Bahadur representation of sample quantiles for functional of Gaussian dependent sequences under a minimal assumption

Jean-François Coeurjolly

SAGAG, Department of Statistics, Grenoble, 1251 Av. Centrale BP 47, 38040 GRENOBLE Cedex 09, France

A R T I C L E I N F O

Article history:
Received 9 March 2007
Accepted 14 February 2008
Available online 20 March 2008

A B S T R A C T

We obtain a Bahadur representation for sample quantiles of a nonlinear functional of Gaussian sequences with correlation function decreasing as $k^{-\alpha}$ for some $\alpha > 0$. This representation is derived under a minimal assumption.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

We consider the problem of obtaining a Bahadur representation of sample quantiles in a certain dependence context. Before stating in what a Bahadur representation consists, let us specify some general notation. Given some random variable Y, $F(\cdot) = F_Y(\cdot)$ is referred to as the cumulative distribution function of Y, $\xi(p) = \xi_Y(p)$ for some $0 < p < 1$ as the quantile of order p. If $F(\cdot)$ is absolutely continuous with respect to Lebesgue measure, the probability density function is denoted by $f(\cdot) = f_Y(\cdot)$. On the basis of the observation of a vector $Y = (Y(1), \ldots, Y(n))$ of n random variables distributed as Y, the sample cumulative distribution function and the sample quantile of order p are respectively denoted by $\hat{F}_Y(\cdot; Y)$ and $\hat{\xi}_Y(p; Y)$ or simply by $\hat{F}(\cdot)$ and $\hat{\xi}(p)$.

Let $Y = (Y(1), \ldots, Y(n))$ be a vector of n i.i.d. random variables such that $F''(\xi(p))$ exists and is bounded in a neighborhood of $\xi(p)$ and such that $F'(\xi(p)) > 0$. Bahadur (1966) proved that as $n \to +\infty$,

$$\hat{\xi}(p) - \xi(p) = \frac{p - \hat{F}(p)}{f(\xi(p))} + r_n,$$

with $r_n = O_{a.s.}(n^{-3/4} \log(n)^{3/4})$ where a sequence of random variables U_n is said to be $O_{a.s.}(v_n)$ if U_n/v_n is almost surely bounded. Kiefer (1967) obtained the exact rate $n^{-3/4} \log \log(n)^{3/4}$. Under an assumption on $F(\cdot)$ which is quite similar to the one made by Bahadur, extensions of above results to dependent random variables have been pursued in Sen (1972) for ϕ-mixing variables, in Yoshihara (1995) for strongly mixing variables, and recently in Wu (2005) for short-range and long-range dependent linear processes, following works of Hesse (1990) and Ho and Hsing (1996). Finally, such a representation has been obtained by Coeurjolly (2008) for a nonlinear functional of Gaussian sequences with correlation function decreasing as $k^{-\alpha}$ for some $\alpha > 0$.

Ghosh (1971) proposed in the i.i.d. case a much simpler proof of Bahadur’s result which suffices for many statistical applications. He established under a weaker assumption on $F(\cdot)$ ($F'(\cdot)$ exists and is bounded in a neighborhood of $\xi(p)$ and $f(\xi(p)) > 0$) that the remainder term satisfies $r_n = o_{a.s.}(n^{-1/2})$, which means that $n^{1/2} r_n$ tends to 0 in probability. This result is sufficient for example to establish a central limit theorem for the sample quantile. Our goal is to extend Ghosh’s result to a nonlinear functional of Gaussian sequences with correlation function decreasing as $k^{-\alpha}$. The Bahadur representation is presented in Section 2 and is applied to a central limit theorem for the sample quantile. Proofs are deferred to Section 3.

E-mail address: Jean-François.Coeurjolly@upmf-grenoble.fr.

0167-7152/$-$ see front matter © 2008 Elsevier B.V. All rights reserved.

doi:10.1016/j.spl.2008.02.037
2. Main result

Let \(\{Y(i)\}_{i=1}^{+\infty} \) be a stationary (centered) Gaussian process with variance 1, and correlation function \(\rho(\cdot) \) such that, as \(i \to +\infty \)

\[
|\rho(i)| \sim i^{-\alpha}
\]

for some \(\alpha > 0 \).

Let us recall some background on Hermite polynomials: the Hermite polynomials form an orthogonal system for the Gaussian measure and are in particular such that \(\mathbb{E}(H_i(Y)H_k(Y)) = \delta_{i,k} \), where \(Y \) is referred to a standard Gaussian variable. For some measurable function \(g(\cdot) \) defined on \(\mathbb{R} \) such that \(\mathbb{E}(g(Y)^2) < +\infty \), the following expansion holds:

\[
g(t) = \sum_{j \geq \tau} c_j H_j(t) \quad \text{with} \quad c_j = \mathbb{E}(g(Y)H_j(Y)),
\]

where the integer \(\tau \) defined by \(\tau = \inf \{ j \geq 0, c_j \neq 0 \} \), is called the Hermite rank of the function \(g \). Note that this integer plays an important role. For example, it is related to the correlation of \(g(Y) \) where the integer \(g \) is the minimal Hermite rank of \(A \) satisfying Assumption \(\tau \).

We denote by \(\hat{\rho} \) the restriction of \(\rho(\cdot) \) on \(U \) and where \(\hat{\rho}(\cdot) \) is referred to the probability density function of a standard Gaussian variable.

Now, define, for some real \(u \), the function \(h_u(\cdot) \) by

\[
h_u(t) = \mathbf{1}_{g(U) \subseteq (t)}(t) - f_{g(Y)}(u).
\]

We denote by \(\tau(u) \) the Hermite rank of \(h_u(\cdot) \). For the sake of simplicity, we set \(\tau_p = \tau(\xi_{g(Y)}(p)) \) for some function \(g(\cdot) \) satisfying Assumption \(A(\xi(\cdot)) \), we define

\[
\tau_p = \inf_{y \in U, l \neq l} \tau(Y),
\]

that is the minimal Hermite rank of \(h_u(\cdot) \) for \(u \) in a neighborhood of \(\xi_{g(Y)}(p) \). Denote also by \(c_j(u) \) the \(j \)-th Hermite coefficient of the function \(h_u(\cdot) \).

Theorem 1. Under Assumption \(A(\xi(\cdot)) \), the following result holds as \(n \to +\infty \):

\[
\tilde{\xi}(p; g(Y)) - \xi_{g(Y)}(p) = \frac{p - \hat{\xi}(\xi_{g(Y)}(p); g(Y))}{f_{g(Y)}(\xi_{g(Y)}(p))} + o_p\left(r_n(\alpha, \tau_p) \right).
\]

where \(g(Y) = (g(Y(1)), \ldots, g(Y(n))) \), for \(i = 1, \ldots, n \), and where the sequence \((r_n(\alpha, \tau_p))_{n \geq 1} \) is defined by

\[
r_n(\alpha, \tau_p) = \begin{cases}
 n^{-1/2} & \text{if } \alpha \tau_p > 1, \\
 n^{-1/2} \log(n)^{1/2} & \text{if } \alpha \tau_p = 1, \\
 n^{-\alpha\tau_p/2} & \text{if } \alpha \tau_p < 1.
\end{cases}
\]

Remark 1. The sequence \(r_n(\alpha, \tau_p) \) is related to the short-range or long-range dependent behaviour of the sequence \(h_u(Y(1)), \ldots, h_u(Y(n)) \) for \(u \) in a neighborhood of \(\xi(p) \). More precisely, it corresponds to the asymptotic behaviour of the sequence

\[
\left(\frac{1}{n} \sum_{|i| < n} \rho(i) Y_i \right)^{1/2}.
\]

Corollary 2. Under Assumption \(A(\xi(p)) \), then the following convergences in distribution hold as \(n \to +\infty \):

(i) if \(\alpha \tau_p > 1 \)

\[
\sqrt{n} \left(\tilde{\xi}(p; g(Y)) - \xi_{g(Y)}(p) \right) \overset{d}{\rightarrow} \mathcal{N}(0, \sigma_p^2),
\]

(ii) if \(\alpha \tau_p = 1 \)

\[
\sqrt{n} \left(\tilde{\xi}(p; g(Y)) - \xi_{g(Y)}(p) \right) \overset{d}{\rightarrow} \mathcal{N}(0, \sigma_p^2),
\]

(iii) if \(\alpha \tau_p < 1 \)

\[
\sqrt{n} \left(\tilde{\xi}(p; g(Y)) - \xi_{g(Y)}(p) \right) \overset{d}{\rightarrow} \mathcal{N}(0, \sigma_p^2).
where
\[
\sigma_p^2 = \frac{1}{f(p)^2} \sum_{i=1}^{\kappa} \sum_{j \geq \kappa_p} \frac{c_j(p)^2}{j!} \rho(i) \quad \text{with } f(p) = f_{g(Y)}(\xi_{g(Y)}(p)) \text{ and } c_j(p) = c_j(\xi_{g(Y)}(p)).
\]

\[\text{(ii) if } \alpha \tau_p < 1 \]
\[
n^{\tau_p/2} \left(\tilde{\xi}(p; g(Y)) - \xi_{g(Y)}(p) \right) \xrightarrow{d} \frac{c_{\tau_p}(p)}{\tau_p f(p)} Z_{\tau_p},
\]
where
\[
Z_{\tau_p} = K(\tau_p, \alpha) \int_{\mathcal{L}^n} \exp((\lambda_1 + \cdots + \lambda_{\tau_p})) - 1 \prod_{j=1}^{\tau_p} |\lambda_j|^{(\alpha-1)/2} \bar{B}(d\lambda_j)
\]
and
\[
K(\tau_p, \alpha) = \left(\frac{(1 - \alpha \tau_p/2)(1 - \alpha \tau_p)}{\tau_p (2 \Gamma(\alpha) \sin(\pi(1 - \alpha)/2))^{\tau_p}} \right)^{1/2}.
\]

The measure \(\bar{B} \) is a Gaussian complex measure and the symbol \(f' \) means that the domain of integration excludes the hyperdiagonals \(\{ \lambda_i = \pm \lambda_j, i \neq j \} \).

The proof of this result is omitted since it is a direct application of Theorem 1 and general limit theorems adapted to nonlinear functionals of Gaussian sequences; e.g. Breuer and Major (1983) and Dehling and Taqqu (1989).

3. Proofs

3.1. Auxiliary lemma

Lemma 3. For every \(j \geq 1 \) and for all positive sequence \((u_n)_{n \geq 1} \) such that \(u_n \to 0 \), as \(n \to +\infty \), we have, under Assumption A(\(\xi(p) \)),
\[
I = \int_{U} H_{j}(t) \phi(t) 1_{[\xi(t)-\xi_{g(Y)}(p) \in [0, u_n)]} dt \sim u_n \kappa_j,
\]
where \(\kappa_j \) is defined, for every \(j \geq 1 \), by
\[
\kappa_j = \begin{cases}
-2 \sum_{i=1}^{j-1} \frac{\phi'(g_i^{-1}(\xi(p)))}{g'(g_i^{-1}(\xi(p)))} & \text{if } j = 1, \\
2(-1)^{j-1} \sum_{i=1}^{j-1} \frac{\phi'(g_i^{-1}(\xi(p)))}{g'(g_i^{-1}(\xi(p)))} & \text{if } j > 1.
\end{cases}
\]

Proof. Under Assumption A(\(\xi(p) \)), there exists \(n_0 \in \mathbb{N} \) such that for all \(n \geq n_0 \),
\[
I = \sum_{i=1}^{r} I_i \quad \text{with } I_i = \int_{U_i} H_{j}(t) \phi(t) 1_{[\xi(t)-u_n \leq \xi(p) \leq \xi(t) + u_n]} dt.
\]
Assume without loss of generality that the restriction of \(g(\cdot) \) on \(U_i \) (denoted by \(g_i(\cdot) \)) is an increasing function; we have
\[
I_i = \int_{U_i} H_{j}(t) \phi(t) 1_{[\xi(t)-u_n \leq \xi(p) \leq \xi(t) + u_n]} dt
\]
\[
= \int_{\xi(p)-u_n}^{\xi(p)+u_n} H_{j}(t) \phi(t) dt
\]
\[
= \left\{ \begin{array}{ll}
\phi(m_{i,n}) - \phi(M_{i,n}) = (m_{i,n} - M_{i,n}) & \text{if } j = 1 \\
(-1)^{j} \left(\phi^{(j-1)}(M_{i,n}) - \phi^{(j-1)}(m_{i,n}) \right) & \text{if } j > 1,
\end{array} \right.
\]
where \(M_{i,n} = g_i^{-1}(\xi(p) + u_n) \) and \(m_{i,n} = g_i^{-1}(\xi(p) - u_n) \). Then, there exists \(\omega_{n,i,j} \in [m_{i,n}, M_{i,n}] \) for every \(j \geq 1 \) such that
\[
I_i = \left\{ \begin{array}{ll}
(m_{i,n} - M_{i,n}) \phi^{(j)}(\omega_{n,i,j}) & \text{if } j = 1 \\
(-1)^{j} (M_{i,n} - m_{i,n}) \phi^{(j-1)}(\omega_{n,i,j}) & \text{if } j > 1.
\end{array} \right.
\]
Under Assumption $A(\xi(p))$, we have, as $n \to +\infty$,
\[
\alpha_{n,i,j} \sim g_i^{-1}(\xi(p)) \quad \text{and} \quad M_{n,i} - m_{i,n} \sim 2u_i \frac{1}{g'(g_i^{-1}(\xi(p)))},
\]
which ends the proof.

3.2. Proof of Theorem 1

For the sake of simplicity, we set $\hat{\xi} (p) = \hat{\theta} (p; g(Y))$, $\xi(p) = \xi_{gY}(p)$, $\tilde{\theta} (\cdot) = \tilde{\theta} (\cdot; g(Y))$, $F(\cdot) = f_{gY}(\cdot)$, $f(\cdot) = f_gY(\cdot)$ and $r_n = r_n(\alpha, \tau_p)$. Define
\[
V_n = r_n^{-1} \left(\hat{\xi} (p) - \xi(p) \right) \quad \text{and} \quad W_n = r_n^{-1} \left(\frac{p - \tilde{\theta}(p)}{f(p)} \right).
\]
The result is established if $V_n - W_n \to 0$ as $n \to +\infty$. It suffices to prove that V_n and W_n satisfy the conditions of Lemma 1 of Ghosh (1971):

- **Condition (a):** for all $\delta > 0$, there exists $\epsilon = \epsilon(\delta)$ such that $P(|W_n| > \epsilon) < \delta$.
- **Condition (b):** for all $y \in \mathbb{R}$ and for all $\epsilon > 0$.
\[
\lim_{n \to +\infty} P(V_n \leq y, W_n \geq k + \epsilon) \quad \text{and} \quad \lim_{n \to +\infty} P(V_n \geq y + \epsilon, W_n \geq k).
\]

Condition (a): From the Bienaymé–Tchebyshev inequality it is sufficient to prove that $E W_n^2 = O(1)$. Rewrite $W_n = n^{-1} \sum_{i=1}^{n} h_{\xi(p)} (Y(i))$. Let c_j (for some $j \geq 0$) denote the j-th Hermite coefficient of $h_{\xi(p)} (\cdot)$. Since $h_{\xi(p)} (\cdot)$ has at least Hermite rank τ_p, then
\[
E W_n^2 = \frac{r_n^{-2}}{n^2} \sum_{i_1,i_2=1}^{n} E(h_{\xi(p)} (Y(i_1)) h_{\xi(p)} (Y(i_2)))
= \frac{r_n^{-2}}{n^2} \sum_{i_1,i_2=1}^{n} \sum_{j_1,j_2 \geq \tau_p} c_{j_1} c_{j_2} E(H_{j_1} (Y(i_1)) H_{j_2} (Y(i_2)))
= \frac{r_n^{-2}}{n^2} \sum_{i_1,i_2=1}^{n} \sum_{j \geq \tau_p} (\xi)^2 \rho(i_2 - i_1) j!
= \sigma \left(\frac{r_n^{-2}}{n} \sum_{i \geq -n} \rho(i) \tau_p \right) = O(1),
\]
from Remark 1.

Condition (b): Let $y \in \mathbb{R}$; we have
\[
\{ V_n \leq y \} = \{ \hat{\theta} (p) \leq y \times r_n + \xi(p) \}
= \{ p \leq \tilde{\theta} (y \times r_n + \xi(p)) \} = \{ Z_n \leq y_n \},
\]
with
\[
Z_n = \frac{r_n^{-1}}{f(\xi(p))} \left(F(y \times r_n + \xi(p)) - \tilde{\theta} \left(\frac{y}{\sqrt{r_n}} + \xi(p) \right) \right)
\]
and
\[
y_n = \frac{r_n^{-1}}{f(\xi(p))} \left(F(y \times r_n + \xi(p)) - p \right).
\]

Under Assumption $A(\xi(p))$, we have $y_n \to y$, as $n \to +\infty$. Now, prove that $Z_n - W_n \xrightarrow{p} 0$. Without loss of generality, assume $y > 0$. Then, we have
\[
W_n - Z_n = \frac{r_n^{-1}}{f(\xi(p))} \left(\tilde{\theta} (y \times r_n + \xi(p)) - F(y \times r_n + \xi(p)) - \tilde{\theta} (\xi(p)) + F(\xi(p)) \right)
= \frac{r_n^{-1}}{f(\xi(p))} \frac{1}{n} \sum_{i=1}^{n} h_{\xi(p,n)} (Y(i))
\]
where $h_{\xi(p,n)} (\cdot)$ is the function defined for $t \in \mathbb{R}$ by
\[
h_{\xi(p,n)} (t) = 1_{\xi(p) \leq t < \xi(p) + y \times r_n} (t) - P(\xi(p) \leq g(Y) \leq \xi(p) + y \times r_n).
\]
For n sufficiently large, the function $h_{\xi(p),n}(\cdot)$ has Hermite rank τ_p. Denote by $c_{j,n}$ the j-th Hermite coefficient of $h_{\xi(p),n}(\cdot)$. From Lemma 3, there exists a sequence $(\kappa_j)_{j \geq \tau_p}$ such that, as $n \to +\infty$,

$$c_{j,n} \sim \kappa_j \times r_n.$$

Since, for all $n \geq 1$, $E(h_n(Y)^2) = \sum_{j=\tau_p}^{\infty} (c_{j,n})^2/j! < +\infty$, it is clear that the sequence $(\kappa_j)_{j \geq \tau_p}$ is such that $\sum_{j=\tau_p}^{\infty} (\kappa_j)^2/j! < +\infty$. By denoting as λ a positive constant, we get, as $n \to +\infty$,

$$E(W_n - Z_n)^2 = \frac{r_n^2}{n^2} \frac{1}{f(\xi(p))^2} \sum_{i_1,i_2=1}^{n} E(h_{\xi(p),n}(Y(i_1)) h_{\xi(p),n}(Y(i_2)))
= \frac{r_n^2}{n^2} \frac{1}{f(\xi(p))^2} \sum_{i_1,i_2=1}^{n} \sum_{j_1,j_2=\tau_p}^{\infty} c_{j_1,n} c_{j_2,n} E(H_{j_1}(Y(i_1)) H_{j_2}(Y(i_2)))
= \frac{r_n^2}{n^2} \frac{1}{f(\xi(p))^2} \sum_{i_1,i_2=1}^{n} \sum_{j=\tau_p}^{\infty} \frac{\kappa_j^2}{j!} \rho(j_2 - i_1)^j
\leq \lambda \frac{r_n^2}{n} \sum_{j=\tau_p}^{\infty} \frac{(\kappa_j)^2}{j!} \sum_{i=|i|<n} \rho(i)^j = o\left(\frac{1}{n} \sum_{i=|i|<n} \rho(i)^n\right) = o\left(r_n^2\right),$$

from Remark 1. Therefore, $W_n - Z_n$ converges to 0 in probability, as $n \to +\infty$. Thus, for all $\epsilon > 0$, we have, as $n \to +\infty$,

$$P(V_n \leq y, W_n \geq y + \epsilon) = P(Z_n \leq y, W_n \geq y + \epsilon) \to 0.$$

Following the sketch of this proof, we also have $P(V_n \geq y + \epsilon, W_n \leq y) \to 0$, ensuring condition (b). Therefore, $W_n - Z_n$ converges to 0 in probability, as $n \to +\infty$. Thus, for all $\epsilon > 0$, we have, as $n \to +\infty$,

$$P(V_n \leq y, W_n \geq y + \epsilon) = P(Z_n \leq y, W_n \geq y + \epsilon) \to 0.$$

Following the sketch of this proof, we also have $P(V_n \geq y + \epsilon, W_n \leq y) \to 0$, ensuring condition (b).

Acknowledgement

The author would like to thank the referee for comments improving the statement of Corollary 2.

References

