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Abstract

A wedged configuration with Coulomb friction is a nontrivial equilibrium
state of a linear elastic body in a frictional unilateral contact with a rigid
body under vanishing external loads. A supremal functional defined on the
set of admissible normal displacement and tangential stresses is introduced.
The infimum of this functional µw defines the critical friction coefficient for the
wedged problem (WP). For friction coefficients µ with µ > µw (WP) has at
least a solution and for µ < µw (WP) has no solution. For the in-plane problem
we discuss the link between the critical friction and the smallest real eigenvalue
µs which is related to the loss of uniqueness.

The (WP) problem is stated in a discrete framework using a mixed finite
element approach and the (discrete) critical friction coefficient is introduced
as the minimum of a specific functional. A genetic algorithm is used for the
global minimization problem involving this non differentiable and non-convex
functional. Finally, the analysis is illustrated with some numerical experiments.

Keywords : Coulomb friction, elastostatics, non-uniqueness, eigenvalue problem, mixed-
finite element approximation, genetic algorithms

1. Introduction

By a ”wedged configuration with Coulomb friction” we mean a nontrivial equilib-
rium state of a linear elastic body which is in frictional contact with a rigid body,
under vanishing external loads. Wedged configurations appears to be of industrial in-
terest in problems associated with automated assembly and manufacturing processes.
The theoretical interest of wedged configurations is related to the non uniqueness of
the equilibrium problem with Coulomb friction in linear elasticity (see for instance
[7, 5, 6]). As far as we know, the first study on the subject was done by Barber and
Hild [1], who have related it to the eigenvalue analysis of Hassani et al. [5, 6].

The aim of this paper is to find the relation between the geometry of the elastic
body (including the boundaries distribution) and the friction coefficient for which
wedged configurations exist. It is beyond of the scope of the present work to discuss
the quasi-static or dynamic trajectory of the body from the reference configuration
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to the wedged equilibrium. The (dynamic) stability conditions of the wedged con-
figurations, which are not considered here, are the same as for the stability of any
equilibrium state under Coulomb friction (see [8] for a recent study).

Let us outline the content of the paper. The wedged configuration with Coulomb
friction is considered firstly in a 3-D continuous framework in section 2. The infimum
of a supremal functional, defined on the set of admissible normal displacement and
tangential stresses, turns out to be µw, the critical friction coefficient. We prove, in
section 3, that for friction coefficients µ with µ > µw the wedged problem has at least
a solution and for µ < µw it has no solution. For the in-plane problem we discuss,
in section 4, the link between the critical friction and the smallest real eigenvalue µs

which appears in [5] to be a critical coefficient for the loss of uniqueness.
In section 5 the wedged problem is stated in a discrete framework using a mixed

finite element approach and the (discrete) critical friction coefficient is introduced
as the minimum of a specific functional. In the next section the problem a genetic
algorithm is used for the global minimization problem involving this non differen-
tiable and non-convex functional. In section 7, we give some techniques to handle
the discontinuities of the normal vector on the contact surface. Finally, the analysis
is illustrated with three numerical experiments.

2. Problem statement

We consider the deformation of an elastic body occupying, in the initial uncon-
strained configuration a domain Ω in Rd, with d = 3 in general and d = 2 in the
in-plane configuration. The Lipschitz boundary ∂Ω of Ω consists of ΓD, ΓN and ΓC .
We assume that the displacement field u is vanishing on ΓD and that the boundary
part ΓN is traction free (i.e. the density of surface forces is vanishing). In the initial
configuration, the part ΓC is considered as the candidate contact surface on a rigid
foundation (see Figure 1) which means that the contact zone cannot enlarge during
the deformation process. The contact is assumed to be frictional and the stick, slip
and separation zones on ΓC are not known in advance. In order to simplify the prob-
lem, and without any loss of generality we will suppose that the body Ω is not acted
upon by a volume forces (i.e. the given density of volume forces are vanishing).
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Figure 1: Schematic representation of the wedged geometry : the domain Ω and its
boundary divided into three parts ΓD, ΓN and ΓC .

Denoting by n the unit outward normal vector of ∂Ω and by µ > 0 the friction
coefficient on ΓC the wedged problem (WP) can be formulated as

Wedged problem (WP). Find Φ : Ω → Rd and µ with Φ 6= 0 and µ > 0 such
that

σ(Φ) = C ε(Φ), div σ(Φ) = 0 in Ω, (2.1)

Φ = 0 on ΓD, σ(Φ)n = 0, on ΓN , (2.2)

Φn ≤ 0, σn(Φ) ≤ 0, Φnσn(Φ) = 0, |σt(Φ)| ≤ −µσn(Φ) on ΓC , (2.3)

where ε(Φ) = (∇Φ + ∇TΦ)/2 denotes the linearized strain tensor field, C is a
fourth order symmetric and elliptic tensor of linear elasticity and we adopted the
following notation for the normal and tangential components: Φ = Φnn + Φt and
σ(Φ)n = σn(Φ)n + σt(Φ).

Let remark first that Φ is an equilibrium configuration of the dynamic (or quasi-
static) problem with Coulomb friction but Φ is not a solution of the static problem.

The function Φ is determined up to a positive multiplicative constant, i.e. if Φ
is a solution then tΦ is also a solution for all t > 0. Let also remark that if Φ is a
solution of (WP) for a friction coefficient µ then it is is also a solution for all friction
coefficients µ̄ ≥ µ.

Other important remark it the fact that (WP) problem depends only on the geom-
etry of Ω and on the elastic coefficients (Poisson ratio in the case of isotropic elastic
material).

In order to fix the ideas and to give precise framework of our discussion we shall
consider in the next a class of regularity for the wedged problem.

Definition. Let s ≥ 1/2, p, q ∈ [1, +∞] with p ≥ q be given. By a solution
of the wedged problem (with the regularity (s, p, q)) we mean a nontrivial function
Φ ∈ H1(Ω)d which satisfies (2.1)-(2.3), such that Φn ∈ Hs(ΓC), σt(Φ) ∈ Lp(ΓC)d

and σn(Φ) ∈ Lq(ΓC).
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3. Critical friction as an infimum of a supremal functional

Let Σt and Σn be the spaces of the tangential and normal stresses and let denote
by and Sn the space of normal displacements on ΓC

Σt = {τ ∈ Lp(ΓC)d ; τ · n = 0}, Σn = Lq(ΓC), Sn = Hs(ΓC),

with s ≥ 1/2 and p, q ∈ [1, +∞].
For all τ ∈ Σt and v ∈ Sn we consider the solution U(τ , v) = u ∈ H1(Ω)d of the

following elasto-static problem :

σ(u) = C ε(u), div σ(u) = 0 in Ω, (3.4)

u = 0 on ΓD, σ(u)n = 0 on ΓN , (3.5)

un = v on ΓC , σt(u) = τ on ΓC . (3.6)

Since the stress σ(u) ∈ H(div ; Ω)d and σn(u) ∈ H−1/2(ΓC) we can define the
operator L : Σt × Sn → H−1/2(ΓC) by L(τ , v) =: σn(u).

Let S be a cone in the space of tangential stresses and normal displacements Σt×Sn

defined by

S =: {(τ , v) ∈ Σt × Sn ; (τ , v) 6= 0, v ≤ 0, v|τ | = 0, on ΓC},
and we define the cone of admissible states Sadm (tangential stresses and normal
displacements) by

Sadm =: {(τ , v) ∈ S ; L(τ , v) ∈ Σn, L(τ , v) ≤ 0, vL(τ , v) = 0 on ΓC}.
We consider now the supremal functional J : S → R ∪ {+∞} defined by

J(τ , v) = ess sup
x∈ΓC

Q(|τ (x)|,L(τ , v)(x)),

where Q : R+ ×R− → R+ ∪ {+∞} is a quotient given by

Q(t, r) =:




− t

r
, if r < 0

0, if t = 0
+∞, if r = 0, t > 0,

(3.7)

The following lemma gives the connection between the supremal functional J and
the wedged problem.
Lemma 3.1. For all (τ , v) ∈ Sadm with J(τ , v) < +∞ the field Φ = U(τ , v) is a
solution of (WP) with µ = J(τ , v).

Proof. Since Φ = U(τ , v), from (3.4-3.5) we deduce that Φ satisfies (2.1-2.2). Bearing
in mind that (τ , v) ∈ Sadm and σn(Φ) = L(τ , v) we get Φn ≤ 0, σn(Φ) ≤ 0, and
Φnσn(Φ) = 0. If σn(Φ)(x) = 0 from J(τ , v) < +∞ we get |σt(Φ)(x)| = 0. If
σn(Φ)(x) < 0 then −|σt(Φ)(x)|/σn(Φ)(x) = Q(|τ (x)|,L(τ , v)(x)) ≤ J(τ , v) = µ and
we obtain |σt(Φ)(x)| ≤ −µσn(Φ)(x) for all x ∈ ΓC which means that Φ is a solution
of (WP).
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Let µw be the infimum of J on Sadm, given by

µw =: inf
(τ ,v)∈Sadm

J(τ , v).

As it is proved below µw is the critical friction coefficient (for the wedged problem).
Theorem 1. Suppose that Sadm is not empty and µw is finite. Then we have
i) For all µ > µw the problem (WP) has at least a solution.
ii) If µ < µw then (WP) has no solution.

Proof. i) It’s a direct consequence of Lemma 3.1.
ii) Let Φ be a solution of (WP) and denote by v = Φn, τ = σt(Φ). Let us prove that

µ ≥ µw. From(2.3) we get that if v(x) < 0 then σn(Φ)(x) = 0 and then |τ (x)| = 0,
hence (τ , v) ∈ Sadm. Let us compute now J(τ , v) to deduce that µ ≥ J(τ , v) and
since J(τ , v) ≥ µw we get µ ≥ µw. Indeed if L(τ , v)(x) = σn(Φ)(x) < 0 then µ ≥
Q(|τ (x)|, σn(Φ)(x)) and if σn(Φ)(x) = 0 then |τ (x)| = 0 and Q(|τ (x)|, σn(Φ)(x)) =
0 < µ. Taking the upper bound for x ∈ ΓC we get µ ≥ J(τ , v) ≥ µw.

As it follows from the above theorem for a given geometry and for some given
elastic coefficients (Poisson ratio in the case of isotropic elastic materials), wedged
configurations exist only if the friction coefficient is larger than the critical value µw.

4. Links with spectral analysis

We consider in this section the in-plane configuration, i.e. we have to take d = 2.
This assumption is essential in defining the spectral problem.

Let P be a partition of the boundary ΓC into two zones : Γfree
C the free (no contact)

zone and and Γ0
C the non vanishing tangential stress zone. With this partition of ΓC

we define a new partition of Γ = ΓD ∪ Γ0
N ∪ Γ0

C , where Γ0
N = ΓN ∪ Γfree

C , and we
associate a given ”directional function” χ : Γ0

C → {−1, 1}.
For a given couple of partition P and directional function χ we consider the spectral

problem (SP)= (SP)(P , χ) introduced in [5, 6] as follows :
Spectral problem (SP). Find µs ≥ 0 and the nontrivial displacement field Φs :
Ω → R2 such that

σ(Φs) = C ε(Φs), div σ(Φs) = 0 in Ω, (4.8)

Φs = 0 on ΓD, σ(Φs)n = 0 on Γ0
N , (4.9)

Φs
n = 0, σt(Φ

s) = −µsχσn(Φs) on Γ0
C , (4.10)

where we have chosen the tangent vector t = (−n2, n1) with respect to the unit
outward normal n = (n1, n2) of ∂Ω.
Lemma 4.2. Let µs = µs(P , χ) ≥ 0 and Φs = Φs(P , χ) be a solution of the spectral
problem (SP) (with the regularity (s, p, q)) for a given choice of the partition P and
directional function χ. If Φs

n ≤ 0, σn(Φs) ≤ 0 on ΓC (or Φs
n ≥ 0, σn(Φs) ≥ 0 on ΓC)

then Φs (or −Φs) is a solution of the problem (WP) and we have

µw ≤ µs(P , χ). (4.11)
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As it follows from [5, 6] the smallest real eigenvalue µs appears as a critical co-
efficient for the loss of uniqueness. No other conditions on the eigenfunction are
necessary. In contrast, for the wedged problem, the eigenfunction corresponding to
the smallest real eigenvalue has to satisfy the above inequalities on ΓC . If these in-
equalities are not satisfied then there is no connection between the spectral problem
and the wedged configuration (i.e. we can have µs < µw too). The spectral criti-
cal coefficient µs is related to the fact that a given geometry is open to a “general”
non-uniqueness and the wedged critical coefficient µw is related to a special type of
non-uniqueness in which one of the solution is the trivial one.

Proof. For x ∈ Γ0
C we have Φs

n(x) = 0 and |σt(Φ
s)(x)| = −µsσn(Φs)(x). If x ∈ Γ0

N

then σt(Φ
s)(x) = σn(Φs)(x) = 0 hence Φs satisfies (2.3) for all x ∈ ΓC . That means

that Φs is a solution of (WP) and from Theorem 1 we get the inequality.

The above spectral problem has a low cost of computational time. In order to ob-
tain a upper bound of µw, one can choose to compute the smallest positive eigenvalue
µs(P , χ) for different choices of P and χ. If the above inequalities on the normal
displacement and normal stress are verified then µs(P , χ) gives an upper estimation
of µw. However, the computational time for changing the boundary conditions (in-
cluded in the partition of ΓC) and the great number of choices for P and χ, make this
method not so attractive in computing the critical friction for the wedged problem.

5. Mixed finite element approach of the critical friction

The body Ω is discretized by using a family of triangulations (Th)h made of finite
elements of degree k ≥ 1 where h > 0 is the discretization parameter representing the
greatest diameter of a triangle in Th. The space of finite elements approximation is:

Vh =
{

vh; vh ∈ (C(Ω))d, vh|T ∈ (Pk(T ))d ∀T ∈ Th, vh = 0 on ΓD

}
,

where C(Ω) stands for the space of continuous functions on Ω and Pk(T ) represents
the space of polynomial functions of degree k on T . On the boundary of Ω, we still
keep the notation vh = vhnn + vht for every vh ∈ Vh and we denote by (Th)h the
family of (d− 1)-dimensional mesh on ΓC inherited by (Th)h. Set

Shn =
{

ν; ν = vh|ΓC
· n, vh ∈ Vh

}
,

the space of normal displacements which is included in the space of continuous func-
tions on ΓC which are piecewise of degree k on (Th)h. For the tangential and normal
stresses we put

Σht =
{

τ h; τ h ∈ (C(ΓC))d−1, τ h|T ∈ (Pk(T ))d−1 ∀T ∈ Th

}
,

Σhn =
{

σh; σh ∈ C(ΓC), σh|T ∈ Pk(T ) ∀T ∈ Th

}
,
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The discrete problem issued from the continuous wedged problem (WP) becomes:
Discrete wedged problem (WP)h. Find (Φh, λhn,λht) ∈ Vh×Σhn×Σht such

that ∫

Ω

Cε(Φh) : ε(vh) dΩ =

∫

ΓC

λhnvhn dΓ +

∫

ΓC

λht · vht dΓ, (5.12)

(Φn)i ≤ 0, (λhn)i ≤ 0, (Φn)i(λhn)i = 0, |(λht)i| ≤ −µ(λhn)i, (5.13)

for all vh ∈ Vh and 1 ≤ i ≤ p, where (Φn)i, (λhn)i and (λht)i with 1 ≤ i ≤ p, denote
the nodal values on ΓC of Φhn, λhn and λht respectively.
Remark 5.3. One can formulate the finite element approach of the wedged problem
using the generalized loads. To do this we denote by p the dimension of Shn and by
ψi, 1 ≤ i ≤ p the corresponding canonical finite element basis functions of degree k.
For all ν ∈ Shn (or in Σht) we shall denote by F (ν) = (Fi(ν))1≤i≤p the generalized
loads at the nodes of ΓC :

Fi(ν) =

∫

ΓC

νψi, ∀ 1 ≤ i ≤ p.

The corresponding boundary conditions for the wedged problem with generalized
loads read

(Φn)i ≤ 0, Fi(λn) ≤ 0, (Φn)iFi(λn) = 0, |Fi(λt)| ≤ −µFi(λn), 1 ≤ i ≤ p. (5.14)

If a generalized load formulation of the wedged problem is adopted (i.e. (5.13) is re-
placed by (5.14)) then the method developed in the next two sections are essentially
the same. Only some minor modifications have to be done.

Let us define now the discrete version of the operator L by Lh : Σht×Shn → Σhn as
follows. For all τ h ∈ Σht and wh ∈ Shn we consider the solution uh = Uh(τ h, wh) ∈ Vh

of the following elasto-static problem

uhn = wh on ΓC ,

∫

Ω

Cε(uh) : ε(vh) dΩ =

∫

ΓC

τ h · vht dΓ, ∀vh ∈ Wh, (5.15)

where
Wh =:

{
vh ∈ Vh ; vh · n = 0, on ΓC

}
.

Let Lh(τ h, wh) ∈ Σhn be the normal stress associated to uh = Uh(τ h, wh), i.e.
∫

Ω

Cε(uh) : ε(vh) dΩ =

∫

ΓC

Lh(τ h, wh)vhn dΓ +

∫

ΓC

τ h · vht dΓ, ∀vh ∈ Vh. (5.16)

If p is the dimension of Shn then the (discrete) linear operator Lh is a p×3p matrix
for the 3-D problem and a p× 2p matrix for the in-plane problem.

Let Sh be the cone (in the space of tangential stresses and normal displacements
Σht × Shn) given by

Sh =: {(τ h, vh) ∈ Σt × Sn ; (σ, vh) 6= 0, (vh)i ≤ 0, (vh)i|(τ h)i| = 0, 1 ≤ i ≤ p},
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and Sadm
h the cone of admissible states

Sadm
h =: {(τ h, vh) ∈ Sh ; (Lh(τ h, vh))i ≤ 0, (vh)i(Lh(τ h, vh))i = 0 1 ≤ i ≤ p}.

(5.17)
We define the (discrete) supremal functional Jh : Sadm

h → R ∪ {+∞} as follows

Jh(τ h, vh) = max
1≤i≤p

Q(|(τ h)i|, (Lh(τ h, vh))i),

with Q given by (3.7) and we put µw
h as

µw
h =: inf

(τ h,vh)∈Sadm
h

Jh(τ h, vh).

which turns out to be (see the following theorem) the (discrete) critical frictional
coefficient.
Theorem 2. Suppose that Sadm

h is not empty and µw
h is finite. Then we have

i) There exists (τ ∗h, v
∗
h) ∈ Sadm

h such that Jh(τ
∗
h, v

∗
h) = µw

h . Moreover, (Φ∗
h, λ

∗
hn,λ∗ht)

given by Φ∗
h = Uh(τ

∗
h, v

∗
h), λ

∗
hn = Lh(τ

∗
h, v

∗
h),λ

∗
ht = τ ∗h, is a solution of (WP)h for

µ ≥ µw
h .

ii) If µ < µw
h then the problem (WP)h has no solution.

Proof. i) Since the the functional Jh is positively homogenous of degree 0, i.e.
Jh(t(τ h, vh)) = Jh(τ h, vh) for all t > 0, we can normalize Sadm

h through a given norm.
To do this let B1 be a unit ball in the space Σht × Shn and S1

h = Sadm
h ∩B1. We can

reduce now the minimization of Jh on the closed cone Sadm
h to the minimization of Jh

on the compact set S1
h, i.e. we have

µw
h =: inf

(τ h,vh)∈S1
h

Jh(τ h, vh).

Let us prove now that Jh is lower semi-continuous (l.s.c.). To see that we remark
that Q is l.s.c. on R+×R− which means that Wi(τ h, vh) =: Q(|(τ h)i|, (Lh(τ h, vh))i)
is l.s.c. on S1

h for all 1 ≤ i ≤ p. Since Jh is a maximum of a finite set of l.s.c.
functionals we get that that Jh is l.s.c. also. We can deduce now the existence of
a global minimum (τ ∗h, v

∗
h) of the l.s.c. functional Jh on a compact set S1

h from the
Weistrass theorem. One can use the same techniques as in the proof of Lemma 3.1
to deduce that (Φ∗

h, λ
∗
hn,λ

∗
ht) is a solution of (WP)h for µ ≥ µw

h .
ii) The proof is similar to the proof of Theorem 1 ii).

6. Genetic algorithm approach

For the sake of simplicity, only the plane problem will be considered here but the
extension to the 3-D problem can be done without any difficulty.

We give in the next some details of application of the Genetic algorithm to the plane
problem for k = 1. For all (τh, vh) ∈ Σht × Shn with τh(x) =

∑p
i=1 Tiψi(x), vh(x) =



Hassani, Ionescu and Oudet/ Wedged configurations with Coulomb friction 9

V
i

T
i

-1

-1

1

�θ

�

�

�

�θ

�θ

�θ

Figure 2: Example of function θ = (T, V ) : [−1, 1] → {0} × [−1, 0] ∪ [−1, 1] × {0}
used to reduce the dimension of of S1

h

∑p
i=1 Viψi(x), we have (τh)i = Ti, (vh)i = Vi. First we have to compute the matrix

Lij of Lh, i.e.

Lh(τh, vh)(x) =

p∑
i=1

(
p∑

j=1

LijTj +

p∑

k=1

Li,p+kVk

)
ψi(x). (6.18)

Since the functional Jh is positively homogenous of degree 0 (i.e. Jh(t(τ , v)) =
Jh(τ , v) for all t > 0) we can normalize Sh through the ”maximum” norm to get

S1
h =: {(τh, vh) ∈ Σt × Sn ; Vi ∈ [−1, 0], Ti ∈ [−1, 1], Vi|Ti| = 0, 1 ≤ i ≤ p}.

The genetic algorithm is a technique of global optimization which can be useful
if the computation time for Jh is small and if the dimension of S1

h is not too large.
In order to increase the efficiency of the algorithm, we reduce the dimension of S1

h

from 2p to p as follows. Firstly we remark that if (τh, vh) ∈ S1
h then (Ti, Vi) ∈ D =:

{0} × [−1, 0] ∪ [−1, 1] × {0}. After that we construct θ = (T, V ) : [−1, 1] → D as
a continuous and surjective function. One choice of θ(s) = (T (s), V (s)) can be the
following (see Figure 2)





T (s) = (4s + 1)/3, V (s) = 0, if s ∈ [−1,−1/4]
T (s) = 0, V (s) = 4|s| − 1, if s ∈ [−1/4, 1/4]
T (s) = (4s− 1)/3, V (s) = 0, if s ∈ [1/4, 1],

We notice that the application Ψ : (s1, .., sp) → (
∑p

i=1 T (si)ψi,
∑p

i=1 V (si)ψi) is
surjective from [−1, 1]p to S1

h. We can define now the set

K =:
{

(s1, .., sp) ∈ [−1, 1]p ; Ψ(s1, .., sp) ∈ Sadm
h

}
(6.19)
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and J : [−1, 1]p → R+ ∪ {+∞} such that J (s1, .., sp) = Jh(Ψ(s1, .., sp))

J (s1, .., sp) =:





max
i=1,..,p

Q(T (si),

p∑
j=1

LijT (sj) +

p∑

k=1

Li,p+kV (sk)), if (s1, .., sp) ∈ K

+∞, otherwise,
(6.20)

to get the following minimization problem for J on [−1, 1]p

µw
h = min

(s1,..,sp)∈[−1,1]p
J (s1, .., sp). (6.21)

From the definition of our optimization problem it is intuitively clear that the
supremal functional has a great number of local minima. On the other hand, the
functional is very smooth almost everywhere with respect to the parameters si inside
of the admissible set. With such a local regularity it is straightforward to implement
an efficient procedure of local optimization (with Newton’s like methods for instance).

Considering those two aspects of our problem we used a stochastic algorithm based
on the so called “genetic hybrid technique” (see for instance [4, 3] for the theoretical
details of such aglorithms). The main idea of those methods is to manage in the
same time a global random exploration of the search space and some local optimiza-
tion steps. More precisely, we used an implementation of this stochastic method very
close from the one proposed in the EO library (see [2]).

7. How to manage the discontinuities of the normal on the contact surface

Let us suppose that the contact surfaces ΓC contains a (wedged) point P where
the outward unit normal n has a discontinuity. Since we shall choose P to be a
node (denoted by k), the same discontinuity will be inherited by all the meshes which
approach Ω. Let us firstly remark that the normal and tangential stresses (λhn)k and
(λht)k of the mixed finite element formulation, given through (5.12), are well defined.
That is a consequence of the fact that we deal in (5.12) with an integral formulation
and the normal is well defined on each segment of the contact boundary. In contrast,
the normal displacement (Φn)k in the node k is not well defined and the frictional
contact condition (5.13) has to be reconsidered in the context of a discontinuity of
the normal.

To fix the ideas, let us suppose that we deal with an in-plane geometry and we have
a parametric description t → (x1(t), x2(t)) of ΓC . Let tP be the abscise corresponding
to P = (xP

1 , xP
2 ) and let n− and n+ be the normal vectors defined for t < tP and for

t > tP respectively, i.e. at the left and at the right side of P . We distinguish two
situations: when the angle α between n− and n+ is positive or negative (see Figure
3). In each case we may define the inward normal cone Cn by

Cn =:

{ {v ; v · n− ≤ 0} ∩ {v ; v · n+ ≤ 0}, if α > 0
{v ; v · n− ≤ 0} ∪ {v ; v · n+ ≤ 0}, if α < 0

(7.22)
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Figure 3: Examples of discontinuities of the normal and of the inward normal cone
Cn. Left: the angle α between n− and n+ is positive. Right: the angle α between n−
and n+ is negative.

The frictional contact condition (5.13) in the wedged point P (i.e. for i = k) reads

(Φh)k ∈ Cn, |(λht)k| ≤ −µ(λhn)k,

{
(λhn)k = 0, if (Φh)k ∈ Int[Cn]
(λhn)k ≤ 0, if (Φh)k ∈ ∂Cn,

(7.23)

where Int[Cn] and ∂Cn denote the interior and the boundary of the inward normal
cone Cn.

For all τ h ∈ Σht and wh ∈ Shn we denote by u−h = U−h (τ h, wh) and by u+
h =

U+
h (τ h, wh) the solution of (5.15) for the choice of the normal n = n− and n = n+ in

the wedged point P , respectively. We introduce now the linear operators M−
k ,M+

k :
Σht × Shn → R given by

M−
k (τ h, wh) =: (U−h (τ h, wh))k · n+, M+

k (τ h, wh) =: (U+
h (τ h, wh))k · n−,

and let L−h (τ h, wh) and L+
h (τ h, wh) be defined by (5.16) in which we have replaced

uh by u−h and by u+
h , respectively. The linear operators L−h (·, ·) and L+

h (·, ·) are rep-
resented by the matrixes L−ij and L+

ij through (6.18) in which we have replaced Lh by
L−h and by L+

h , respectively.

Discontinuities of the first kind : α > 0. In this case the frictional contact
condition (7.23) reads

{
(Φh)k · n− ≤ 0, (Φh)k · n+ ≤ 0, (λhn)k[(Φh)k · n−][(Φh)k · n+] = 0,
(λhn)k ≤ 0, |(λht)k| ≤ −µ(λhn)k,

(7.24)

To manage the above unilateral constraint we have to modify the definition (5.17) of
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the cone of the admissible states as follows

Sadm
h =: {(τ h, vh) ∈ Sh ; (L−h (τ h, vh))i ≤ 0, (vh)i(L−h (τ h, vh))i = 0, for all i 6= k

M−
k (τ h, wh) ≤ 0, (L−h (τ h, vh))k ≤ 0, (vh)k(L−h (τ h, vh))kM

−
k (τ h, wh) = 0},

and to replace the matrix L from the definition (6.20) of J by L−. Then the critical
wedged friction coefficient µw

h is obtained as the minimum of J through the optimiza-
tion technique based on the genetic algorithms presented in the previous section. Let
us remark that if one chooses L+ and M+

k in the definition of Sadm
h and L+ in the

definition (6.20) of J , then µw
h the minimum of J is exactly the same.

Discontinuities of the second kind : α < 0. In this case the frictional contact
condition (7.23) reads









(Φh)k · n− ≤ 0, (λhn)k(Φh)k · n− = 0, (λhn)k[(Φh)k · n+]− = 0,
or
(Φh)k · n+ ≤ 0, (λhn)k(Φh)k · n+ = 0, (λhn)k[(Φh)k · n−]− = 0,

(λhn)k ≤ 0, |(λht)k| ≤ −µ(λhn)k,

(7.25)

where we have denoted by [x]− =: (x− |x|)/2 the negative part of x.
To handle these unilateral conditions it’s more convenient to solve two optimization

problems for two functionals J − and J +. In order to do it let

Sadm
h− =: {(τ h, vh) ∈ Sh ; (L−h (τ h, vh))i ≤ 0, (vh)i(L−h (τ h, vh))i = 0, for all i,

(L−h (τ h, vh))k[M
−
k (τ h, wh)]− = 0},

Sadm
h+ =: {(τ h, vh) ∈ Sh ; (L+

h (τ h, vh))i ≤ 0, (vh)i(L+
h (τ h, vh))i = 0, for all i,

(L+
h (τ h, vh))k[M

+
k (τ h, wh)]− = 0},

be the two cones of admissible states. We denote by K− and K+ the sets defined
through (6.19) in which we have replaced Sadm

h by Sadm
h− and by Sadm

h+ , respectively.
We can define now the functionals J − and J + through (6.20), in which L,K are
replaced by L−, K− and by L+, K+, respectively. For each of these functional we can
use the genetic optimization technique presented in the previous section to find

µw
h− = min

(s1,..,sp)∈[−1,1]p
J −(s1, .., sp), µw

h+ = min
(s1,..,sp)∈[−1,1]p

J +(s1, .., sp),

and the corresponding wedged configurations Φ∗
h− and Φ∗

h+. The critical wedged
frictional coefficient µw

h is the minimum of these two numbers, i.e.

µw
h = min{µw

h−, µw
h+},

and the (global) wedged configuration Φ∗
h is Φ∗

h− or Φ∗
h+, depending if µw

h− < µw
h+ or

µw
h− > µw

h+.
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Figure 4: Left: the distribution of the wedged configuration Φ∗
h (arrows) and of

the stress |σ(Φ∗
h)| (color scale). Right: the deformed mesh corresponding to the

displacement Φ∗
h.

8. Numerical results

First example. For the first test we wanted to give an example when the wedged
problem and the (linear) spectral problem has the same solution. For that we have
chosen the wedged geometry of Figure 4, where we do not expect a non contact zone.
Here the contact surface ΓC is represented by the solid line and the other part of the
boundary is stress free. For this particular problem it is simple and natural to choose
the partition P of the boundary ΓC ( Γfree

C = ∅ and Γ0
C = ΓC) and to associate a

given ”directional function” χ : Γ0
C → {−1, 1}. We have found a very good agreement

(µw
h = 0.300001 and µs

h = 0.300005) between the two solutions (i.e. between (Φ∗
h, µ

w
h )

and (Φs
h, µ

s
h)).

Second example. The second example has be chosen such that an unexpected
wedged configuration exists. The geometry is plotted in Figure 5, with the surface
ΓC represented by the solid line and the other part of the boundary is stress free.
The contact surface has a normal discontinuity of the first kind (i.e. α > 0) in the
left corner of the bottom, we have used the techniques presented in the previous
section to handle this difficulty. The wedged frictional coefficient was founded to be
µw

h = 1.59627 and the corresponding wedged configuration Φ∗
h is plotted in Figure 5.

In Figure 6 we have plotted the distribution of the displacements (normal and tan-
gential) on the contact surface. As it can be seen, the founded wedged configuration
Φ∗

h has no free zone where the elastic body is not in contact with the rigid support.
In order to see the influence of the mesh size (i.e. of h) we have performed the

same computations on three meshes. The first one has 61 nodes (h = h1), the
second one has 31 nodes (h = h2) and the third one has 16 nodes (h = h3) on
ΓC . We have found the variation of the wedged frictional coefficient µw

h is not large
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Figure 5: The computed wedged configuration. Left: the distribution of the Von-
Mises stress |σ′(Φ∗

h)| (color scale). Right: the deformed mesh corresponding to the
displacement Φ∗

h.

Figure 6: The distribution of the normal displacement and of the tangential displace-
ment on the contact zone ΓC (red : bottom side, green : left side).
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Figure 7: The distribution of the normal stress (left) and of the tangential stress
(right) on the bottom side of the contact boundary for different meshes: 61 nodes
(blue), 31 nodes (green) and 16 nodes (red) on ΓC .

(µw
h1

= 1.59627, µw
h2

= 1.55045, µw
h3

= 1.68817) and the normal and the distribution
of tangential stresses are very close (see Figure 7). As far as we have computed the
wedged configurations we have not found any significant dependence on the mesh of
the numerical results.

Third example. In the third test we wanted to point out that there are wedged
configurations with free zones on the contact surface. For that we have considered the
geometry drawn in Figure 6. As before the contact surface ΓC is represented by the
solid line and the other part of the boundary is stress free. The normal discontinuity of
the contact surface, which is of the second kind (i.e. α < 0), has been handled using
the techniques presented in the previous section. The wedged frictional coefficient
was founded to be µw

h = 0.6330019 and the corresponding wedged configuration Φ∗
h is

plotted in Figure 8. The founded wedged solution Φ∗
h exhibits two no contact zones.
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