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Abstract. We provide a general framework to construct �nite dimen-
sional approximations of the space of convex functions, which also ap-
plies to the space of c-convex functions and to the space of support func-
tions of convex bodies. We give precise estimates of the distance between
the approximation space and the admissible set. This framework applies
to the approximation of convex functions by piecewise linear functions
on a mesh of the domain and by other �nite-dimensional spaces such
as tensor-product splines. We show how these discretizations are well
suited for the numerical resolution of problems of calculus of variations
under convexity constraints. Our implementation relies on proximal al-
gorithms, and can be easily parallelized, thus making it applicable to
large scale problems in dimension two and three. We illustrate the ver-
satility and the e�ciency of our approach on the numerical resolution
of three problems in calculus of variation : 3D denoising, the principal
agent problem, and optimization within the class of convex bodies.

1. Introduction

Several problems in the calculus of variations come with natural convex-
ity constraints. In optimal transport, Brenier theorem asserts that every
optimal transport plan can be written as the gradient of a convex function,
when the cost is the squared Euclidean distance. Jordan, Kinderlehrer and
Otto showed [9] that some evolutionary PDEs such as the Fokker-Planck
equation can be reformulated as a gradient �ow of a functional in the space
of probability densities endowed with the natural distance constructed from
optimal transport, namely the Wasserstein space. In the corresponding time-
discretized schemes, each timestep involves the resolution of a convex opti-
mization problem over the set of gradient of convex functions. In a di�erent
context, the principal agent problem proposed by Rochet and Choné [20] in
economy also comes with natural convexity constraints. Despite the possible
applications, the numerical implementation of these variational problems has
been lagging behind, mainly because of a non-density phenomenon discov-
ered by Choné and Le Meur [5].

Choné and Le Meur discovered that some convex functions cannot be ap-
proximated by piecewise-linear convex functions on a regular grid (such as
the grid displayed in Figure 1). More precisely, they proved that piecewise-
linear convex functions on the regular grid automatically satisfy the inequal-

ity ∂2f
∂x∂y > 0 in a weak sense. Since there exists convex functions that do not

satisfy this inequality, this implies that the union of the spaces of piecewise-
linear convex functions on the regular grids (Gδ)δ>0 is not dense in the space
of convex functions on the unit square. Moreover, this di�culty is local, and
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Figure 1. The regular grid (Gδ) of [0, 1]2. Convex func-
tions that are piecewise linear on the triangles of this grid

automatically satisfy the inequality ∂2f
∂x∂y > 0 in the sense of

distributions [5].

it is likely that for any �xed sequence of meshes, one can construct con-
vex functions f that cannot be obtained as limits of piecewise-linear convex
functions on these meshes. This phenomenon makes it challenging to use
P1 �nite elements to approximate the solution of variational problems with
convexity constraints.

1.1. Related works. In this section, we brie�y discuss approaches that
have been proposed in the last decade to tackle the problem discovered by
Choné and Le Meur.

Mesh versus grid constraints. Carlier, Lachand-Robert and Maury proposed
in [4] to replace the space of P1 convex functions by the space of the space
of convex interpolates. For every �xed mesh, a piecewise linear function is a
convex interpolate if it is obtained by linearly interpolating the restriction of
a convex function to the node of the mesh. Note that these functions are not
necessarily convex, and the method is therefore not interior. Density results
are straightforward in this context but the number of linear constraints which
have to be imposed on nodes values is rather large. The authors observe that
in the case of a regular grid, one needs ' m1.8 constraints in order to describe
the space of convex interpolates, where m stands for the number of nodes of
the mesh.

Aguilera and Morin [1] proposed a �nite-di�erence approximation of the
space of convex functions using discrete convex Hessians. They prove that
it is possible to impose convexity by requiring a linear number of nonlinear
constraints with respect to the number of nodes. The leading fully nonlin-
ear optimization problems are solved using semide�nite programming codes.
Whereas, convergence is proved in a rather general setting, the practical ef-
�ciency of this approach is limited by the capability of semide�nite solvers.
In a similar spirit, Oberman [16] considers the space of function that sat-
isfy local convexity constraints on a �nite set of directions. By changing
the size of the stencil, the author proposed di�erent discretizations which
lead to exterior or interior approximations. Estimations of the quality of the
approximation is given for smooth convex functions.
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Higher order approximation by convex tensor-product splines. An important
number of publications have been dedicated last years to solve shape pre-
serving least square problems. For instance, di�erent su�cient conditions
have been introduced to force the convexity of the approximating functions.
Whereas this problem is well understood in dimension one, it is still an active
�eld of research in the context of multivariate polynomials like Bézier or ten-
sor spline functions. We refer the reader to Jüttler [10] and references therein
for a detailed description of recent results. In this article, Jüttler describes
an interior discretization of convex tensor-product splines. This approach is
based on the so called �Blossoming theory� which makes it possible to lin-
earize constraints on the Hessian matrix by introducing additional variables.
Based on this framework, the author illustrates the method by computing
the L2 projection of some given function into the space of convex tensor-
product splines. Two major di�culties have to be pointed out. First, the
density of convex tensor splines in the space of convex functions is absolutely
non trivial, and one may expect phenomena similar to those discovered by
Choné and Le Meur. Second, the proposed algorithm leads to a very large
number of linear constraints.

Dual approaches. Lachand-Robert and Oudet [12] developed a strategy re-
lated to the dual representation of a convex body by its support functions.
They rely on a simple projection approach that amounts to the computation
of a convex hull, thus avoiding the need to describe the constraints de�ning
the set of support functions. To the best of our knowledge, this article is the
�rst one to attack the question of solving problems of calculus of variations
within convex bodies. The resulting algorithm can be interpreted as a non-
smooth projected gradient descent, and gave interesting results on di�cult
problems such as Newton's or Alexandrov's problems. In a similar geometric
framework, Oudet studied in [18] approximations of convex bodies based on
Minkowski sums. It is well known in dimension two that every convex poly-
gon can be decomposed as a �nite sum of segments and triangles. While this
result cannot be generalized extend to higher dimension, this approach still
allows the generation of random convex polytopes. This process was used
by the author to study numerically two problems of calculus of variations on
the space of convex bodies with additional width constraints.

Ekeland and Moreno-Bromberg [6] proposed a dual approach for param-
eterizing the space of convex functions on a domain. Given a �nite set of
points S in the domain, they parameterize convex functions by their value fs
and their gradient vs at those points. In order to ensure that these couples
of values and gradients (fs, vs)s∈S are induced by a convex function, they
add for every pair of points in S the constraints ft > fs+〈t−s|vs〉. This dis-
cretization is interior, and it is easy to show that the phenomenon of Choné
and Le Meur does not occur for this type of approximation. However, the
high number of constraints makes it di�cult to solve large-scale problems
using this approach. Mirebeau [15] is currently investigating an adaptative
version of this method that would allow its application to larger problems.

1.2. Contributions. We provide a general framework to construct approx-
imations of the space of convex functions on a bounded domain that satis�es
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a Lipschitz bound. Our approximating space is a �nite-dimensional polyhe-
dron, that is a subset of a �nite-dimensional functional space that satis�es a
�nite number of linear constraints. The main theoretical contribution of this
article is a bound on the (Hausdor�) distance between the approximating
polyhedron and the admissible set of convex functions, which is summarized
in Theorem 2.4. Our discretization is not speci�c to approximation by piece-
wise linear functions on a triangulation of the domain, and can easily be ex-
tended to approximations of convex functions within other �nite-dimensional
subspaces, such as the space of tensor product splines. This is illustrated
numerically in Section 6.

This type of discretization is well suited to the numerical resolution of
problems of calculus of variations under convexity constraints. For instance,
we show how to compute the L2 projection onto the discretized space of con-
vex functions in dimension d = 2, 3 by combining a proximal algorithm [2]
and an e�cient projection operator on the space of 1D discrete convex func-
tions. Because of the structure of the problem, these 1D projection steps can
be performed in parallel, thus making our approach applicable to large scale
problems in higher dimension. We apply our non-smooth approach to a de-
noising problem in dimension three in Section 5. Other problems of calculus
of variations under convexity constraints, such as the principal-agent prob-
lem, can be solved using variants of this algorithm. This aspect is illustrated
in Section 6.

Finally, we note in Section 3 that the discretization of the space of con-
vex functions we propose can be generalized to other spaces of functions
satisfying similar constraints, such as the space of support functions of con-
vex bodies. The proximal algorithm can also be applied to this modi�ed
case, thus providing the �rst method able to approximate the projection of a
function on the sphere onto the space of support functions of convex bodies.
Section 7 presents numerical computations of Lp projections (for p = 1, 2,∞)
of the support function of a unit regular simplex onto the set of support func-
tions of convex bodies with constant width. We believe that these projection
operators could be useful in the numerical study of a famous conjecture due
to Bonnesen and Fenchel (1934) concerning the so-called Meissner's convex
bodies.

2. A relaxation framework for convexity

In this section, we concentrate on the relaxation of usual convexity for clar-
ity of exposition. However, most of the propositions and theorems presented
below can be extended to the the generalizations of convexity presented in
Section 3.

2.1. General setting. We consider a metric space X, and C(X) the space
of bounded continuous functions on X endowed with the norm of uniform
convergence ‖.‖∞. Every subset L of the space of a�ne forms on C(X)
de�nes a convex subset of the space of continuous functions by duality:

HL := {g ∈ C(K); ∀` ∈ L, `(g) 6 0}. (2.1)
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Let M,L be two sets of a�ne forms on C(X). The set M is called an α-
relaxation of L, where α is a function from C(X) to R∪{+∞}, if the following
holds: ∀` ∈ L, ∃`g ∈M, |`(g)− `g(g)| 6 α(g).

2.2. Convexity constraints. In the remaining of this section, we suppose
that X is a bounded open convex subset of Rd, and we let Lk be the set of
linear forms ` on C(K) that can be written as

`(g) = g

(
k∑
i=1

λixi

)
−

(
k∑
i=1

λig(xi)

)
(2.2)

for a set of k points x1, . . . , xk in X, and where (λi)16i6k belongs to the
(k − 1)-dimensional simplex ∆k−1, i.e. λ1, . . . , λk are non-negative numbers
whose sum is equal to one. Since we are only considering continuous func-
tions, the space HLk

coincides with the space of convex functions when k is
at least two. We denote this space by H.

Theorem 2.1. Consider an α-relaxation M of L2. If g lies in HM , there
must exist a convex function g in H such that ‖g − g‖∞ 6 dα(g).

Proof. Let us show �rst that, assuming that g is in HM , the following in-
equality holds for any form ` in Lk:

`(g) 6 kα(g). (2.3)

For k = 2, this follows at once from our hypothesis. Indeed, there must exist
a linear form `g in M that satis�es (2.1), so that `(g) 6 `g(g) + α(g). Since
g lies in HM , `g(g) is non-positive and we obtain (2.3). The case k > 2 is

proved by induction. Consider λ in the simplex ∆k−1 and points x1, . . . , xk
in X. We assume λ1 < 1 and we let µi = λi/(1 − λ1) for any i > 2. The
vector µ = (µ2, . . . , µk) lies in ∆k−2, and therefore y =

∑
i>2 µixi belongs to

X. Applying the inductive hypothesis (2.3) twice, we obtain:

g (λ1x1 + (1− λ1)y)− (λ1g(x1) + (1− λ1)g (y)) 6 α(g),

g(y)−

(
k∑
i=2

µig(xi)

)
6 (k − 1)α(g).

The sum of the �rst inequality and (1−λ1) times the second one gives (2.3).
Now, consider the convex envelope of the function g, that is

g(x) := min

{
d+1∑
i=1

λig(xi); xi ∈ X,λ ∈ ∆d and
∑
i

λixi = x

}
. (2.4)

This function is convex and its graph lies below the graph of g. Given any
family of points (xi) and coe�cients (λi) such that

∑
λixi = x, we consider

the form `(f) := f(x)−
∑

i λif(xi). Applying equation (2.3) to ` gives

g(x)− dα(g) 6
∑

λig(xi)

Taking the minimum over the (xi), (λi) such that
∑
λixi = x, we obtain the

desired inequality |g(x)− g(x)| 6 dα(g). �
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2.3. Discretization of convexity constraints. We introduce here a fam-
ily of a�ne forms M c

ε which discretize the the convexity constraints Lc2. We
start with a notation: for any triple of points x,y and z such that z ∈ [x, y],
we de�ne the linear form `xyz by the formula

`xyz(g) := g(z)− ‖zy‖
‖xy‖

g(x)− ‖xz‖
‖xy‖

g(x). (2.5)

By convention, when we write `xyz, we implicitly assume that z lies on the
segment [x, y]. Consider an ε-sample of the boundary ∂X, that is a subset
Uε ⊆ ∂X such that for every point x in ∂X there exists a point xε in Uε
with ‖x− xε‖ 6 ε. Given any pair of distinct points (p, q) in Uε, we let cpq
be the discrete segment de�ned by

cpq :=

{
p+ εi

(q − p)
‖q − p‖

; i ∈ N, 0 6 i 6 ‖q − p‖ /ε
}
.

Finally, we de�ne the following discretized set of constraints

M c
ε := {`xyz; x, y, z ∈ cpq for some p, q ∈ Uε and z ∈ [x, y]} .

Theorem 2.2. For any function g in the space HMc
ε
, there exists a convex

function g on X such that ‖g − g‖∞ 6 const(d)Lip(g)ε.

We start the proof by a technical lemma that gives an upper bound on the
di�erence between two linear forms corresponding to convexity constraints:

Lemma 2.3. Let x, y, z and x′, y′, z′ be six points in X. Assume the following

(i) max(‖x− x′‖ , ‖y − y′‖ , ‖z − z′‖) 6 η;
(ii) z ∈ [x, y], z′ ∈ [x′, y′].

Then,
∣∣`xyz(g)− `x′y′z′(g)

∣∣ 6 6ηLip(g).

Proof. We de�ne λ by the relation z = λx + (1 − λ)y, and λ′ is de�ned
similarly. We also de�ne `i(g) := g(z)− (λ′g(x) + (1− λ′)g(y)). Then,∣∣`xyz(g)− `x′y′z(g)

∣∣ 6 ∣∣`x′y′z(g)− `i(g)
∣∣+ |`i(g)− `xyz(g)|

The �rst term is easily bounded by 2ηLip(g), while the second term is
bounded by |λ− λ′|Lip(g) ‖xy‖.∣∣λ− λ′∣∣ =

∣∣∣∣‖zy‖‖xy‖
− ‖z

′y′‖
‖x′y′‖

∣∣∣∣
6

∣∣∣∣‖zy‖ − ‖z′y′‖‖xy‖

∣∣∣∣+

∣∣∣∣‖z′y′‖‖x′y′‖
· ‖x

′y′‖ − ‖xy‖
‖xy‖

∣∣∣∣ 6 4η/ ‖xy‖

Overall, we get the desired upper bound. �

Proof. Our goal is to show that M c
ε is an α-relaxation of Lc2. Consider three

points x, y, z in X such that z is in the segment [x, y]. The straight line (x, y)
intersects the boundary of X in two points a and b. By hypothesis, there
exists two points p and q in Uε such that the distances ‖a− p‖ and ‖b− q‖ are
bounded by ε. The maximum distance between the segments [a, b] and [p, q]
is then also bounded by ε and the maximum distance between the segment
[a, b] and the �nite set cpq by 2ε. This means that there exists three points
xε, yε and zε in cpq such that max(‖x− xε‖ , ‖y − yε‖ , ‖y − yε‖) 6 2ε. Using
Lemma 2.3, we deduce that ‖`xyz(g)− `xεyεzε(g)‖ 6 α(g) := 12εLip(g). This
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implies that M c
ε is an α-relaxation of Lc2, and the statement follows from

Theorem 2.1. �

2.4. Finite-dimensional discretization. Choné and Le Meur proved in
[5] that the space of piecewise-linear convex functions on a regular grid of
the square is not dense in the space of convex functions on this domain.
This means that we need to be very careful in order to apply the convexity
constraints M ε

c to �nite-dimensional space of functions.
For instance, consider the space Eδ of piecewise-linear functions on a tri-

angulation of the domain with edgelength bounded by δ. It is not di�cult to
realize that if the ratio ε/δ is small enough, any piecewise linear function on
this triangulation that satis�es the relaxed convexity constraintsM ε

c is auto-
matically convex. For such a choice of δ, one can fall in the pitfall discovered
by Choné and Le Meur, as illustrated in Figure 2.4. We consider the convex
function f(x, y) = max(0, x + y − 1) on the unit square X = [0, 1]2 and its
projection g on the intersection HMc

ε
∩Eδ, where Eδ is the space of piecewise

linear functions on a regular grid with edge length δ � ε. The error |f − g|
is displayed for three di�erent choices of grid size. One can observe that the
maximum error ‖f − g‖∞ remains almost constant regardless of δ.

As a consequence, we discuss below how to choose ε as a function of δ so
as to obtain the density of the union of spaces (HMc

ε
∩ Eδ)δ>0 in H.

Figure 2. Illustration of the non-convergence result phe-
nomena of Choné and Le Meur on a regular grid: stability of
the inf norm error on multiple grids. In all three �gures, the
dark red corresponds to the value 0.2.

De�nition 2.1. We call linear interpolation operator a linear map Iδ from
the space C(X) of continuous functions to a �nite-dimensional subspace Eδ
of C(X). Moreover, we will assume that the interpolation operator Iδ enjoys
the following properties:

Lip(Iδf) 6 Lipf (L1)

‖f − Iδf‖∞ 6 δLip(f), (L2)

‖f − Iδf‖∞ 6
1

2
δ2Lip(∇f), (L3)

An obvious example of linear interpolation operator is given by linear in-
terpolation on a mesh. Consider a triangulation of a polyhedral domain X,
and assume that the diameter of all triangles in is bounded by δ. Then, the
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operator Iδ de�ned by linear interpolation of the values of the function on
the triangles satis�es (L1)�(L3). One could also consider other interpola-
tion spaces, such as higher-order �nite elements, or even spaces of functions
constructed from tensor-product splines.

2.5. Hausdor� approximation results. The results of the previous para-
graphs can be combined in order to show that the �nite dimensional polyhe-
dron HMc

ε
∩ Iδ converges to the whole set of convex functions for a suitable

choice of ε. Given two subsets A,B of a functional space C(X), we de�ne
the half-Hausdor� distance hH(A,B) as follows:

hH(A,B) = min {r > 0;∀f ∈ A, ∃g ∈ B, ‖f − g‖∞ 6 r} .
dH(A,B) = max (hH(A,B), hH(B,A))

In the following theorem, the set of γ-Lipschitz functions on X is denoted
Bγ
Lip, while the set of functions with γ-Lipschitz gradient is denoted Bγ

C1,1 .

Theorem 2.4. Suppose given a bounded convex set X, and an interpolation
operator Iδ : C(X)→ Eδ. Then,

(1) hH(Bγ
Lip ∩ Eδ ∩HMc

ε
,Bγ

Lip ∩H) 6 const(d)γε.

(2) Assuming ε = const(d) diam(X)2/3δ1/3, one has

dH(Bγ
Lip ∩ Eδ ∩HMc

ε
,Bγ

Lip ∩H) 6 const(d)γ diam(X)2/3δ1/3, (2.6)

(3) Assuming ε = const(d) diam(X)1/3δ2/3, one has

hH(Bγ
C1,1 ∩H, Eδ ∩HMc

ε
) 6 const(d)γ diam(X)1/3δ2/3. (2.7)

The following easy lemma shows that the space HMc
ε
∩Eδ has non-empty

interior as soon as ε < δ. While very simple, this fact is the key to the proof
of the theorem.

Lemma 2.5. Consider the function s(x) := ‖x− x0‖2 on X, where x0 is a
point in X, and the interpolating function sδ := Iδs. Then,

max
`∈Mc

ε

`(sδ) 6 δ
2 − ε2.

Proof. Consider three points x < z < y on the real line, such that |x− z| > ε
and |y − z| > ε and z = λx+ (1− λ)z. Then,

z2 − λx2 − (1− λ)y2 = z2 − λ(z + (x− z))2 − (1− λ)(z + (y − z))2

= −[λ(x− z)2 + (1− λ)(y − z)2] 6 −ε2

Since the gradient of s is 1-Lipschitz, using (L2) we get ‖s− sδ‖∞ 6 δ2.
Combining with the previous inequality, we get `sδ 6 δ2−ε2 for every linear
form ` in M c

ε . �

Proof of Theorem 2.4. Theorem 2.1 implies that for every function g in the
intersection HMc

ε
∩ Bγ

Lip, there exists a convex function g in H such that

‖g − g‖∞ 6 const(d)Lip(g)ε. The Lipschitz constant of a function is not
increased by taking its convex envelope, and thus g belongs to H ∩ Bγ

Lip.
This gives us the upper bound

hH(Bγ
Lip ∩ Eδ ∩HMc

ε
,Bγ

Lip ∩H) 6 const(d)γε. (2.8)
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On the other hand, given a convex function f in Bγ
Lip, we consider the

function g := Iδf de�ned by the interpolation operator. Using the property
(L2), we can show that for any linear form ` in L2,

`(g) = g(λx+ (1− λ)y)− (λg(x) + (1− λ)g(y))

6 f(λx+ (1− λ)y)− (λf(x) + (1− λ)f(y)) + 2δγ 6 2δγ

Assuming δ 6 ε/2, this implies that for any linear form ` in M c
ε ,

`(g + ηsδ) 6 2δγ + η(δ2 − ε2) 6 2δγ − ηε2/4

Consequently, the inequality `(g) 6 0 holds for any linear form ` in M c
ε ,

assuming 8δγ 6 ηε2. This implies, using property (L1), that the function
h := g + ηsδ belongs to the intersection Bγ

Lip ∩ HMc
ε
. We therefore �x

η = 8δγ/ε2. The distance between f and h is bounded by

‖f − h‖∞ 6 ‖f − g‖∞ + η ‖sδ‖∞
6 γδ + η diam(X)2 = γδ(1 + 8 diam(X)/ε2)

6 9γδ diam(X)/ε2,

thus implying the following upper bound on the half-Hausdor� distance:

hH(Bγ
Lip ∩H,B

γ
Lip ∩ Eδ ∩HMc

ε
) 6 γδ. (2.9)

Combining Equations (2.8)�(2.9), we get

dH(Bγ
Lip ∩ Eδ ∩HM ,B

γ
Lip ∩H) 6 const(d)γmax(ε, δ diam(X)2/ε2)

We choose ε so as to equate the two terms in the maximum, i.e. ε =
δ1/3 diam(X)2/3. This proves assertion (2). Assertion (3) is proved in the
same way, using (L3) instead of (L2). �

3. Generalization to convexity-like constraints

3.1. Support functions. Recall that a compact convex set K in Rd is
uniquely determined by its support function, de�ned by

hK : x ∈ Rd 7→ max
p∈K
〈x|p〉.

This function is is positively 1-homogeneous and is therefore completely de-
termined by its restriction hK on the unit sphere. We consider the space
Hs ⊆ C(Sd−1) of support functions of compact convex sets. This space coin-
cides with the space of bounded functions on the sphere whose homogeneous
extensions to the whole space Rd are convex.

Lemma 3.1. A bounded function g on the unit sphere is the support function
of a bounded convex set if and only if for every x1, . . . , xk in the sphere, and
every (λ1, . . . , λk) ∈ ∆k−1,

‖x‖ g
(

x

‖x‖

)
6
∑
i

λig(xi), where x :=
∑
i

λixi. (3.10)

Moreover, g is the support function of a convex set if it satis�es the inequal-
ities for k = 2 only.
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Following this lemma, we de�ne Lsk as the space of all linear forms that
can be written as

`(g) :=

∥∥∥∥∥∑
i

λixi

∥∥∥∥∥ g
( ∑

i λixi
‖
∑

i λixi‖

)
−
∑
i

λig(xi), (3.11)

where x1, . . . , xk are points on the sphere Sd−1, and (λ1, . . . , λk) lies in ∆k−1.
With this notation at hand, we have another characterization of the space
of support functions: Hs coincides with the spaces HLs

k
for any k > 2.

Discretization of the constraints. The discretization of the set Ls2 of con-
straints satis�ed by support functions follows closely the discretization of
the convexity constraints described earlier. Consider three points x, y and
z such that x and y are not antipodal and such that z belongs to the min-
imizing geodesic between x and y. We let z′ be the radial projection of z
on the extrinsic segment [xy], i.e. such that z′/ ‖z′‖ = z. Finally, we let
λ = ‖zy‖ / ‖xy‖ and de�ne:

`xyz(g) :=
∥∥z′∥∥ g(z)− λg(x)− (1− λ)g(y).

As before, we discard the constraint `xyz if z does not lie on the minimizing
geodesic arc between x and y. Let Uε be a subset of the sphere that satis�es
the sampling condition

∀u ∈ Sd−1, ∃(σ, v) ∈ {±1} × Uε, s.t. ‖u− σv‖ 6 ε. (3.12)

Then, for every vector u in Uε we construct an ε-sampling cu of the great
circle orthogonal to u that is also ε

2 -sparse, i.e. ‖x− y‖ >
ε
2 for any pair

of distinct points x, y in cu. The space of constraints we consider is the
following:

M s
ε = {`xyz; x, y, z ∈ cu for some u ∈ Uε} .

The proof of the following theorem follows the proof of Theorem 3.2, and
even turns out to be slightly simpler as one does not need to take care of the
boundary of the domain.

Theorem 3.2. For any function h in the space HMs
ε
, there exists a bounded

convex set K such that ‖h− hK‖∞ 6 const(d)Lip(g)ε.

It is possible to de�ne a notion of interpolation operator on the sphere
as in �2.4, and to obtain Hausdor� approximation results similar to those
presented in Theorem 2.4. The statement and proofs of the theorem being
very similar, we do not repeat them. However, we show that the indicator
function of the unit ball, i.e. the constant function equal to one, belongs to
the interior of the set HMc

ε
. This is the analogous of Lemma 2.5, which was

the crucial point of the proof of convergence for the usual convexity.

Lemma 3.3. With s(x) := 1, one has max`∈Mc
ε
`(s) 6 −const · ε2.

Proof. For every ` in M c
ε , there exists three (distinct) points x, y, z in cu for

some u in Uε. Let z
′ denote the radial projection of z on the segment [x, y].

Then, `xyz(s) = ‖z′‖ − 1. By construction, ‖x− z‖ and ‖y − z‖ are at least
ε/2, and therefore ‖z′‖ 6 1− const · ε2 thus proving the lemma. �
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Support function as c-convex functions. Oliker[17] and Bertrand[3] intro-
duced another characterization of support functions of convex sets, inspired
by optimal transportation theory. They show that logarithm of support
functions coincide with c-convex functions on the sphere for the cost func-
tion c(x, y) = − log(max(〈x|y〉, 0)) (see �3.2 for a de�nition of c-convexity):

Lemma 3.4. A bounded positive function h : Sd−1 → R is convex and posi-
tively 1-homogeneous if and only if the function ϕ := log(h) can be written
as

ϕ(x) = sup
y∈Sd−1

−ψ(y)− c(x, y)

where c(x, y) = − log(max(〈x|y〉, 0)) and ψ : Sd−1 → R.

Proof. We show only the direct implication, the reverse implication can be
found in [3]. By assumption h = hK , where K is a bounded convex set that
contains the origin in its interior, and let ρK be the radial function of K i.e.
ρK(y) := max{r; ry ∈ K}. Then,

hK(x) = max
p∈K
〈x|p〉 = max

y∈Sd−1
ρK(y)〈x|y〉

Since hK > 0, the maximum in the right-hand side is attained for a point y
such that 〈x|y〉 > 0. Taking the logarithm of this expression, we get:

ϕ(x) = max
y∈Sd−1

log(ρK(y))− c(x, y) �

which concludes the proof of the direct implication.

3.2. c-Convex functions. In this paragraph, we show how the discretiza-
tions of the spaces of convex and support functions presented above can be
extended to c-convex functions. This extension is motivated by a family
of generalizations of the principal-agent problem proposed by Figalli, Kim
and McCann [7]. In this article, the authors show that the set of c-convex
functions is convex if and only if c satisfy the so-called non-negative cross-
curvature condition. Under the same assumption, we identify the linear
inequalities that de�ne this convex set of functions. The numerical imple-
mentation of this section will be presented in future work.

Given a cost function c : X × Y → R, where X and Y are two open
and bounded subsets of Rd, the c-transform and c∗-conjugate of lower semi-
continuous functions ϕ : X → R and ψ : Y → R are de�ned by

ϕc
∗
(y) := sup

x∈Y
−c(x, y)− ϕ(x),

ψc∗(x) := sup
y∈Y
−c(x, y)− ψ(y).

A function is called c-convex if it is the c∗-transform of a lower semi-continuous
function ψ : Y → R. The space of c-convex functions on X is denoted Hc.
We will need the following usual assumptions on the cost function c:

(A0) c ∈ C4(X × Y ), where X,Y ⊆ Rn are bounded open domains.
(A1) For every point y0 in Y and x0 in X, the maps

x ∈ X 7→ −∇yc(x, y0)
y ∈ Y 7→ −∇xc(x0, y)
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are di�eomorphisms onto their range (bi-twist).
(A2) For every point y0 in Y and x0 in X, the sets Xy0 := −∇yc(X, y0)

and Yx0 := −∇xc(x0, Y ) are convex (bi-convexity).

These conditions allow one to de�ne the c-exponential map. Given a point
y0 in the space Y , the c-exponential map expcy0 : Xy0 → X is de�ned as the
inverse of the map −∇yc(., y0), i.e. it is the unique solution of

expcy0(−∇yc(x, y0)) = x. (3.13)

The following formulation of the non-negative cross-curvature condition is
slightly non-standard, but it agrees to the usual formulation for smooth costs
under conditions (A0)�(A2), thanks to Lemma 4.3 in [7].

(A3) For every pair of points (y0, y) in Y the following map is convex:

v ∈ Xy0 7→ c(expcy0 v, y0)− c(expcy0 v, y). (3.14)

The main theorem of [7] gives a necessary and su�cient condition for the
space Hc of c-convex functions be convex.

Theorem 3.5. Assuming (A0)�(A2), the space of c-convex functions Hc is
itself convex if and only if c satis�es (A3).

The proof that (A0)�(A3) implies the convexity of Hc given in [7] is direct
but non-constructive, as the authors show that the average of two functions
ϕ0 and ϕ1 in Hc also belongs to Hc. The following proposition provides a
set of linear inequality constraints that are both necessary and su�cient for
a function to be c-convex.

Proposition 3.6. Assuming the cost function satis�es (A0)�(A3), a func-
tion ϕ : X → R is c-convex if and only if it satis�es the following constraints:

(i) for every y in Y , the map ϕy : v ∈ Xy 7→ ϕ(expcy v) + c(expcy v, y) is
convex.

(ii) for every x in X, the subdi�erential ∂ϕ(x) is included in Yx.

Note that while the �rst set of constraints (i) can be discretized in an anal-
ogous way to the previous sections. On the other hand, the second constraint
concerns the subdi�erential of ϕ in the sense of semiconvex functions. It is
not obvious how to handle this constraint numerically, except in the trivial
case where Y is the whole space Rd.

Proof. Suppose �rst that ϕ is c-convex. Then, there exists a function ψ such
that ϕ(x) = ψc∗ and one has

ϕy(v) = sup
z

[−ψ(z)− c(expcy v, z)] + c(expcy v, y).

Equation 3.14 implies that ϕy is convex as a maximum of convex functions.
Conversely, suppose that a map ϕ : X → R is such that the maps ϕy are

convex for any point y in Y , and let us show that ϕ is c-convex. Using the
de�nition of ϕy, and the de�nition of the c-exponential (3.13), one has

ϕ(x) = ϕy(−∇yc(x, y))− c(x, y)

for any pair of point (x, y) in X × Y . This formula and the convexity of ϕy
imply in particular that the map ϕ is semiconvex. Consequently, for every
point x in X, the subdi�erential ∂ϕ(x) is non-empty, and there must exist
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a point y in Y such that v := −∇xc(x, y) belongs to ∂ϕ(x). Hence, x is a
critical point of the map ϕ− c(., y), and therefore v is a critical point of ϕy.

By convexity, v is also a global minimum of ϕy, i.e. for every w in Xy,

ϕ(expcy w) + c(expcy w, y) > ϕ(x) + c(x, y).

Letting x′ = expcy w, we get ϕ(x′) > ϕ(x) + c(x, y) − c(x′, y). The function
ϕ(x) + c(x, y) − c(., y) is thus supporting ϕ at x. Since ϕ admits such a
supporting function at every point x in X, it is a c-convex function. �

4. Numerical implementation

In this section, we give some details on how to apply the relaxed convexity
constraints presented in Section 2 to the numerical resolution of problems
of calculus of variation with (usual) convexity constraints. Our goal is to
minimize a functional F over the set of convex functions H. For any convex
set K, we will denote iK the convex indicator function of K, that is the
function that vanishes on K and take value +∞ outside of K. The problem
above can then be reformulated as

min
g∈C(X)

F(g) + iH(g), (4.15)

The method that we present in this paragraph can be applied with minor
modi�cations to the other types of convexity-like constraints presented in
Section 3.

4.1. Finite-dimensional setting. We are given a �nite-dimensional sub-
space E of C(X), such as the space of piecewise-linear functions on a trian-
gulation of X, and a parameterization P : RN → E of this space. For every
point x in X, we consider the (linear) evaluation map Px : RN → R, de�ned
by Pxξ := (Pξ)(x), with the convention that Pxξ = +∞ outside of X. We
suppose that we are given a certain ε > 0, set M := M c

ε (X) and consider
the following relaxation of (4.15):

min
ξ∈RN

F(Pξ) + iHM
(Pξ). (4.16)

In the following, we use the notation introduced in �2.3. Consider a discrete
segment cpq, where p and q are distinct points in the ε-dense subset Uε of the
boundary of X. The evaluation of a function Pξ on such a discrete segment
cpq is a vector

Ppqξ =

(
Pξ(p+ εi

(q − p)
‖q − p‖

)

)
i∈N

Note that this vector takes takes �nite values for indices in {0, . . . , |cpq|−1}.
This allows us to rewrite the indicator function of the discretized convexity
constraints iHM

as a sum of indicator functions, one for each of the discrete
segment cpq. De�ne H1 as the cone of vectors (fi) indexed by N that satisfy
the discrete convexity conditions fi 6 1

2(fi−1 + fi+1) for i > 1. The relaxed
problem (4.16) is then equivalent to the following minimization problem:

min
ξ∈RN

F(Pξ) +
∑

(p,q)∈U2
ε

iH1(Ppqξ). (4.17)
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Algorithm 1 Simultaneous-direction method of multipliers (SDMM)

Input: γ > 0
Initialization: (y1,0, z1,0) ∈ R2N1 , . . . , (ym,0, zm,0) ∈ R2Nm

For: n = 0, 1, . . .
xn = Q−1

∑m
i=1 L

T
i (yi,n − zi,n)

For: i = 1, . . . ,m
si,n = Lixn
yi,n+1 = proxγ gi(si,n + zi,n)
zi,n+1 = zi,n + si,n − yi,n+1

4.2. Proximal methods. When the optimized functional F is convex, Prob-
lem (4.17) is a standard convex optimization problem under a large set of
inequality constraints. The projection on the set of 1D discrete convex func-
tions H1 is easy to compute due to its speci�c structure, as shown in the next
paragraph. This particular structure allows us to use a proximal algorithm
when the function F is smooth or when there exists a fast algorithm to com-
pute its proximal operator. Recall that the proximal operator associated to
a convex function f is de�ned by:

proxγ f(y) = arg min
x∈RN

f(x) +
1

γ
‖x− y‖2 . (4.18)

For instance, when f is the indicator function of a convex set, proxγ f coin-
cide with the projection operator on this set regardless of the value of γ. The
simultaneous-direction method of multipliers (SDMM) algorithm is designed
to solve convex optimization problems of the following type :

min
x∈RN

g1(L1x) + . . . gm(Lmx)

where the (Li)16i6m are matrices of dimensions N1×N, . . . , Nm×N and the
function (gi)16i6m are convex and easily proximable. Moreover, it assumes
that the matrix Q :=

∑m
i=1 L

T
i Li is invertible, where LTi stands for the

transpose of the matrix Li. A summary of the SDMM algorithm is given in
Algorithm 1. More details, and variants of this algorithm can be found in
the book [2]. Note that when applied to (4.17), every iteration of the outer
loop of the SDMM algorithm involves the computation of several projection
on the cone of 1D discrete functions H1. These projection can be computed
independently, thus allowing an easy parallelization of the optimization.

4.3. Hinge algorithm. In the algorithm above, we need to compute the l2

projection of a vector (fi) on the cone of discrete 1D convex functions H1.
In practice, (fi) is supported on a �nite set {0, . . . , n}, and one needs to
compute the `2 projection of this vector onto the convex cone

Hn1 = {g : {0, . . . , n} → R; ∀i ∈ {1, . . . , n− 1}, 2gi 6 gi−1 + gi+1}.
This problem is classical, and several e�cient algorithm have been proposed
to solve it. Since the number of conic constraints is lower than the dimension
of the ambient space (n+ 1), the number of extreme rays of the cone Hn1 is
bounded by n. Moreover, as noted by Meyer [14], these extreme rays can be
computed easily. This remark allows one to parameterize the cone Hn1 by
the space R×Rn+, thus recasting the projection onto Hn1 into a much simpler
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Figure 3. Denoising a convex graph by one dimensional projections.

non-negative least squares problem. To solve this problem, we use a simple
and e�cient exact active set algorithm proposed by Meyer [14].

5. Application I : Denoising

Our �rst numerical application focuses on the L2 projection onto the set
of convex functions on a convex domain. We illustrate the e�ciency of our
relaxed approach in the context of denoising. Let u∗ be a convex function
on a domain X in Rd. We approximate this function by a piecewise linear
function on a mesh, and the values of the function at the node of the mesh
are additively perturbed by Gaussian noise: u0(p) = u∗(p)+ cN (0, 1), where
N (0, 1) stands for the standard normal distribution and c is a small constant.
Our goal is then to solve the following projection problem in order to estimate
the original function u∗:

min
u∈H
‖u− u0‖L2(X) .

As described in previous sections, our discretization of the space of con-
vex functions is not interior. However, thanks to Theorem 2.4, we ob-
tain a converging discretization process that uses fewer constraints than
previously proposed interior approaches. More explicitly, we illustrate be-
low our method on the following three-dimensional denoising setting. Let

u0(x, y, z) = x2

3 + y2

4 + z2

8 , X = [−1, 1]3 with c = 1
40 . We carried our compu-

tation on a regular grid made of 803 points and we look for an approximation
in the space of piecewise-linear functions. The parameter used to discretize
the convexity constraints is set to ε = 0.02. Figure 3 displays the result of
the SDMM algorithm after 104 iterations. This computation took less than
�ve minutes on a standard computer.

To illustrate the versatility of the method, we performed the same denois-
ing experience in the context of support functions, using the discretization
explained in Section 3. As in the previous example, we consider a support
function perturbed by additive Gaussian noise h0(p) = h∗(p) + cN (0, 1). In
the numerical application, h∗ is the support function of the unit isocaedron
and c = 0.05, as shown on the left of Figure 4. Our goal is to compute the
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Figure 4. Denoising the support function of a convex body.
On the left the perturbed support function of the icosaedron.
On the right its projection into the set of support functions.

projection of h0 to the space of support functions:

min
h∈Hs

‖h− h0‖2L2(Sd−1) .

In order to relax the constraint Hs, we imposed one dimensional constraints
on a family of 2000 great circles of Sd−1 uniformly distributed and a step
discretization of every circular arc equal to 0.02. We obtained a very satis-
factory reconstruction of hi after 104 iterations of the SDMM algorithm, as
displayed on the right of Figure 4.

6. Application II : Principal-agent problem

6.1. Geographic principal agent problem. Let X be a bounded convex
domain of Rd, a distribution of agent ρ : X → R and a �nite subset K ⊆ X.
The monopolist or principal needs to determine a price menu π for pick-up
or deliveries, so as to maximize its revenue. The principal has to take into
account the two following constraints: (i) the agents will try to maximize
their utility and (ii) there is a �nite subset K ⊆ X of facilities, that compete
with the principal and force him to set its price π(y) to zero at any y in K.
For a given price menu π, the utility of a location y for an agent located at
a position x in X is given by uπ(x, y) = −1

2 ‖x− y‖
2 − π(y). The fact that

each agent tries to maximize his utility means that he will choose a location
that balances closeness and price. The maximum utility for an agent x is
given by:

uπ(x) := max
y∈X

u(x, y) = −1

2
‖x‖2 + max

y∈X

[
〈x|y〉 − 1

2
‖y‖2 − π(y)

]
Let us denote uπ(x) the convex function uπ(x) + 1

2 ‖x‖
2. This function is

di�erentiable almost every point x in X, and at such a point the gradient
∇uπ(x) agrees with the best location for x, i.e. ∇uπ(x) = arg maxy u(x, y).
This implies the following equality:

uπ(x) = 〈x|∇uπ(x)〉 − 1

2
‖∇uπ(x)‖2 − π(∇uπ(x))
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Our �nal assumption is that the cost of a location for the principal is con-
stant. Our previous discussion implies that the total revenue of the principal,
given a price menu π, is computed by the following formula

R(π) =

∫
X
π(∇uπ(x))ρ(x)dx

= −
∫
X

[
uπ(x)− 〈x|∇uπ(x)〉+

1

2
‖∇uπ(x)‖2

]
ρ(x)dx (6.19)

Changing the unknown from π to v := uπ, the assumption that the price
vanishes on the set K translates as uπ > maxy∈K −1

2 ‖· − y‖
2 or equivalently

v(x) = uπ(x) > max
y∈K
〈x|y〉 − 1

2
‖y‖2 .

Thus, we reformulate of the principal's problem in term of v as the maxi-
mization of the following functional:

L(v) :=

∫
X

[
v(x) +

1

2
‖∇v(x)− x‖2

]
ρ(x)dx

where the maximum is taken over the set of convex functions v : X → R
that satisfy the lower bound v > maxy∈K〈.|y〉 − 1

2 ‖y‖
2.

6.2. Results. In order to evaluate the accuracy of our algorithm, we �rst
solve the principal-agent problem on the unit disk, with K = {(0, 0)} and
ρ constant. It is known that the optimal pro�le is radial in this setting,
and it is possible to obtain a very accurate description of the optimal radial
component by solving a standard convex quadratic programming problem.
In parallel, we computed an approximation of the solution without the radial
assumption. To perform this computation we looked for an optimal function
in the space of P 3 �nite elements de�ned on a regular mesh of the square of
size 60× 60. The ε parameter for the discretization of convexity is 0.02. As
shown on the left picture of Figure 5, our solution perfectly matches the line
of the one dimensional pro�le (displayed on the graph) after 103 iteration
of the SDMM algorithm. In the standard setting proposed by Rochet and
Choné i.e. X = [1, 2]2, we recover the bunching phenomena. This can be
seen on the right of Figure 5. This result agrees with previous numerical
simulations that can be found in the literature [6, 15, 1].

7. Application III : Closest convex set with constant width

A convex compact setK of Rd has constant width α > 0 if all its projection
on every straight line are segments of length α. This property is equivalent
to the following constraints on the support function of K :

∀ν ∈ Sd−1, hK(ν) + hK(−ν) = α. (7.20)

Surprisingly, balls are not the only bodies having this property. In dimension
two for instance, Reuleaux's triangles, which are obtained by intersecting
three disks of radius α centered at the vertices of an equilateral triangle
have constant width α. Moreover, Reuleaux's triangles have been proved by
Lebesgue and Blaschke to minimize the area among two dimensional bodies
of constant width.
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Figure 5. Approximation of the radial solution in the disk
(left) and approximation of the solution in [1, 2]2 by P 3 func-
tions (right).

In dimension three, this problem is more di�cult. Indeed the mere exis-
tence of non trivial three-dimensional bodies of constant width is not so easy
to establish. In particular, no �nite intersection of balls has constant width,
except balls themselves [19]. As a consequence, contrarily to the two dimen-
sional case, the intersection of four balls centered at the vertices of a regular
simplex is not of constant width. In 1912, E. Meissner described in [13] a
process to turn this spherical body into an asymmetric bodies with constant
width, by smoothing three of its circular edges. This famous body is called
�Meissner tetrahedron� in the literature [11]. It is suspected to minimize
the volume among three dimensional bodies with the same constant width.
Let us point out that Meissner construction is not canonical in the sense
that it requires to choose the set of three edges that have to be smoothed.
As a consequence, there actually exists two kinds of �Meissner tetrahedron�
having the same measure.

In these two constructions, the regular simplex seems to play a crucial
role in the optimality (see also [8] for a more rigorous justi�cation of this
intuition). It is therefore natural to search for the body with constant width
that is the closest from a regular simplex. Note that by uniqueness of the
projection in an Hilbert space, Meissner tetrahedra cannot be the projections
of a regular simplex with respect to the L2 norm between support functions.
Such an obstruction does not hold for the L1 and L∞ norm, which are not
strictly convex. We illustrate below that our relaxed approach can be used
to numerically investigate these questions. The optimization problem that
we have to approximate is of the type

min
h∈Hs∩W

‖h0 − h‖Lp(S2) , 1 6 p 6∞

whereW is the set of function of S2 which satisfy the width constraints (7.20).
As explained is Section 3, we relax the constraint of being a support

function, by imposing convexity-like conditions on a �nite family of great
circles of the sphere. In the experiments presented below the number of
vertices in our mesh of S2 is 5000. We choose a family of 2000 great circles
of S2 uniformly distributed (with respect to their normal direction) and a
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Figure 6. Reconstruction of the convex bodies associated
to the L1, L2 and L∞ projection of hS without prescribing
the width value.

step discretization of every circular arc equal to 0.02. Finally, the constraint
W is approximated by imposing that antipodal values of the mesh must
satisfy a set of linear equality constraints, which can be easily implemented
in the proximal operator framework depicted in Section 4.2. Note that in
this �rst experience, the value of the width constraint is not imposed.

We present in Table 1 and Figure 6, our numerical description of the
projections of the support function of a regular simplex in the set of support
function of constant width bodies for the L1, L2 and L∞ norms. One can
observe that the resulting support functions describe a body with constant
width within an error of magnitude 0.1%. In other words the gap between the
minimal width and the diameter is relatively less than 0.001. In the L1 case
we obtain a convex body whose surface area and volume are close to those
of a Meissner body of same width, within a relative error of less than 0.01.
We also performed the same experiment starting from the support functions
of others platonic solids. In this case, where the value of the width is not
imposed, it seems that whatever the norm and the solid, the closest body
with constant width seems to always be a ball (whose radius can depend on
the type of solid and of the exponent).
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