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Introduction

I Computing an American option involving a large number of assets
remains numerically challenging.

I A hope: Neural Network (NN) can (may) help to reduce the
computational burden.

I Some previous works using NN for optimal stopping (not LS algorithm
though)

I Michael Kohler, Adam Krzyżak, and Nebojsa Todorovic. Pricing of
high-dimensional american options by neural networks.
Mathematical Finance: An International Journal of Mathematics, Statistics and
Financial Economics, 20(3):383–410, 2010

I S. Becker, P. Cheridito, and A. Jentzen. Deep optimal stopping.
Journal of Machine Learning Research, 20(74):1–25, 2019
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Computing Bermudan options prices

I A discrete time (discounted) payoff process (ZTk )0≤k≤N adapted to
(FTk )0≤k≤N . max0≤k≤N |ZTk | ∈ L2.

I The time-Tk discounted value of the Bermudan option is given by

UTk = esssupτ∈TTk
E[Zτ |FTk ]

where Tt is the set of all F− stopping times with values in
{Tk,Tk+1, ...,T}.

I From the Snell enveloppe theory, we derive the standard dynamic
programming algorithm (→ “Tsistsiklis-Van Roy” type algorithms).

(1)

{
UTN = ZTN

UTk = max
(
ZTk ,E[UTk+1 |FTk ]

)
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The policy iteration approach. . .

Let τk be the smallest optimal stopping time after Tk.

(2)

{
τN = TN

τk = Tk1{ZTk≥E[Zτk+1 |FTk ]} + τk+11{ZTk<E[Zτk+1 |FTk ]}.

This is a dynamic programming principle on the policy not on the value
function→ “Longstaff-Schwartz” algorithm.
This approach has the practitioners’ favour for its robustness.

Difficulty: how to compute the conditional expectations?
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. . . in a Markovian context

I Markovian context: (Xt)0≤t≤T is a Markov process and ZTk = φk(XTk ).

E[Zτk+1 |FTk ] = E[Zτk+1 |XTk ] = ψk(XTk )

where ψk is a measurable function.
I Because of the L2 assumption, ψk can be computed by a least-square

problem
inf

ψ∈L2(L(XTk ))
E
[∣∣Zτk+1 − ψ(XTk )

∣∣2]
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Different numerical strategies

I The standard numerical (LS) approach: approximate the space L2 by a
finite dimensional vector space (polynomials, . . . )

I We investigate the use of Neural Networks to approximate ψk.
I Kohler et al. [2010]: neural networks but in a different context

(approximation of the value function Tsitsiklis and Roy [2001],
equation (1)) and re-simulation of the paths at each time steps.
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LS: truncation step
Longstaff-Schwartz type algorithms rely on direct approximation of
stopping times and use of the same simulated paths for all time steps
(obvious and large computational gains).
I (gk, k ≥ 1) is an L2(L(X)) basis and Φp(X, θ) =

∑p
k=1 θk gk(X).

I Backward approximation of iteration policy using (2),{
τ̂ p,

N = TN

τ̂ p
n = Tn 1{ZTn≥Φp(XTn ;θ̂p

n)} + τ̂ p
n+1 1{ZTn<Φp(XTn ;θ̂p

n)}

I with conditional expectation computed using a Monte Carlo
minimization problem: θ̂p

n is a minimizer of

inf
θ
E
(∣∣∣Φp(XTn ; θ)− Zτ̂ p

n+1

∣∣∣2) .
I Price approximation: Up

0 = max
(

Z0,E
(

Zτ̂ p
1

))
.
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The LS algorithm
I (gk, k ≥ 1) is an L2(L(X)) basis and Φp(X, θ) =

∑p
k=1 θk gk(X).

I Paths X(m)
T0
,X(m)

T1
, . . . ,X(m)

TN
and payoff paths Z(m)

T0
,Z(m)

T1
, . . . ,Z(m)

TN
,

m = 1, . . . ,M.
I Backward approximation of iteration policy,τ̂

p,(m)
N = TN

τ̂
p,(m)
n = Tn1{

Z(m)
Tn
≥Φp(X(m)

Tn
;θ̂p,M

n )
} + τ̂

p,(m)
n+1 1{

Z(m)
Tn
<Φp(X(m)

Tn
;θ̂p,M

n )
}

I with conditional expectation computed using a Monte Carlo
minimization problem: θ̂p,M

n is a minimizer of

inf
θ

1
M

M∑
m=1

∣∣∣∣Φp(X(m)
Tn

; θ)− Z(m)

τ
p,(m)
n+1

∣∣∣∣2 .
I Price approximation: Up,M

0 = max

(
Z0,

1
M

∑M
m=1 Z(m)

τ̂
p,(m)
1

)
.
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Reference papers

I Description of the algorithm:

F.A. Longstaff and R.S. Schwartz. Valuing American options by
simulation : A simple least-square approach.
Review of Financial Studies, 14:113–147, 2001.

I Rigorous approach:

Emmanuelle Clément, Damien Lamberton, and Philip Protter. An
analysis of a least squares regression method for american option
pricing.
Finance and Stochastics, 6(4):449–471, 2002.

- Up
0 converge to U0, p→ +∞

- Up,M
0 converge to Up

0 , M → +∞ a.s.
- “almost” a central limit theorem
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The modified algorithm

I In LS algorithm replace the approximation on a Hilbert basis Φp(.; θ)
by a Neural Network. This is not a vector space approximation (non
linear).

I The optimization problem is non linear, non convex, . . .
I Aim: extending the proof of (a.s.) convergence results
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A quick view of Neural Networks

I In short, a NN: x→ Φp(x, θ) ∈ R, with θ ∈ Rd, d large
I Φp = AL ◦ σa ◦ AL−1 ◦ · · · ◦ σa ◦ A1, L ≥ 2
I Al(xl) = wlxl + βl (affine functions)
I L− 2 “number of hidden layers”
I p “maximum number of neurons per layer” (i.e. sizes of the wl matrix)
I σa a fixed non linear (called activation function) applied component

wise
I θ := (wl, βl)l=1,...,L parameters of all the layers
I Restriction to a compact set Θp = {θ : |θ| ≤ γp} and assume

limp→∞ γp =∞. → use the USLLN.
I NN p = {Φp(·, θ) : θ ∈ Θp} and NN∞ = ∪p∈NNN p
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Hypothesis H

I For every p, there exists q ≥ 1

∀θ ∈ Θp, |Φp(x, θ)| ≤ κq(1 + |x|q)

a.s. the random function θ ∈ Θp 7−→ Φp(XTn , θ) are continuous.

I E[|XTn |
2q

] <∞ for all 0 ≤ n ≤ N.
I For all p, n < N, P (ZTn = Φp(XTn ; θ

p
n)) = 0.

I If θ1 and θ2 solve

inf
θ∈Θp

E
(∣∣∣Φp(XTn ; θ)− Zτ̂ p

n+1

∣∣∣2) ,
then Φp(x, θ1) = Φp(x, θ2) for almost all x
No need of a unique minimizer but only of the represented function.
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The result

Theorem 1
Under hypothesis H
I Convergence of the Neural network approximation

lim
p→∞

E[Zτ p
n
|FTn ] = E[Zτn |FTn ] in L2(Ω) (i.e. Up

0 → U0).

I SLLN: for every k = 1, . . . ,N,

lim
M→∞

1
M

M∑
m=1

Z(m)

τ̂
p,(m)
k

= E
[
Zτ p

k

]
a.s. (i.e. Up,M

0 → Up
0)
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Convergence of the NN approximation

A simple consequence of Hornik [1991].
I Also known as the “Universal Approximation Theorem”.

Theorem 2 (Hornik)
Assume that the function σa is non constant and bounded. Let µ denote a
probability measure on Rr, then NN∞ is dense in L2(Rr, µ).

I Corollary: If for every p, αp ∈ Θp is a minimizer of

inf
θ∈Θp

E[|Φp(X; θ)− Y|2],

(Φp(X;αp))p converges to E[Y|X] in L2(Ω) when p→∞.
I proof of the convergence of the “non-linear approximation” Φp(X; θ).
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Convergence of Monte-Carlo approximation

I p is fixed, N → +∞
I Now, minimisation problems are non linear, need more abstract

arguments to prove convergence
I Two ingredients (quite “old” results)
I First result: approximation of minimization problems

Lemma 3 (Rubinstein and Shapiro [1993])

I (fn)n defined on a compact set K ⊂ Rd. vn = infx∈K fn(x)

I xn a sequence of minimizers fn(xn) = infx∈K fn(x).

I v? = infx∈K f (x) and S? = {x ∈ K : f (x) = v?}.
If (fn)n converges uniformly on K to a continuous function f , then
vn → v? and d(xn,S?)→ 0 a.s.
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Convergence of Monte-Carlo approximation

I Second result: SLLN in Banach spaces (Ledoux and Talagrand [1991],
goes back to Mourier [1953]).

Lemma 4
Let (ξi)i≥1 i.i.d. Rm-valued, h : Rd × Rm → R. If

I a.s., θ ∈ Rd 7→ h(θ, ξ1) is continuous,

I ∀K > 0, E
[
sup|θ|≤K |h(θ, ξ1)|

]
< +∞.

Then

lim
n→∞

sup
|θ|≤K

∣∣∣∣∣1n
n∑

i=1

h(θ, ξi)− E[h(θ, ξ1)]

∣∣∣∣∣ = 0 a.s.
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Convergence of Monte-Carlo approximation

Combining these two results with the backward iteration introduced
by Clément et al. [2002], we get

Proposition
Under hypothesis H, for every n = 1, . . . ,N, Φ(X(1)

Tn
; θ̂p,M

n ) converges to

Φp(X(1)
Tn

; θp
n) a.s. when M →∞.
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Implementation details

I Python code with TensorFlow.
I We use ADAM algorithm to fit the neural network at each time step.
I We use the same NN through all time steps: take θ̂p,M

n+1, as the starting
point of the training algorithm at time time n.

I No use of setting epochs> 1 for n < N − 1. This allows for huge
computational time savings.

I We only use the in-the-money paths

inf
θ∈Θp

E
[∣∣∣Φp(XTn ; θ)− Zτ p

n+1

∣∣∣2 1{ZTn} > 0
]
.
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Put Basket option in the Black Scholes model

L dl epochs=1 epochs=5 epochs=10
2 32 4.08 (± 0.031) 4.1 (± 0.034) 4.11 (± 0.029)
2 128 4.08 (± 0.036) 4.09 (± 0.034) 4.1 (± 0.032)
2 512 4.07 (± 0.034) 4.09 (± 0.036) 4.1 (± 0.033)
4 32 4.07 (± 0.034) 4.09 (± 0.033) 4.1 (± 0.032)
4 128 4.06 (± 0.039) 4.09 (± 0.04) 4.1 (± 0.037)
4 512 4.05 (± 0.037) 4.08 (± 0.034) 4.09 (± 0.031)
8 32 4.07 (± 0.034) 4.09 (± 0.037) 4.1 (± 0.035)
8 128 4.06 (± 0.039) 4.09 (± 0.032) 4.1 (± 0.035)
8 512 4.04 (± 0.066) 4.07 (± 0.069) 4.08 (± 0.063)

Table: Basket option with r = 0.05, d = 5, σi = 0.2, ωi = 1/d, Si
0 = 100, ρ = 0.2,

K = 100, N = 20 and M = 100, 000. The standard Longstaff Schwartz algorithm
yields 4.11 ± 0.03 (resp. 4.04 ± 0.034) for an order 3 (resp. 1) polynomial
regression.
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Put option in the Heston model

L dl epochs=1 epochs=5 epochs=10
2 32 1.69 (± 0.017) 1.7 (± 0.017) 1.7 (± 0.016)
2 128 1.69 (± 0.017) 1.7 (± 0.019) 1.7 (± 0.019)
2 512 1.69 (± 0.019) 1.69 (± 0.019) 1.69 (± 0.018)
4 32 1.69 (± 0.022) 1.69 (± 0.017) 1.7 (± 0.018)
4 128 1.69 (± 0.024) 1.69 (± 0.02) 1.7 (± 0.016)
4 512 1.68 (± 0.025) 1.69 (± 0.022) 1.69 (± 0.022)
8 32 1.69 (± 0.023) 1.69 (± 0.02) 1.69 (± 0.019)
8 128 1.68 (± 0.03) 1.69 (± 0.022) 1.69 (± 0.02)
8 512 1.68 (± 0.03) 1.68 (± 0.041) 1.68 (± 0.053)

Table: Prices for put option in the Heston model with parameters the geometric
basket put option with parameters with S0 = K = 100, T = 1, σ0 = 0.01, ξ = 0.2,
θ = 0.01, κ = 2, ρ = −0.3, r = 0.1, N = 10 and M = 100, 000. The standard
Longstaff Schwartz algorithm yields 1.70 ± 0.008 (resp. 1.675 ± 0.005) for an
order 6 (resp. 1) polynomial regression.
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Conclusion

I Learn the continuation value using a NN instead of a polynomial
regression

I NN do not help much for low dimensional problems but do scale far
better

I Relatively small NN provide very accurate results (a few hundred
neurons with 1 or 2 hidden layers)

I Setting epochs = 1 is fine for all dates but the last one.
I NN have proved to be a very versatile and efficient tool to compute

Bermudan option prices. . .
I . . . but keep in mind that using large NN is not green!
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