circ \cdots \circ \sigma_a \circ A_1, L \ge 2$
- $A_l(x_l) = w_l x_l + \beta_l$ (affine functions)
- ► L 2 "number of hidden layers"
- \triangleright *p* "maximum number of neurons per layer" (i.e. sizes of the w_l matrix)
- σ_a a fixed non linear (called *activation function*) applied component wise
- $\theta := (w_l, \beta_l)_{l=1,...,L}$ parameters of all the layers
- Restriction to a compact set Θ_p = {θ : |θ| ≤ γ_p} and assume lim_{p→∞} γ_p = ∞. → use the USLLN.

$$\blacktriangleright \mathcal{NN}_p = \{ \Phi_p(\cdot, \theta) : \theta \in \Theta_p \} \text{ and } \mathcal{NN}_\infty = \cup_{p \in \mathbb{N}} \mathcal{NN}_p$$

The Longstaff Schwartz algorithm

Hypothesis H

For every p, there exists $q \ge 1$

$$\forall \theta \in \Theta_p, \quad |\Phi_p(x,\theta)| \le \kappa_q (1+|x|^q)$$

a.s. the random function $\theta \in \Theta_p \longmapsto \Phi_p(X_{T_n}, \theta)$ are continuous.

$$\inf_{ heta \in \Theta_p} \mathbb{E} \left(\left| \Phi_p(X_{T_n}; heta) - Z_{\widehat{ au}_{n+1}}^p \right|^2
ight),$$

then $\Phi_p(x, \theta_1) = \Phi_p(x, \theta_2)$ for almost all x No need of a unique minimizer but only of the represented function.

The result

Theorem 1

Under hypothesis H

Convergence of the Neural network approximation

$$\lim_{p\to\infty}\mathbb{E}[Z_{\tau^p_n}|\mathcal{F}_{T_n}]=\mathbb{E}[Z_{\tau_n}|\mathcal{F}_{T_n}] \text{ in } L^2(\Omega) \quad (i.e. \ U_0^p\to U_0).$$

SLLN: for every
$$k = 1, \ldots, N$$
,

$$\lim_{M \to \infty} \frac{1}{M} \sum_{m=1}^{M} Z_{\widehat{\tau}_{k}^{p,(m)}}^{(m)} = \mathbb{E} \left[Z_{\tau_{k}^{p}} \right] \quad a.s. \quad (i.e. \ U_{0}^{p,M} \to U_{0}^{p})$$

Convergence of the NN approximation

A simple consequence of Hornik [1991].

Also known as the "Universal Approximation Theorem".

Theorem 2 (Hornik)

Assume that the function σ_a is non constant and bounded. Let μ denote a probability measure on \mathbb{R}^r , then \mathcal{NN}_{∞} is dense in $L^2(\mathbb{R}^r, \mu)$.

► Corollary: If for every $p, \alpha_p \in \Theta_p$ is a minimizer of

$$\inf_{\theta \in \Theta_p} \mathbb{E}[|\Phi_p(X;\theta) - Y|^2],$$

 $(\Phi_p(X; \alpha_p))_p$ converges to $\mathbb{E}[Y|X]$ in $L^2(\Omega)$ when $p \to \infty$.

▶ proof of the convergence of the "non-linear approximation" $\Phi_p(X; \theta)$.

Convergence of Monte-Carlo approximation

- ▶ *p* is fixed, $N \to +\infty$
- Now, minimisation problems are non linear, need more abstract arguments to prove convergence
- Two ingredients (quite "old" results)
- First result: approximation of minimization problems

Lemma 3 (Rubinstein and Shapiro [1993])

▶
$$(f_n)_n$$
 defined on a compact set $K \subset \mathbb{R}^d$. $v_n = \inf_{x \in K} f_n(x)$

• x_n a sequence of minimizers $f_n(x_n) = \inf_{x \in K} f_n(x)$.

•
$$v^* = \inf_{x \in K} f(x)$$
 and $\mathcal{S}^* = \{x \in K : f(x) = v^*\}.$

If $(f_n)_n$ converges uniformly on K to a continuous function f, then $v_n \to v^*$ and $d(x_n, S^*) \to 0$ a.s.

Convergence of Monte-Carlo approximation

Second result: SLLN in Banach spaces (Ledoux and Talagrand [1991], goes back to Mourier [1953]).

Lemma 4

Let
$$(\xi_i)_{i\geq 1}$$
 i.i.d. \mathbb{R}^m -valued, $h : \mathbb{R}^d \times \mathbb{R}^m \to \mathbb{R}$. If
• $a.s., \theta \in \mathbb{R}^d \mapsto h(\theta, \xi_1)$ is continuous,
• $\forall K > 0, \mathbb{E}\left[\sup_{|\theta| \leq K} |h(\theta, \xi_1)|\right] < +\infty.$
Then

$$\lim_{n \to \infty} \sup_{|\theta| \leq K} \left| \frac{1}{n} \sum_{i=1}^n h(\theta, \xi_i) - \mathbb{E}[h(\theta, \xi_1)] \right| = 0 \quad a.s.$$

Convergence of Monte-Carlo approximation

Combining these two results with the backward iteration introduced by Clément et al. [2002], we get

Proposition

Under hypothesis **H**, for every n = 1, ..., N, $\Phi(X_{T_n}^{(1)}; \hat{\theta}_n^{p,M})$ converges to $\Phi_p(X_{T_n}^{(1)}; \theta_n^p)$ a.s. when $M \to \infty$.

Implementation details

- Python code with TensorFlow.
- We use ADAM algorithm to fit the neural network at each time step.
- We use the same NN through all time steps: take $\hat{\theta}_{n+1}^{p,M}$, as the starting point of the training algorithm at time time *n*.
- ► No use of setting *epochs*> 1 for *n* < *N* − 1. This allows for huge computational time savings.
- We only use the in-the-money paths

$$\inf_{\theta\in\Theta_p}\mathbb{E}\left[\left|\Phi_p(X_{T_n};\theta)-Z_{\tau_{n+1}^p}\right|^2\mathbf{1}_{\{Z_{T_n}\}}>0\right].$$

Put Basket option in the Black Scholes model

L	d_l	epochs=1	epochs=5	epochs=10
2	32	$4.08~(\pm 0.031)$	$4.1 (\pm 0.034)$	4.11 (± 0.029)
2	128	$4.08~(\pm 0.036)$	$4.09 (\pm 0.034)$	4.1 (± 0.032)
2	512	$4.07~(\pm 0.034)$	4.09 (± 0.036)	4.1 (± 0.033)
4	32	$4.07~(\pm 0.034)$	4.09 (± 0.033)	4.1 (± 0.032)
4	128	$4.06~(\pm 0.039)$	$4.09~(\pm 0.04)$	$4.1~(\pm 0.037)$
4	512	$4.05~(\pm 0.037)$	$4.08~(\pm 0.034)$	$4.09 (\pm 0.031)$
8	32	$4.07~(\pm 0.034)$	$4.09~(\pm 0.037)$	4.1 (± 0.035)
8	128	$4.06~(\pm 0.039)$	$4.09~(\pm 0.032)$	$4.1~(\pm 0.035)$
8	512	$4.04~(\pm 0.066)$	$4.07~(\pm 0.069)$	$4.08~(\pm 0.063)$

Table: Basket option with r = 0.05, d = 5, $\sigma^i = 0.2$, $\omega^i = 1/d$, $S_0^i = 100$, $\rho = 0.2$, K = 100, N = 20 and M = 100,000. The standard Longstaff Schwartz algorithm yields 4.11 ± 0.03 (resp. 4.04 ± 0.034) for an order 3 (resp. 1) polynomial regression.

Put option in the Heston model

L	d_l	epochs=1	epochs=5	epochs=10
2	32	$1.69 (\pm 0.017)$	$1.7~(\pm 0.017)$	$1.7~(\pm 0.016)$
2	128	$1.69 (\pm 0.017)$	$1.7~(\pm 0.019)$	$1.7~(\pm 0.019)$
2	512	$1.69 (\pm 0.019)$	$1.69~(\pm 0.019)$	$1.69~(\pm 0.018)$
4	32	$1.69 (\pm 0.022)$	$1.69~(\pm 0.017)$	$1.7~(\pm 0.018)$
4	128	$1.69 (\pm 0.024)$	$1.69~(\pm 0.02)$	$1.7~(\pm 0.016)$
4	512	$1.68 (\pm 0.025)$	$1.69 (\pm 0.022)$	$1.69 (\pm 0.022)$
8	32	$1.69 (\pm 0.023)$	$1.69~(\pm 0.02)$	$1.69~(\pm 0.019)$
8	128	$1.68~(\pm 0.03)$	$1.69 (\pm 0.022)$	$1.69~(\pm 0.02)$
8	512	$1.68~(\pm 0.03)$	$1.68~(\pm 0.041)$	$1.68~(\pm 0.053)$

Table: Prices for put option in the Heston model with parameters the geometric basket put option with parameters with $S_0 = K = 100$, T = 1, $\sigma_0 = 0.01$, $\xi = 0.2$, $\theta = 0.01$, $\kappa = 2$, $\rho = -0.3$, r = 0.1, N = 10 and M = 100,000. The standard Longstaff Schwartz algorithm yields 1.70 ± 0.008 (resp. 1.675 ± 0.005) for an order 6 (resp. 1) polynomial regression.

Conclusion

- Learn the continuation value using a NN instead of a polynomial regression
- NN do not help much for low dimensional problems but do scale far better
- Relatively small NN provide very accurate results (a few hundred neurons with 1 or 2 hidden layers)
- Setting epochs = 1 is fine for all dates but the last one.
- NN have proved to be a very versatile and efficient tool to compute Bermudan option prices...
- ... but keep in mind that using large NN is not green!

Bibliography (1)

- S. Becker, P. Cheridito, and A. Jentzen. Deep optimal stopping. Journal of Machine Learning Research, 20(74):1–25, 2019.
- Emmanuelle Clément, Damien Lamberton, and Philip Protter. An analysis of a least squares regression method for american option pricing. *Finance and Stochastics*, 6(4):449–471, 2002.
- Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural Networks, 4(2):251 – 257, 1991.
- Côme Huré, Huyên Pham, Achref Bachouch, and Nicolas Langrené. Deep neural networks algorithms for stochastic control problems on finite horizon, part i: convergence analysis. *arXiv preprint arXiv:1812.04300*, 2018.
- Michael Kohler, Adam Krzyżak, and Nebojsa Todorovic. Pricing of high-dimensional american options by neural networks. *Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics*, 20(3):383–410, 2010.
- Michel Ledoux and Michel Talagrand. Probability in Banach spaces, volume 23 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1991. ISBN 3-540-52013-9. Isoperimetry and processes.
- F.A. Longstaff and R.S. Schwartz. Valuing American options by simulation : A simple least-square approach. *Review of Financial Studies*, 14:113–147, 2001.

Bibliography (2)

- Edith Mourier. Eléments aléatoires dans un espace de Banach. Ann. Inst. H. Poincaré, 13: 161–244, 1953.
- Reuven Y. Rubinstein and Alexander Shapiro. Discrete event systems. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons Ltd., Chichester, 1993. ISBN 0-471-93419-4. Sensitivity analysis and stochastic optimization by the score function method.
- J.N. Tsitsiklis and B. Van Roy. Regression methods for pricing complex American-style options. *IEEE Trans. Neural Netw.*, 12(4):694–703, 2001.