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LOCAL MINIMIZERS OF FUNCTIONALS
WITH MULTIPLE VOLUME CONSTRAINTS ∗

É O1
M O R2

Abstract. We study variational problems with volume constraints, i.e., with level sets of prescribed measure.
We introduce a numerical method to approximate local minimizers and illustrate it with some two-dimensional
examples. We demonstrate numerically nonexistence results which had been obtained analytically in previous
work. Moreover, we show the existence of discontinuous dependence of global minimizers from the data by using
aΓ-limit argument and illustrate this with numerical computations. Finally we construct explicitly local and global
minimizers for problems with two volume constraints.
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1. I

Let Ω be a bounded open set inRn. The general form of a variational problem onΩ with two level set constraints is
given by the minimization of

Minimize E(u) :=
∫

Ω

f (x, u(x),∇u(x)) dx,

|{x ∈ Ω, u(x) = a}| = α,

|{x ∈ Ω, u(x) = b}| = β, (1)

whereu ∈ H1(Ω) andα, β > 0, α + β < |Ω|. Problems of this class have been encountered in the contextof immissible
fluids [?] and mixtures of micromagnetic materials [?]. The difficulty of such problems is the special structure of their
constraints: A sequence of functions satisfying these constraints can have a limit which fails to satisfy the constraints.
Such minimization problems but with only one volume constraint have been studied by various authors, see e.g. [?].
Problems with two or more constraints have a very different nature than problems with only one volume constraint:In the
case of one volume constraint, only additional boundary conditions or the design of the energy can induce transitions of
the solution between different values. Two or more volume constraints, on the other hand, force transitions of the solution
by their very nature. Such problems have been studied starting from the fundamental work by Ambrosio, Marcellini,
Fonseca and Tartar [?]. Their results have been generalized by various authors, compare e.g., [?,?,?]. It turned out that
existence can only be guaranteed for functionsf satisfying quite specific conditions, and that there are easy examples of
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nonexistence, e.g. ifn = 1, f (x, u, u′) = |u′|2 + |u| and|Ω| − α − β sufficiently large [?]. Whereas the one dimensional case
by now is relatively well understood (compare [?, ?]), thereare few sharp results on existence in the higher dimensional
case [?]. There are in addition some results on local minimizers in the one-dimensional case [?], but there were so far
no rigorous results in the higher dimensional case. By computing the shape derivative of the functional it is, however,
possible to give a necessary condition for minimizers, as has been done in [?]:

Theorem 1.1. Let u∈W1,2(Ω, [0, 1]) be a solution of (1). Assume that S:= ∂{u = 0}∩Ω is C1, then∂u
∂n is locally constant

on S .

There is also very little known about explicit examples of minimizers in two dimensions, compare [?,?].

In this article we are introducing a numerical method for theapproximation of local minimizers of (1). We apply
this method to various examples and obtain a first picture of the shape of local and global minimizers for some simple
domains inR2. Guided by the numerical results, we prove rigorously that even on the unit square solutions are not
depending continuously on the parameterα andβ and illustrate this with numerical results. Moreover, we show that even
on convex domains inR2 nontrivial local minimizers can exist.

2. N 

2.1. General approach and level-set methods

We suppose in this section the existence of a solution of (1),i.e. that there exists a functionu ∈ H1(Ω) minimizing the
problem (1). Our goal is to find a numerical method for the computation of this solution.

We will first explain our ideas in the simplest situation where f (x, u(x),∇u(x)) = |∇u(x)|2. In this situation existence
of a solution for problem (1) has been already found in [?]. Our approach is based on the following fact: Letu∗ be an
optimal function for the problem, and denote

Ωa = {x ∈ Ω, u∗(x) = a}, Ωb = {x ∈ Ω, u∗(x) = b}.

Ωa andΩb are closed sets, sinceu is Hölder continuous, for a proof see [?, Theorem 3.3]. Then, it is possible to reconstruct
u∗ by solving the elliptic boundary value problem:































∆u = 0, in Ω\(Ωa ∪ Ωb),
u = α on ∂Ωa,

u = β on ∂Ωb,
∂u
∂n = 0 on ∂Ω\(Ωa ∪Ωb).

(2)

The numerical approximation of an optimal functionu∗ is hence reduced to an optimization problem for the two sets
Ωa andΩb. Unfortunately, very few results are known concerning the optimal setsΩa andΩb. In particular, it is not
possible to restrict the optimization process to connectedsets since disconnected sets can be optimal. We propose below
an approach based on level set methods which makes it possible to generate also disconnected sets.

Before this, we recall briefly the standard tools of level setmethods in a simplified context where only one single shape
is unknown (see for instance [?] for numerical details closely related to our approach). Weexplain later how to deal with
more than one unknown shape.

LetΩ be a subset ofR2, we consider an optimization problem where we want to find an optimal setO ⊂ Ω for a given
functional. The main idea of the method is to parametrizeO by a functionΦ, the so-calledlevel set function, that satisfies























Φ(x) < 0 if x ∈ O,
Φ(x) > 0 if x ∈ Ω\O,
Φ(x) = 0 if x ∈ ∂O.

For numerical convenience which will be explain below, the level set functionΦ is always defined on a cartesian grid
defined on a square containaing the setΩ.
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As suggested in [?], such a function will be initialized with the signed-distance which is given by

{

Φ(x) = −dist(x, ∂O) if x ∈ O,
Φ(x) = dist(x, ∂O) if x ∈ Ω\O.

We remark that the constructed distance is generally not easy to compute. In our case, for the cartesian mesh onΩ,
deduced by the cartesian grid whereΦ is defined, we choose an approximate signed-distance function which is constant
on each triangle of the mesh. Its value in the triangleT is computed by evaluating the distance between the center ofmass
of T and the center of mass of the closest triangle lying on the boundary of the initial shape.

OnceΦ is defined, we can let its level set at 0 (i.e.∂O) fluctuate with time under the vector fieldvn (wherev is a
real-valued function andn is the normal vector on∂O). In other words, ifx(t) describes the evolution of a point on∂O
under such a transformation, it has to satisfy

Φ(t, x(t)) = 0

for all t. Differentiating this expression, we obtain

∂Φ

∂t
(t, x(t)) + v(x(t))n(x(t)) · ∇xΦ(t, x(t)) = 0. (3)

Now the normal to a level set in a non-stationary point is given by

n(x(t)) =
∇xΦ

|∇xΦ|
(t, x(t)).

Hence, using (3), we derive

∂Φ

∂t
(t, x(t)) + v(x(t)) |∇xΦ| (t, x(t)) = 0. (4)

In order to compute the evolution ofΦ, we thus have to solve a Hamilton-Jacobi equation. We remarkthat the computation
we have presented only concerns the level set 0, but since in practice the vector fieldvn has a natural extension onΩ, we
solve the equation (4) in the whole setΩ.

We want to find a good velocity fieldvn for the shape optimization problem under investigation. Therefore we follow
an approach which has been first introduced in [?] and choosevnas the vector field obtained by boundary variations. Let
O ⊂ Ω be a connected set withC2-boundary andu a solution of the problem



















∆u = 0, in Ω\O,

u = α on ∂O,
∂u
∂n = 0 on ∂Ω\O.

(5)

It is well known in shape optimization (see for instance [?,?,?]) that the shape derivative of the energy ofu in the direction
of a vector fieldV localized around∂O is given by Hadamard’s formula

dE
dV
= −

∫

∂O

(

∂u
∂n

)2

Vn dσ.

This computation suggests that the steepest descent direction is given by the normal vector field

−

(

∂u
∂n

)2

n.

Moreover, sinceu is by definition constant along∂O this vector field has a natural extension to the domainΩ using the
relation:

n = ±
∇Φ

|∇Φ|
.
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In order to avoid the computation of a new mesh at each iteration, we compute an approximation of the solution of (5) via
a penalization method introduced in [?].

2.2. A multi-level set method

As explained before, the numerical approximation of (1) canbe reduced to the approximation of the two sets{x ∈
Ω, u(x) = a} and{x ∈ Ω, u(x) = b}. In that case, two shapes are unknown and we propose to parametrize those sets
with two different level set functions, namelyΦa andΦb. At each step of the algorithm the two sets evolve under the
local vector field given by the shape derivative. The only point that we have to worry about is the possibility of crossing
of those level sets. Several approaches have already been investigated for dealing with this kind of difficulty. The most
standard way to avoid the crossing of the level sets is to add apenalization term like

∫

Ω

(H(Φa(x)) + H(Φb(x)) − 1)+ dx= 0

to the functional , whereH(y) is equal to 1 fory < 0 and equal to 0 otherwise and (y)+ stands for the positive part ofy.
Although we are not able to prove that the crossing of level sets will never happen during the optimization, we did not
need to implement the previous method, since in our simulations, we never observed a crossing of level sets. This fact
is probably a result of the fact that such crossing (or even touching) of the level sets cannot occur in the limit, i.e. for
minimizers of (1) as the following theorem states:

Theorem 2.1. Let u be a minimizer of (1). Thendist ({u = a}, {u = b}) > 0.

Proof. This is an immediate consequence of a regularity result by Mosconi and Tilli [?] that ensures thatu is Hölder
continuous. �

Of course, this idea can be extended to arbitrary numbers of level sets.
We now compute the solution of the above Hamilton-Jacobi equation. Our description will be limited to a simple

algorithm reported in [?] designed to approach the weak viscosity solution of Hamilton-Jacobi equation problem. Let us
consider the first order Cauchy system:

{

∂Φ
∂t (t, x) − F(x) |∇Φ(t, x)| = 0 inR+ × D,
Φ(0, x) = u0(x) in D,

whereD is a bounded rectangle ofR2 andu0 andF are given functions. From now on we shall use the classical notations
for finite difference schemes on regular meshes of points indexed byi, j. Starting fromΦ(0, x) = u0(x), then the evolution
of Φ after one time step∆t is given by

Φ
n+1
i j = Φ

n
i j − ∆t(max(Fi j , 0)∇+Φ +min(Fi j , 0)∇−Φ),

where

∇+Φ =
[

max(D−x
i j Φ, 0)2 +min(D+x

i j Φ, 0)2 +max(D−y
i j Φ, 0)2 +min(D+y

i j Φ, 0)2
]1/2

and

∇−Φ =
[

max(D+x
i j Φ, 0)2 +min(D−x

i j Φ, 0)2 +max(D+y
i j Φ, 0)2 +min(D−y

i j Φ, 0)2
]1/2
,

with

D+x
i j Φ =

Φi+1, j −Φi, j

∆x
for a space step equal to∆x. The quantitiesD−x

i j Φ, D
+y
i j Φ andD−y

i j Φ are easily deduced. Finally, to define completely our
problem, we add the boundary condition

∂∇Φ(t, x)
∂n

= 0 on∂D.
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0 1

F 1. Initial and optimized level sets for a problem with two constraints

The volume of the level set functionΦa at the discrete level is by definition the volume of all the elements of the mesh
whereΦa is less or equal than zero. In order to preserve this volume equal toα along the iterations, we use the Lagrange
multiplier technique reported in [?]. According to the derivative computed in (4), the level set functionΦa satisfies the
Hamilton-Jacobi equation

∂Φa

∂t
(t, x) − (−|∇u|2(t, x) + µ) |∇Φa(t, x)| = 0 in R+ × D (6)

whereu(t, .) is the solution of the system (2) associated toΦa(t, .) andΦb(t, .). As suggested by Osher and Santosa [?],
at each iteration we adapt the Lagrange multiplierµ to preserve the volume constraint. The same projection method is of
course reproduced for the level set functionΦb, in case of two volume constraints.

It is now possible to describe all the steps of our algorithm:

1. Initialization ofΦa andΦb by the signed distance on a cartesian grid containingΩ.
2. Computation of the velocity field by a penalization method introduced in [?] on the fixed triangular mesh deduced

from the cartesian grid. Checking of an exit criterion.
3. Propagation of the level sets solving the Hamilton-Jacobi equations (6) preserving the volume constraints.
4. Evaluation of the cost function. If the cost decreases then go to step 5. Otherwise divide the time step by 1.5 and

go to step 3.
5. Redefinition ofΦa andΦb.
6. Eventually, reinitialization ofΦa andΦb with the signed distance. Back to step 2.

For more details on the computation of the solution of the state equation associated toΦa andΦb (in the context of one
level set constraint) see [?] or [?].

2.3. Examples

We present the result of our optimization process in the nextfigures. We first study the problem (1) withΩ a disc of
radius 0.45,α = β = 0.152π, a = 0 andb = 1. We obtain the same optimal shape with different initial guesses presented in
Figures 1 and 2. The algorithm which has been presented in thecase of two constraints can easily be adapted to a situation
with more constraints. We present in Figure 3 our results fora problem with three constraints of equal volume 0.152/2.
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0

1

F 2. Evolution of the level sets for a problem with two constraints (the same as the ones of the Figure 1)

0

0.5

1

F 3. Initial and optimized level sets for a problem with three constraints

3. S 

3.1. Illustration of nonexistence results

It had been pointed out in [?, ?] that problems of the type (1) in general do not have solutions. However, the relaxed
problem

Minimize E(u) :=
∫

Ω

f (x, u(x),∇u(x)) dx,

|{x ∈ Ω, u(x) = a}| ≥ α,

|{x ∈ Ω, u(x) = b}| ≥ β, (7)

admits a solutions wheneverf satisfies some standard convexity and growth conditions [?]. Our previous numerical
computations solve (7), and in the case off (x, u,∇u) = |∇u|2 it has been proved already in [?] that any solution of (7) also
solves (1).

In this subsection we want to consider a situation where existence of a solution for (1) fails. To this aim we choose
f (x, u,∇u) = |∇u|2 + |u| and try to compute numerically a solution of the ill-posed problem (7) fora = 0, b = 1 and
α = β = π(0.15)2 on the unit diskΩ. As we can observe on Fig. 4, the resulting level set of the constraint corresponding
to a = 0 is strictly larger than the one which is prescribed. Actually, the area of that level set is approximatively equal to
0.0872> π(0.15)2. In that sense, our numerical simulation illustrates the fact that non existence can occur for problem
(1).
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3.2. Discontinuous parameter dependence

If uα,β denotes the solution to a volume constrained problem of the type (1) then it is a natural question whetheruα,β

depends (in an appropriate sense) continuously onα andβ. It turns out that this is in general not the case, in fact we have
the following result:

Theorem 3.1. If we set f(u,∇u) = |∇u|2 andΩ = (0, 1)2 then the minimizers uα,β of the problem (1) do not depend
continuously onα andβ, more precisely: There is anε > 0 such thatα 7→ uα,1−α−ε is not continuous inα with respect to
the L1-norm.

To prove this result we use theΓ-limit of the problem (1). We briefly recall the definition ofΓ-convergence and refer
the reader for any details to the books of Braides and Dal Maso[?,?]:

Definition 3.2 (Γ-convergence). Let Fn be a sequence of functionals on a Banach spaceX. Then we say thatFn is

Γ-converging inX to the functionalF and denoteX − Γ − lim Fn = F (or Fn
Γ

→ F) if

(i) For everyu ∈ X and for allun→ u in X we have

lim inf
n→∞

Fn(un) ≥ F(u). (8)

(ii) For everyu ∈ X there exists a sequenceun ⊂ X such thatun→ u and

lim sup
n→∞

Fn(un) ≤ F(u). (9)

Inequality (8) is calledΓ-liminf inequalityand (9) is calledΓ-limsupinequality. Such aΓ-limit has been derived for the
caseα + β → 1 and f (u,∇u) = |∇u|2 in [?]. A generalization can be found in [?]. LetΩ ⊂ RN be an bounded open set.
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F 4. Computed minimizeru of a relaxed problem (7) which does not satisfy the constraints of the
exact problem (1), since its zero level set is too big. This illustrates the nonexistence of solutions for (1)
in the two-dimensional case (see text for details).
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F 5. Type I and type II solutions.

For fixedα, β ∈ (0, |Ω|), we define the following functional

Fα,β :=



















γ

∫

Ω

|∇u|2 dx if u ∈ Aα,β,

+∞ elsewhere inL1(Ω),

whereγ := |Ω| − (α + β) and
Aα,β := {u ∈ H1(Ω) : |{u = 0}| = α and|{u = 1}| = β}.

Then we can state the theorem from [?] as follows:

Theorem 3.3. Let ᾱ ∈ (0, |Ω|). Then
Γ(L1)- lim

α→ᾱ
β→|Ω|−ᾱ

Fα,β = Gᾱ,

with Gᾱ given by

Gᾱ :=















H 1({u = 0})2 if u ∈ BV(Ω, {0, 1}) and |{u = 0}| = ᾱ,

+∞ elsewhere in L1(Ω).
(10)

This limit problem is much more accessible to analytical investigations. In particular we can setA := {u = 0} and
B := {u = 1}) and then the minimizers ofGα correspond to minimizers of the Dido’s problem [?]: Minimize H 1(Γ) such
thatΓ separatesΩ in open setsA andB with |A| = α and |B| = |Ω| − α. The solutions of this problem can be explicitly
computed. In the following lemma we summarize the situationon the unit square:

Lemma 3.4. LetΩ = (0, 1)2, α > 0, then there exists a setΓ ⊂ Ω minimizingH
1(Γ) among all sets with the property

that there exist disjoint open sets A, B ⊂ Ω \ Γ with |A| = α, |B| = 1− α andΩ = A∪ B∪ Γ.

(i) If α < 1/π or α > 1− 1/π thenΓ is the segment of a circle with center in one of the corner points ofΩ. (Type I
solution, see Fig. 5.)

(ii) If 1/π < α < 1− 1/π thenΓ is a straight line parallel to a side ofΩ. (Type II solution, see Fig. 5.)
(iii) If α = 1/π or α = 1− 1/π thenΓ is either a circle segment or a straight line.

This Lemma seems to be folklore, but for the reader’s convenience we give a proof using the isoperimetric inequality:

Proof. By symmetry we can assume thatΓ is a solution of the problem forα ∈ (0, 1/2], moreover we assume first
that ℓ := H 1(Γ) < 1. Denote the four corner points in the squareΩ by Qi and the sides bySi . Sinceℓ < 1 the
set projectionπi of Γ onto Si satisfiesπi(Γ) , Si . Let x ∈ S1 \ π1(Γ) andy ∈ S2 \ π2(Γ). Then the cross-shaped set
{(x1, x2) ∈ Ω | x1 = x or y1 = y} does not intersect withA, therefore we can decomposeΩ along this cross into four
disjoint connected open setsV1, . . . ,V4 such that

⋃

i V̄i = Ω̄ and eachV̄i contains the corner pointQi and none of the
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Di

Ai

Vi

x

y

Ω

F 6. The construction for the proof of Lemma 3.4.

other corner points. We observe that sinceVi open,∂Vi ∩ A ⊂ ∂Ω. We can now mirrorVi andA ∩ Vi three times along
the adjacent sides of the squareΩ (see Fig. 6) to obtain a larger setAi ⊂ R

2. Since∂A∩ ∂Vi was a subset of the mirror
axis, we can now neglect the boundary and apply the isoperimetric inequality on the setsAi , hence proving that they
minimize their boundary length (under fixed volume) when they are discs. We can center these disks without loss of
generality onQi and denote them byDi andD :=

⋃

i Di . Due to the minimality property of the boundary length, we have
ℓ =H 1(Γ) ≥ 1

4

∑

i H
1(∂Di). Sinceℓ < 1, the disksDi must be disjoint. (Otherwise the sum of two of their radiir i would

have to exceed the distance between two corner points, i.e. 1, but that would imply 1> ℓ ≥ (r1 + r2)2π/4 > π/2.) Since
the disks are disjoint, we have|D| =

∑

i |Di | = |A|. For the boundary length we have seen thatH
1(Γ) ≥ 1

4

∑

i H
1(∂Di)

with equality if and only ifΓ consists of at most four arcs with centers inQi . It is now easy to check that the optimal
configuration among these sets is given by exactly one arc with center in someQi . Since our initial assumptionℓ < 1 is
feasible ifα < 1/π, we have proved the first point of the theorem.

The last two points of the theorem follow easily: We know thatin both cases there exists aΓ with H 1(Γ) = 1. Suppose
we could do better, thenΓ would satisfyH 1(Γ) < 1 and we could apply the argument above, proving thatΓ must be an
arc with center in someQi . Such an arc, however, would have a length larger than 1 (or inthe caseα = 1/π at least not
less) which contradicts the assumption. �

Proof of Theorem 3.1:Assume that for allε > 0 the functionhε(α) := uα,1−α−ε is continuous in theL1-norm. We know by
theΓ-convergence thatuα,1−α−ε → uα in L1 whereuα denotes the minimizer of theΓ-limit problem. Hence, forα < 1/π
the functionshε(α) converge to a limit functionh(α) of the type I asε→ 0 (see Fig. 5), for 1/πα < 1− 1/π, however, the
functionshε(α) converge to a function of the type II (see Fig. 5). Forα = 1/π we denote the two possible solutions of the
limit problem byuI anduII . TheL1-distance betweenuI anduII is larger than 0.6 (as a small computation shows). We do
not necessarily have uniform convergence ofhε asε→ 0, hence we need the following construction:

Let us fixα1, α2 such thatα1 < 1/π < α2 and

||h(α1) − uI ||, ||h(α2) − uII || < 1/100 (11)
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F 7. Global minimizers for the parametersα = 0.55,β = 0.15 (left) andα = 0.5, β = 0.2 (right)
on a square with side length 0.9. Although the parameters are very close, the solutions arenot.

(We can ensure this by choosingα1 andα2 close to 1/π since the minimizers of the limit problem are continuous outside
1/π.)

Next, we choose sequencesα1
n, α2

n andεn, such thatεn < 1/n, α1
n → α

1, α2
n → α

2 and ||hεn(α
1
n) − h(α1)|| < 1/n,

||hεn(α
2
n) − h(α2)|| < 1/n. (By theΓ-convergence we know that minimizers of the volume constraint problem converge for

ε→ 0 to minimizers of the limit problem, hence we can find such sequences.)
Now we choose a sequence ofα0

n that lies in betweenα1
n andα2

n and prove that the corresponding solutions of the
volume constrained problem cannot converge to a solution ofthe limit problem:

Let α0
n satisfyα1

n < α
0
n < α

2
n. Using the (supposed) continuity ofh we can apply the intermediate value theorem to

find such anα0
n such that||hεn(α

0
n) − hεn(α

1
n)|| > 1/10 and||hεn(α

0
n) − hεn(α

2
n)|| > 1/10. Since the sequenceα0

n is uniformly
bounded, we can select a converging subsequence and, using theΓ-converge, its limitα0 satisfies||h(α0) − h(α1)|| ≥ 1/10
and||h(α0) − h(α2)|| ≥ 1/10.

Using this together with (11) and||uI − uII || > 0.6 leads to a contradiction. Hence at least for sufficiently smallε > 0
the functionhε cannot be continuous. �

We illustrate this behavior with numerical computations (Fig. 7) using the algorithm introduced in Section 2.

3.3. Existence of local minimizers

Our algorithm searches for minimizers which are not necessarily globalminimizers. In one dimension it was possible
to characterize local minimizer completely with analytical methods [?]. However, on convex domains of dimensionn ≥ 2
these methods do not work and it had been conjectured that in fact every minimizer is global. It is relatively simple to
see examples of local minimizers in nonconvex domains (compare Fig. 8 for a numerical computation). However, our
computation hinted that also on the square there can be genuinely local minimizers, compare Fig. 9.

In the following we present a proof of the existence of genuinely local minimizers on a square.
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F 8. Global (left) and local (right) minimizer on a nonconvex domain.

F 9. Global (left) and local minimizer of the same problem as shown in the left side of Fig. 7. This
example demonstrates that there are genuinely local minimizers on a convex domain, in this case a
square.

Theorem 3.5 (Existence of local minimizer). There are convex domainsΩ ⊂ R2 such that the volume-constrained
minimization problem (1) with f(x, u,∇u) = |∇u|2 admits (for appropriate parameters) local minimizers (with respect to
the L∞-distance) which are not global.
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Proof. LetΩ be the unit square (0, 1)× (0, 1). For simplicity,a = 0 andb = 1. We chooseα < 1
π

andβ = 1− α− γ where
γ > 0 is chosen small enough such that

γ <
α

2
. (12)

We define our candidatev for a local minimizer by a one-dimensional piecewise affine construction:

v(x, y) :=























1 , x < β
1−α−x
γ

, β ≤ x < 1− α
0 , 1− α ≤ x

.

We compute the energy ofv as

∫

Ω

|∇v|2 =
∫ γ

0

∣

∣

∣

∣

∣

d
dx

x
γ

∣

∣

∣

∣

∣

2

=
1
γ
. (13)

For γ → 0, the functionv converges inL1 to a local minimizer of theΓ-limit functional which is not a global minimizer,
compare Lemma 3.4. Therefore, forγ > 0 sufficiently small,v cannot be a global minimizer. It is therefore sufficient to
prove that it is a local minimizer.

Let us suppose that there is another functionw in the neighborhood ofv with a smaller energy, more precisely suppose

||w− v||L∞ < 1/3 (14)

and
∫

Ω
|∇w|2 <

∫

Ω
|∇v|2− ε for someε > 0. Assume furthermore thatw satisfies the same volume constraint asv. A priori,

w does not need to be continuous. For the further constructionit is, however, pivotal to work with a continuous function.
Therefore we show that it is possible to construct a continuous functionw̃ with the same properties:

We observe first, thatw cannot have a “jump from zero to one”, i.e. there cannot be a point x ∈ Ω such that there are
sequencesxn andx′n, both converging tox with w(xn) → 0 andw(x′n) → 1: if such a point existed, then (thanks to the
continuity ofv) we have|w(xn) − v(xn)+ v(x′n) −w(x′n)| → 1. On the other hand, using (14), we have|w(xn)− v(xn)| < 1/3
and|w(x′n) − v(x′n)| < 1/3. Together with the triangle inequality, this leads to a contradiction.

We denoteΩ0 := {x ∈ Ω; w(x) = 0} andΩ1 := {x ∈ Ω; w(x) = 1}. Since there is no jump from zero to one, we have
Ω̄0 ∩ Ω̄1 = ∅ and we can therefore define

w̄(x) :=























0, x ∈ Ω̄0,

1, x ∈ Ω̄1,

w(x), x ∈ Ω \
(

Ω̄0 ∪ Ω̄1

)

=: T.

The setT is open by construction. For eachx ∈ ∂T \ ∂Ω there iseithera sequencexn → x such thatw(xn) → 0 or a
sequencex′n → x such thatw(x′n) → 1. Denote the corresponding sets of boundary points byD0 andD1, thenD0 andD1

form a disjoint union of∂T \ ∂Ω. Moreover, given thatw has no jump from zero to one,D0 andD1 must be apart from
each other, i.e.̄D0 ∩ D̄1 = ∅. In other words, on∂T \ ∂Ω, w̄ is locally constant.

The functionw̄ is by construction inH1(T), whereT is open. Thus we can approximate ¯w onT by continuous functions
in theH1-norm, where we respect the boundary conditions on∂T \ ∂Ω. Let wn be such an approximating sequence, then
for n large enough,||wn − w̄||H1(T) < ε/2.

We can now define ˜w by

w̃(x) :=



















0, x ∈ Ω̄0,

1, x ∈ Ω̄1,

wn(x), x ∈ T.
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w̃ is continuous by construction. Moreover, its energy is still lower than the energy ofv:

∫

Ω

|∇w̃|2 =

∫

T
|∇wn|

2 <

∫

T
|∇w̄|2 +

ε

2
≤

∫

Ω

|∇w̄|2 +
ε

2
<

∫

Ω

|∇v|2.

To ease notation, we will writew instead ofw̃ in what follows.
TheL∞-constraint obviously forbidsw to take a value of one wherev is zero and vice versa, in other words:

w > 0 on (0, β) × (0, 1) andw < 1 on (1− α, 1)× (0, 1). (15)

We defineL(y) := (0, 1)× {y} andT := {w ∈ (0, 1)} (the transition layer ofw). Then

∫ 1

0
|L(y) ∩ {(x, y) ∈ Ω |w(x, y) ∈ (0, 1)}| dy= |T | = γ,

where the last inequality follows from the assumption thatw satisfies the volume constraint.
We denote

G :=
{

y ∈ (0, 1)
∣

∣

∣ L(y) ∩ {w = 0} , ∅ andL(y) ∩ {w = 1} , ∅
}

and define onG the functions

B(y) := max
{

|a− b|
∣

∣

∣w(a, y) = 0, w(b, y) = 1, w(t, y) ∈ (0, 1) for all t ∈ (a, b)
}

.

anda(y), b(y) as the values ofa andb maximizing|a− b| in the above definition ofB(y).
In other words:B(y) is the maximal width of a transition between zero and one on the lineL(y) and the boundary points

of this transition are given by (a(y), y) and (b(y), y), compare Fig. 10 for an illustration.

If we integrate over all such maximal transitions, we get a lower bound for the total area of the transition layer:

∫

G
b(y) dy≤ |T |.

We estimate the gradient ofw by its partial derivative inx-direction, as we did in (13), to get the following estimate:

∫

Ω

|∇w|2 =

∫

T
|∇w|2 ≥

∫

G

∫ 1

0
|∇w(x, y)|2 dx dy

≥

∫

G

∫ 1

0

∣

∣

∣

∣

∣

∂

∂x
w(x, y)

∣

∣

∣

∣

∣

2

dx dy.

Now, instead of integrating from 0 to 1, we just integrate over the largest transition layer, i.e. froma(y) to b(y). We recall
that |a(y) − b(y)| = B(y). Using Jensen’s Inequality on the inner integral, we obtain therefore

∫

Ω

|∇w|2 ≥

∫

G

1
B(y)

dy.

This estimate is only useful if we find a relation betweenB and the setG. Otherwise, we can choose the setG small or
B large to reduce the energy. Therefore we want to estimate thesize ofG. Let us define some area of the transition layer
T that is situated outside (0, 1)×G by

TD := (0, 1)× ((0, 1) \G) ∩ T,
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T

B(y)

a(y) b(y)

G
L(y)

y

TD1-αβ

F 10. Illustration of the setsT, TD andG, the linesL(y) and the maximal transitions froma(y) to
b(y) with width B(y) = |a(y) − b(y)|.

compare again Fig. 10 where this set is shaded in dark grey. Let δ := |TD| be the size of this area.
Since fory ∈ (0, 1) \G we cannot havew(x1, y) = 0 andw(x2, y) = 1 for two valuesx1, x2 ∈ (0, 1), and on the other

handw(x, y) < 1 for x > 1 − α andw(x, y) > 0 for x < β, see (15), we need to “cover” either (0, β) × ((0, 1) \ G) or
(1− α, 1)× ((0, 1) \G) by the transition layer. Thus we get a lower bound forδ (taking into account thatα < β):

δ ≥ α(1− |G|).

Resolved forG, we obtain

|G| ≥ 1−
δ

α
. (16)

Now we can continue estimating the energy ofw. We first apply the Jensen Inequality with̄B being the average overB on
G:

∫

Ω

|∇w|2 ≥

∫

G

1
B(y)

dy ≥ |G|
1

B̄
. (17)

Let TG := T |(0,1)×G be the transition layers on (0, 1) × G. SinceTG ∪ TD ⊂ T andTG andTD are disjoint, we have
|TG| ≤ |T | − |TD|. Using thatδ = |TD| and that|T | = γ (volume constraint), we have|TG| ≤ γ − δ.

On the other hand,
∫

G
B(y) dy ≤ |TG|, thusB̄|G| ≤ γ − δ or in other wordsB̄ ≤ (γ − δ)/|G|. This provides us with the

necessary relation betweenB and the size ofG.
Together with (17) we obtain

∫

Ω

|∇w|2 ≥ |G|2
1
γ − δ

.
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Inserting (16), gives

∫

Ω

|∇w|2 ≥
(1− δ/α)2

γ − δ
.

We calculate the difference between this energy and the energy ofv, as computed in (13):

∫

Ω

|∇w|2 −
∫

Ω

|∇v|2 ≥
(1− δ/α)2

γ − δ
−

1
γ
=
−2 δ
α
γ + δ

2

α
γ + δ

γ(γ − δ)

≥
δ

γ(γ − δ)

(

1− 2
γ

α

)

.

Using (12), we see that the right hand side is larger or equal than zero. This proves thatw cannot have a smaller energy
thanv, thusv is a local minimizer. �
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