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Abstract

Vlasov simulations can for some situations be a valuable alternative to PIC sim-
ulations for the study of intense beam propagation. However, as they rely on a
phase-space grid which is fixed for the whole simulation, important computing ef-
fort can be wasted in zones where no particles are present at some given time. In
order to overcome this drawback, we introduce here a new method which makes
use of a phase-space grid which is uniform at any given time, but moves in time
according to the evolution of the envelope of the beam.
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1 Introduction

Thanks to the rapid increase of computing power in recent years, simulations of
plasmas and particle beams based on direct solution of the Vlasov equation on
a multi-dimensional phase-space grid are becoming attractive as an alternative
to Particle-In-Cell (PIC) simulations. Their strength lies essentially in the fact
that they are noiseless and that all parts of phase space, including the tail
of the distribution, are equally well resolved. Their major drawback is that,
for inhomogeneous systems, many of the grid points (where no particles are
present) are wasted. This is especially the case for beam simulations where
the beam moves rapidly through the phase space (due to varying alternating-
gradient focusing forces, for example). This inefficiency has made such Vlasov
simulations unsuitable for those cases.
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One of the methods which has proven very efficient for the direct resolution
of the Vlasov equation is the semi-Lagrangian method (1; 3). It consists in
updating the values of the distribution function at the grid nodes by following
the characteristics ending at these nodes backwards and interpolating the value
at the bottom of the characteristics from the known values at the previous time
step. In general the interpolation grid is fixed, but this is not mandatory.

This paper introduces the concept of a moving grid which is mapped at each
time step from a logical uniform grid to the beam, so that it contains the whole
beam without needing too many points with vanishing values of the distribu-
tion function. In order to implement this new method, we introduce a new
time stepping algorithm which does not rely on the time splitting procedure
traditionally used in Vlasov solvers.

The model we consider throughout this paper is the nonrelativistic Vlasov
equation coupled self-consistently with Poisson’s equation. It reads

∂f

∂t
+ v · ∇xf +

q

m
(E + v ×B) · ∇vf = 0, (1)

the self electric field E is computed from Poisson’s equations

−ε0∇2φ = ρ(x, t) = q
∫

f(x,v, t) dv, E = −∇φ.

The magnetic field is external and considered to be known.

The paper is organized as follows: We first review the traditional semi-Lagrangian
method. After that, we introduce a new time stepping algorithm that does
not require splitting and which is required when the coordinate axes are not
aligned with the x and v directions. We then describe the moving grid al-
gorithm in a general setting first and finally present its application to the
simulation of beams in transverse phase-space along with some first numerical
results.

2 The semi-Lagrangian method for the Vlasov equation

The semi-Lagrangian method consists in computing a numerical approxima-
tion of the solution of the Vlasov equation (1) on a phase space grid by using
the property of the equation that the distribution function f is conserved
along characteristics. More precisely, for any times s and t we have

f(x,v, t) = f(X(s;x,v, t),V(s;x,v, t), s),
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where (X(s;x,v, t),V(s;x,v, t) are the characteristics of the Vlasov equation
which are solution of the system of ordinary differential equations

dX

ds
= V, (2)

dV

ds
= E(X(s), s) + V(s) ×B(X(s), s), (3)

with initial conditions X(t) = x, V(t) = v.

From this property, fn being known one can induce a numerical method for
computing the distribution function fn+1 at the grid points (xi,vj) consisting
of the following two steps:

(1) For all i, j, compute the origin of the characteristic ending at xi,vj, i.e.
an approximation of X(tn;xi,vj, tn+1), V(tn;xi,vj, tn+1).

(2) As fn+1(xi,vj) = fn(X(tn;xi,vj, tn+1),V(tn;xi,vj, tn+1)), fn+1 can be
computed by interpolating fn which is known at the grid points at the
points X(tn;xi,vj, tn+1),V(tn;xi,vj, tn+1).

This method can be simplified by performing a time-splitting separating the
advection phases in physical space and velocity space, as in this case the
characteristics can be solved explicitely.

The semi-Lagrangian method does not require any specific interpolation scheme.
However, numerical experience dictates use of a high enough order so that dif-
fusion, which is the most important numerical error in this method, is limited
to an acceptable level. The only natural requirement is that the interpolation
enables to get a good continuous reconstruction of f (at the lowest possible
cost). Hence one could use a different interpolation grid for each time step.
This can save a lot of time when the shape of the region of phase space having
significant particle density evolves considerably over time, as is the case for a
beam in a periodic focusing channel. In the remainder of this paper, we ex-
tend the semi-Lagrangian method to allow use of an interpolation grid which
is moving in time.

3 A second order algorithm for the characteristics

When the grid transformation mixes space and velocity components the tra-
ditional splitting method (2) cannot be performed. Therefore we need to in-
troduce an efficient method for solving the characteristics without splitting.
A possible option would be to use the two time-steps method that was intro-
duced in (1). However, this has the drawback of decoupling even and odd time
steps. Let us instead introduce a second order predictor-corrector method to
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compute the origin of the characteristics based on an isochronous leap-frog
algorithm.

Algorithm 1: Knowing the final position (Xn+1, V n+1) at time step tn+1, as
well as fn, ρn−1, En we can compute the initial position (Xn, V n) using the
following algorithm:

(1) Predict Ēn+1 using the continuity equation (or directly Ampere’s law in

1D) ρn+1 = ρn−1 − 2∆t∇ · Jn, Jn = q
∫

fn(x,v)v dv, −∇2φn+1 = ρn+1

ε0
,

Ēn+1 = −∇φn+1.
(2) Vn+ 1

2 = Vn+1 − ∆t
2
Ēn+1(Xn+1); Xn = Xn+1 − ∆tVn+ 1

2 ; Vn = Vn+ 1
2 −

∆t
2
En(Xn).

(3) fn+1(Xn+1,Vn+1) = interpolation(fn)(Xn,Vn); ρn+1 =
∫

fn+1 dv,

(4) Correct Ēn+1 using −∇2φn+1 = ρn+1

ε0
, Ēn+1 = −∇φn+1.

(5) If ‖Ēn+1 − Ēn+1
prev‖ > threshold go back to 2.

Our first 1D tests show that the error decreases very rapidly: the relative error
is of the order of 10−2 after the predictor step, decreases to around 10−9 after
one corrector step and reaches 10−15 after two corrector steps. Hence, given
the other errors inherent in any discrete algorithm, a single corrector step is
sufficient. Therefore the cost of the algorithm, which comes mostly from the
interpolation step, is roughly the same as for the split algorithm, where one
interpolation at each split step is necessary.

4 The semi-Lagrangian method on a moving grid

4.1 The algorithm for the Vlasov solve

The semi-Lagrangian method consist in two conceptually different steps:

(1) An advection step which consists in solving a large number of decoupled
ordinary differential equations. This step is completely independent of
the grid and is most naturally performed in the physical space;

(2) An interpolation step which is necessary to compute the value of the
distribution function at the origin of the characteristics which are not
on the grid. The interpolation grid is only needed to reconstruct the
distribution function at every point in phase space at one given time step
and needs not be the same at two different time steps.

In order to optimize step 2 one needs to position the interpolation points so
as to be able to reconstruct f with a given acuracy at the lowest possible cost.
In beam dynamics simulations the global movement of the beam is mostly
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determined by the external forces and even if the self forces are important
it can be determined by the evolution of the envelope equation. Hence this
information should be used to position the grid points.

On the other hand, in order to simplify the interpolation step, we choose to
always perform it on a uniform logical grid, the position in the actual phase
space of the grid points being given by an invertible mapping ϕt from the
logical grid to the physical grid. We choose ϕt such that it is continuously
differentiable as well as its inverse. The subscript t reminds us that ϕt can be
different for different times.

In order to describe the algorithm, we need to introduce a few notations re-
garding the logical and physical grids. We shall denote with a ∗ the coordinates
in the logical grid. Then for a given point (x,v) in the physical phase space,
we have

(x∗,v∗) = ϕ−1
t (x,v) or (x,v) = ϕt(x

∗,v∗).

Let us also introduce the distribution function on the logical grid defined by
f ∗(x∗, v∗, t) = f(ϕt(x

∗, v∗), t). Then, the property that f is conserved along
the characteristics translates into the following new conservation property for
f ∗ that shall be used in the algorithm:

f ∗(x∗, v∗, t) = f(ϕt(x
∗, v∗), t),

= f(x, v, t),

= f(X(s; x, v, t), V (s; x, v, t), s),

= f(ϕs(X
∗(s; x, v, t), V ∗(s; x, v, t)), s),

= f ∗(X∗(s; x, v, t), V ∗(s; x, v, t), s),

where s parameterizes motion along the characteristics. Now, fn being known
as well as ϕn(= ϕtn) and ϕn+1, the following algorithm can be used to compute
fn+1.

Algorithm 2:

(1) Compute positions in physical phase-space of grid points where fn+1 is
to be computed: (xn+1

i,j , vn+1
i,j ) = ϕn+1(x

∗
i , v

∗
j ), where (x∗

i , v
∗
j ) are the nodes

of the logical grid.
(2) Compute origin of grid points (xn+1

i,j , vn+1
i,j ) using algorithm 1 or similar.

We denote by (Xn
i,j, V

n
i,j) these origins.

(3) Transform (Xn
i,j, V

n
i,j) back to the logical grid at time tn: (X∗n

i,j , V
∗n
i,j ) =

ϕ−1
n (Xn

i,j, V
n
i,j).

(4) Interpolate f ∗n at origin of characteristics on logical grid to get fn+1, as
f ∗(n+1)(x∗

i , v
∗
j ) = f ∗n(X∗n

i,j , V
∗n
i,j ).

Steps 2 and 4 exist in any nonsplit semi-Lagrangian code. Hence the extension
of such codes to moving grids can be performed easily by implementing the
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transform from logical to physical space (step 1) and the back transform from
physical to logical space (step 3).

4.2 Coupling with the Poisson equation

One of the problems that can arise with the moving grid is that the grid
points fail to be aligned along a given position x in physical space. Hence
when velocity moments, in particular ρ, need to be computed we need to
interpolate f at some specified points for the numerical integration. In order
to minimize these interpolations the numerical integration is performed using
an adaptive Gauss quadrature. The grid motion could be constrained to avoid
this (forcing points to line up in columns of constant x); but if it is desired
that the mesh motion track the phase space flow as closely as possible (so as
to minimize numerical diffusion) such measures are needed. The trade-off for
real applications has yet to be assessed.

In some systems, the requirement that the mapping from logical to physical
mesh remain simple may itself limit the ability of the grid to follow the phase
space flow.

5 Application to beam simulation in transverse phase space

In this kind of simulation the beam envelope can evolve greatly, leaving at
any given time an large portion of a fixed grid empty and inducing much
unnecessary computation. For this reason, we use a moving grid, and adapt
that grid at each time step to the RMS beam envelope. Hence the transform
ϕ is a rotation coupled to a dilation following the envelope motion.

More precisely, the ellipse defined by its larger dimension a, its smaller di-
mension b and its angle θ with respect to the (Ox) axis can be defined by the
RMS parameters of the beam from the relations

tan 2θ =
2〈xx′〉

〈x2〉 − 〈x′2〉
,

a =
√

2(cos2 θ〈x2〉 + sin2 θ〈x′2〉 + 2 sin θ cos θ〈xx′〉),

b =
√

2(sin2 θ〈x2〉 + cos2 θ〈x′2〉 − 2 sin θ cos θ〈xx′〉),
where for a function χ(x, x′) we denote by

〈χ(x, x′)〉 =

∫
χ(x, x′)f(x, x′) dxdx′∫

f(x, x′) dxdx′ .
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In this calculation, we consider x to be a dimensionless quantity, scaled to the
size of the physical domain and, as usual in beam physics, x′ = vx

vz
, where vz

is the longitudinal velocity of the beam.

The computing box at time tn+1 is determined using a, b and θ obtained from
RMS values of the beam computed at time tn.

6 Numerical results

In order to validate our method and pinpoint its advantages, we applied it in
cases where the RMS envelope motion is important, namely first in the case
of a mismatched beam in a uniform focusing channel and then in the case of
a matched beam in a periodic focusing channel.

We considered the model problem of the transverse axisymmetric Vlasov-
Poisson equation with vanishing canonical angular momentum. This problem
reads

∂f

∂t
+ vr

∂f

∂r
+ (Fapp +

q

m
Er)

∂f

∂vr

= 0,

1

r

d

dr
(rEr) = ρ =

∫
f dvr.

6.1 Mismatched Gaussian beam in a uniform focusing channel

We consider a mismatched Gaussian beam

f0(r, vr) = n0e
−(r2/a2+v2/v2

th)

with a linear applied field of the form αr.

We represent snapshots of the beam and the moving computing box in Figure
1. The results are very satisfying as the computing box follows very precisely
the global motion of the beam.

6.2 Matched Gaussian beam in a periodic focusing channel

We consider here a matched Gaussian beam

f0(r, vr) = n0e
−(r2/a2+v2/v2

th)
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Fig. 1. Snapshots of the motion of a mismatched Gaussian beam in a uniform
focusing channel

with a linear applied field of the form α(z)r, where α(z) is a piecewise constant
function switching beetween 0 and some fixed value, the pattern repeating
periodically (the repetition length is called a lattice period).

We represent snapshots of the beam and the moving computing box in Figure
2. Here as well, although some filaments are generated by the nonlinear forces,
the computing box obtained from the RMS envelope of the beam does a good
job in helping to determine the region of non vanishing f .

7 Conclusion

The transform method appears very promising for beam simulations. Use of
a very simple transform given by the RMS motion of the beam allows the
grid to follow more closely the global motion of the beam, and thus reduces
considerably the size of the grid necessary for the simulation. This method has
been implemented on a 1D model problem. The next step will be to assess its
usefulness in more realistic cases, including 2D transverse simulations and/or
1D longitudinal simulations. Finally, we note that many other applications of
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Fig. 2. Snapshots of the motion of a matched Gaussian beam in a periodic focusing
channel

such a method outside of beam physics can be envisioned. In particular, we
might imagine that our method may have value for: sheath problems (where
the location and structure of the sheath evolves in time); particles in non-
neutral traps (such as Paul traps) with oscillating or otherwise time-varying
applied fields; particles in RF-driven accelerators; kinetic studies of magnetic
reconnection (where the reconnection layer evolves); free or driven expansion
of plasma into vacuum or lower-density plasma; collisionless shock dynam-
ics; compressing plasmas; and laser-plasma instabilities which only develop at
advanced time.
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