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Abstract

We propose a new method for the numerical computation of the cut

locus of a compact submanifold of R3 without boundary. This method

is based on a convex variational problem with conic constraints, with

proven convergence. We illustrate the versatility of our approach by the

approximation of Voronoi cells on embedded surfaces of R3.

1 Introduction

Let S be a compact real analytic surface without boundary embedded in R3,
and let b ∈ S be any point of S (that can be thought of as a base point).

De�nition 1.1. The cut locus of b in S can be de�ned as the closure of the
set of points p ∈ S such that there exist at least two minimizing geodesics of S
between p and b. We will denote it by Cutb(S). Equivalently, it is also the set
of points of S \ {b} around which the distance function to the point b - denoted
by db - is not smooth.

The cut locus is a fundamental object in Riemannian geometry and it is a
natural problem to try and �nd ways to compute it numerically. In this paper,
we propose a numerical approximation of Cutb(S), based on a convex variational
problem on S, with proven convergence. It is not trivial to compute Cutb(S)
because it is not stable with respect to C1-small variations of S. See for instance
[1, Example 2]. In particular, one can't approximate the cut locus of S with the
cut locus of a piecewise linear approximation of S.

Related works. Let us review the techniques used in the past by di�erent
authors to approximate the cut locus. We may divide them into two categories.

Geodesic approximation on parametrized surfaces. This approach was used
in [18] and [14]. In [18], on genus 1 parametrized surfaces, the authors computed
a degree 4 polynomial approximation of the exponential map using the geodesic
equation, and deduced an approximation of the cut locus from there. In [14],
the authors used the deformable simplicial complexes (DSC) method and �nite
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di�erences techniques for geodesic computations, to compute geodesic circles of
increasing radius and their self-intersections, i.e. the cut locus. They applied
the method to genus 1 surfaces. These papers contain no proof of convergence
of the computed cut locus.

Exact geodesic computation on discretized surfaces. This approach was used
in [13] and [9]. In [13], the authors computed the geodesics on a convex trian-
gulated surface. They deduced an approximation of the cut locus of the trian-
gulated surface, and �ltered it according to the angle formed by the geodesics
meeting at a point of the approximated cut locus, to make their approximation
stable. They applied the method to ellipsoids. There is no proof of conver-
gence. In [9], the authors computed shortest curves on a graph obtained from a
su�ciently dense sample of points of the surface. From there they deduced an
approximation of the cut locus, and �ltered it according to the maximal distance
(called spread) between the geodesics meeting at a point of the approximated
cut locus. They proved that the set they compute converges to the cut locus
(see [9, Theorem 4.1]).

We may also mention [4], where the authors used some more geometric tools
to compute (numerically) the cut locus of an ellipsoid or a sphere with some
particular metric with singularities.

Our method. A natural approach to approximate a cut locus would be to
use a fast marching method which provides an e�cient way to compute distance
functions on a manifold. Unfortunately, classical algorithms do not ensure any
convergence result related to the gradient of the approximation. We believe
that this absence of estimate makes the approximation of the cut locus by these
algorithms di�cult to prove. In this article we introduce a new regularized
approach designed to �ll this gap and to obtain a reliable localization of the cut
locus. Given a large constant m > 0, let um ∈ H1(S) be the minimizer of the
following variational problem

min
u∈H1(S)

|∇Su|≤1

u(b)=0

∫
S

(
|∇

S
u|2 −mu

)
, (1.1)

where ∇
S
denotes the gradient operator on the surface S. Intuitively, um is a

molli�cation away from b of the distance function to the point b on S. For λ > 0
to be chosen small, we will use the set

Em,λ :=

{
x ∈ S \ {b} : |∇

S
um(x)|2 ≤ 1− λ2

u2
m(x)

}
as an approximation of Cutb(S). See �gure 1 for an illustration of the sensitivity
of um and Em,λ with respect to parameters m and λ.

This is justi�ed by some theoretical results obtained in [12], which will be
summarized in Sections 3 and 4. The Sections 2, 3 and 4 are devoted to explain-
ing how we arrived at such a set Em,λ. For now, let us give a bit of intuition
about the di�erent terms appearing in Em,λ. When perturbing the surface S,
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Figure 1: Approximation of the sets Em,λ (green color) for m = 10 (�rst row)
and m = 50 (second row) for three di�erent values of λ. The �rst three columns
correspond to values of λ = 0.6, 0.2 and 0.06 respectively. The last column
represents the associated solutions um.

we expect the same kind of instabilities as the ones observed in [3] in the case
of the medial axis. Thus, two kinds of new points may appear in Cutb(S):

1. points where some minimizing geodesics meet with an angle close to zero,

2. points that are near the base point b.

Hence, to make Cutb(S) more stable (and so more computable), we need
to select points that are not too close to b and such that some minimizing
geodesics meet with an angle signi�cantly larger than 0. Intuitively, having for
some constant α > 0 |∇

S
um(x)|2 ≤ 1− α2 ensures that we are selecting points

x where minimizing geodesics meet with an angle signi�cantly larger than 0,
and replacing α2 by λ2/u2

m ensures that we are selecting points that are away
from b. Some other de�nitions of Em,λ would have been possible (for instance,
the squares are not needed), and this form has been chosen as it corresponds to
the λ-medial axis introduced in [7] (see Section 2).

The rest of the paper is organized as follows. In section 2, we recall the
notion of λ-medial axis that was introduced in [7] and summarize some of its
properties. In section 3, following the strategy of the λ-medial axis, we de�ne
a "λ-cut locus" Cutλb (S) and show that it can be used as an approximation of
the complete cut locus for λ small enough. In section 4, we recall the result
from [12] which states that the set Em,λ de�ned above is a good approximation
of Cutλb (S) if m is big enough. In section 5, we discretize problem (1.1) using
�nite elements, to �nd a discrete minimizer um,h, where h > 0 is the step of the
discretization. From this discrete minimizer um,h, we obtain a function ulm,h on
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S, and we show that the set

Em,λ,h :=

{
x ∈ S \ {b} :

∣∣∇
S
ulm,h(x)

∣∣2 ≤ 1− λ2

(ulm,h)2(x)

}
,

is a good approximation of Em,λ as h→ 0. In section 6, we present the results
of some numerical experiments.
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2 λ-medial axis

In this section, we recall brie�y the notion of λ-medial axis introduced by Chazal
and Lieutier in [7]. Given an open subset Ω of R2, its medial axisM(Ω) is de�ned
as the set of points of Ω that have at least two closest points on the boundary
∂Ω of Ω:

M(Ω) :=
{
x ∈ Ω : ∃y, z ∈ ∂Ω, y 6= z and d∂Ω(x) = |x− y| = |x− z|

}
,

where for any x ∈ Ω, d∂Ω(x) is the distance from x to ∂Ω:

d∂Ω(x) = min
{
|x− y| : y ∈ ∂Ω

}
.

The medial axisM(Ω) is unstable with respect to small non-smooth perturba-
tions of the boundary of Ω. To deal with this issue, in [7] Chazal and Lieutier
de�ned the so called λ-medial axis of Ω by setting, for any λ > 0,

Mλ(Ω) := {x ∈ Ω : r(x) ≥ λ}, (2.1)

where r(x) is the radius of the smallest ball containing the set of all closest points
to x on ∂Ω, i.e. the set {z ∈ ∂Ω : |x− z| = d∂Ω(x)}. The map λ 7→ Mλ(Ω) is
nonincreasing, and

M(Ω) =
⋃
λ>0

Mλ(Ω).

It is further proved in [7, section 3, theorem 2] that Mλ(Ω) has the same
homotopy type as M(Ω), for λ small enough. These facts justify that Mλ(Ω)
is a good approximation of M(Ω), for λ small enough. The crucial di�erence
though is thatMλ(Ω) is stable with respect to small variations of the boundary

4



of Ω, whereas M(Ω) is not. We refer the reader to [7, section 4] for precise
statements and proofs.

To motivate the next section, we will also use an alternative de�nition of the
λ-medial axis. Given a point x ∈ Ω, let Θ(x) be the center of the smallest ball
containing all the closest points to x on ∂Ω. In [7, section 2.1], a vector �eld
∇d∂Ω (originally denoted only by ∇) is de�ned on Ω by:

∇d∂Ω(x) :=
x−Θ(x)

d∂Ω(x)
.

This vector �eld coincides with the classical gradient of d∂Ω wherever d∂Ω is
di�erentiable, so it can be thought of as a generalized gradient of d∂Ω. Moreover,
we have the following relation (see equation (1) in [7, section 2.1]):

|∇d∂Ω(x)|2 = 1− r2(x)

d2
∂Ω(x)

.

Therefore, we have the following equivalent de�nition of the λ-medial axis:

Mλ(Ω) =

{
x ∈ Ω : |∇d∂Ω(x)|2 ≤ 1− λ2

d2
∂Ω(x)

}
. (2.2)

3 λ-Cut locus

We want to de�ne a set similar to the λ-medial axis in the case of the cut locus
Cutb(S). To this end, we need a notion of generalized gradient for the distance
function db. The notion of generalized gradient we use is presented in [16,
section 1.3] in the context of Alexandrov spaces and in [12, section 2.2]. Here,
we introduce the notion omitting the short proofs otherwise needed. First note
that, as stated in [12, Proposition 2.7], the function db is locally semiconcave on
S \ {b}, which means that for any unit speed geodesic γ : [0, 1]→ S \ {b}, there
exists a constant C > 0 such that the function t 7→ Ct2 − db(γ(t)) is convex on
[0, 1]. From there, one gets that for any point x ∈ S \ {b} and any direction
v ∈ TxS, db admits a directional derivative

∂+
v db(x) = lim

t→0+

db(expx(tv))− db(x)

t

where expx denotes the Riemannian exponential map at x. Furthermore, for
any x ∈ S \ {b}, the map v 7→ ∂+

v db(x) admits a unique maximizer vx on the
closed ball B(0, 1) ⊂ TxS. The generalized gradient of db is then de�ned as

∇
S
db(x) = ∂+

vxdb(x)vx.

What is more, we have the following formula

|∇
S
db(x)| = max

(
0, sup
v∈TxS,|v|=1

∂+
v db(x)

)
. (3.1)
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See Lemma 3.3 for a geometric interpretation of the generalized gradient.
Analogously to (2.2), for λ > 0, we de�ne the λ-cut locus as

Cutλb (S) :=

{
x ∈ S \ {b} : |∇

S
db(x)|2 ≤ 1− λ2

d2
b(x)

}
.

We have the following proposition from [12, Proposition 2.9].

Proposition 3.1. The map λ 7→ Cutλb (S) is nonincreasing, and

Cutb(S) =
⋃
λ>0

Cutλb (S).

In addition, the following proposition holds. We recall that Cutb(S) is always
connected (see [15] for instance).

Proposition 3.2. If S is a real analytic surface, then for λ > 0 small enough,
one of the connected components of Cutλb (S) has the same homotopy type as
Cutb(S), while the other connected components, if any, are contractible.

These two propositions justify that Cutλb (S) is a good approximation of
Cutb(S), for λ > 0 small enough. Before proving Proposition 3.2, we prove the
following lemma.

Lemma 3.3. Let x ∈ Cutb(S) be such that there exist two unit speed minimizing
geodesics γ1, γ2 : [0, db(x)] → S such that γi(0) = b and γi(db(x)) = x. Let
θ ∈ (0, π] be the angle between γ1 and γ2 at x. Then, we have

|∇
S
db(x)| ≤ cos(θ/2).

Proof. For i = 1, 2, let us set vi = −γ̇i(db(x)). Let us denote by expx the
Riemannian exponential map at the point x. Let t0 ∈ (0, db(x)) and xi =
expx(vit0). Note that we have x /∈ Cutxi(S), so the function dxi is smooth at
x, and its gradient is −vi. Given v ∈ TxS such that |v| = 1, using db(x) =
dxi(x) + db(xi), we have

∂+
v db(x) = lim

t→0+

db(expx(vt))− db(x)

t

≤ lim
t→0+

dxi(expx(vt)) + db(xi)− (dxi(x) + db(xi))

t

= lim
t→0+

dxi(expx(vt))− dxi(x)

t

= −v · vi.

Given that the angle between v1 and v2 is θ, there exists i ∈ {1, 2}, such that
the angle between v and vi is at most π − θ/2. Thus the last inequality gives
∂+
v db(x) ≤ cos(θ/2). This concludes the proof.
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Remark 3.4. In the previous lemma, in the case where there are exactly two
minimizing geodesics arriving at x, one can show that the inequality is an equal-
ity.

Using Lemma 3.3, Proposition 3.2 will mainly be a consequence of [9, Propo-
sition 3.4], which is recalled in Proposition 3.6 below. Following [9], we will use
the following terminology. Let G be a �nite connected graph embedded in S.
A point x of a �nite connected graph G is called a tree point if x is a leaf of G
or G \ {x} has a connected component whose closure is a tree. Otherwise, x is
called a cycle point. As shown in the proof of [9, Proposition 3.5], the closure
of the set of cycle points of a �nite connected graph G is a deformation retract
of G, hence it is connected. We will also use the following lemma.

Lemma 3.5. Let G be a �nite connected graph. Let C ⊂ G be a closed connected
set that contains all cycle points of G. Then C is a deformation retract of G.

Proof. Let T1, . . . , Tk be the connected components of G \ C. As C contains all
cycle points of G, for any 1 ≤ i ≤ k, Ti is a tree and Ti ∩ C is a singleton {xi}.
By contracting all Ti to their roots xi, we obtain that C is a deformation retract
of G.

Let x ∈ S be such that there exist two minimizing unit speed geodesics γ1

and γ2 from b to x. Following [9], the spread between γ1 and γ2 is de�ned as

spd(γ1, γ2) = sup
t
d(γ1(t), γ2(t)).

We recall that, as S is real analytic, the cut locus Cutb(S) is a �nite graph (see
[15] in dimension 2 and [5] for the generalization to arbitrary dimensions). In
[9], the authors proved the following:

Proposition 3.6. [9, Proposition 3.4] Let x ∈ Cutb(S). If the spread of any
two minimizing unit speed geodesics γ1 and γ2 from b to x is smaller than the
injectivity radius of S, then x is a tree point of Cutb(S).

Proof of Proposition 3.2. According to Lemma 3.3, given any θ > 0, if λ has
been taken small enough, then for any point x ∈ Cutb(S) \ Cutλb (S), the angle
between any two minimizing unit speed geodesics γ1 and γ2 from b to x is
smaller than θ at x. As geodesics verify a second order di�erential equation, if
their angle at x is small, then their spread is also small. Therefore, applying
Proposition 3.6, we deduce that if λ has been taken small enough, then any
point x ∈ Cutb(S) \ Cutλb (S) is a tree point of Cutb(S). Stated otherwise,
Cutλb (S) contains all cycle points of Cutb(S). Moreover, Cutλb (S) is a closed
set. Indeed, this is a consequence of the semiconcavity of db and the lower
semicontinuity of the norm of the gradient of semiconcave functions (see [12,
Proposition 7.2]). Thus, Cutλb (S) contains the closure of the cycle points of
Cutb(S), which is connected. In particular, there exists a connected component
C of Cutλb (S) that contains the set of the cycle points of Cutb(S). By Lemma
3.5, C is a deformation retract of Cutb(S). This completes the proof.

Therefore, we will use Cutλb (S) as an approximation of Cutb(S) for λ small
enough.
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4 Approximation with a variational problem

For m > 0, recall that um is the minimizer in (1.1). For λ > 0, let us de�ne the
set Em,λ by

Em,λ :=

{
x ∈ S \ {b} : |∇

S
um(x)|2 ≤ 1− λ2

u2
m(x)

}
.

We have the following theorem (see [12, Theorem 1.1 and Theorem 1.3]):

Theorem 4.1. There exists m0 > 0 such that for any m > m0, the function
um is locally C1,1 on S \ {b}, and um = db in a neighborhood of b. For any
m > m′ > m0,

Cutb(S) ⊂ {|∇
S
um| < 1} ⊂ {|∇

S
um′ | < 1}. (4.1)

Moreover,

{|∇
S
um| < 1} −→

m→+∞
Cutb(S) in the Hausdor� sense. (4.2)

Finally, for any ε > 0,

sup
x∈Em,λ

d(x,Cutλb (S)) −→
m→+∞

0, and sup
x∈Cutλ+εb (S)

d(x,Em,λ) −→
m→+∞

0. (4.3)

Therefore, we can use Em,λ as an approximation of Cutλb (S). All in all, we
will use Em,λ as an approximation of Cutb(S).

In the following, we will always assume that we have m > m0.

5 Discretization

5.1 Finite elements of order r on a surface approximation

of order k

In this section we introduce a discretization framework adapted to the varia-
tional problem (1.1), based on �nite elements. We follow the notations of [8, 11].

Let S be a compact oriented smooth two-dimensional surface embedded
in R3. For x ∈ S, we denote by ν(x) the oriented normal vector �eld on
S. Let d : R3 → R be the signed distance function to the surface S and
Uη = {x ∈ R3, |d(x)| < η} the tubular neighborhood of S of width η > 0. It
is well known that if η is small enough (for instance 0 < η < mini=1,2

1
|κi|L∞(S)

where the (κi) stand for the extremal principal curvatures of S), then for every
x ∈ Uη, there exists a unique a(x) ∈ S such that

x = a(x) + d(x)ν(a(x)) = a(x) + d(x)∇d(x). (5.1)

We consider Sh a triangular approximation of S whose vertices lie on S and
whose faces are quasi-uniform and shape regular of diameter at most h > 0.
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Moreover, we will assume that Th, the set of triangular faces of Sh, are contained
in some tubular neighborhood Uη such that the map a de�ned by (5.1) is unique.

For k ≥ 1 and for a triangle T ∈ Th, we consider the nk Lagrange basis
functions Φk1 , . . .Φ

k
nk

of degree k and de�ne the discrete projection on Sh by:

ak(x) =

nk∑
j=1

a(xj)Φ
k
j (x) (5.2)

where x1, . . . , xnk are the nodal points associated to the basis functions. Now
we can de�ne Skh a polynomial approximation of order k of S associated to Th

Skh = {ak(x), x ∈ Sh}. (5.3)

Observe that by de�nition the image by a of the nodal points are both on S
and on Skh. Let us now introduce the �nite element spaces on Sh = S1

h and Skh
for k ≥ 2. For every integer r ≥ 1, let

Lrh = {χ ∈ C0(Sh), χ|T ∈ Pr,∀T ∈ Th} (5.4)

where Pr is the family of polynomials of degree at most r. Analogously, for
k ≥ 2, let

Lr,kh = {χ̂ ∈ C0(Skh), χ̂ = χ ◦ a−1
k , for some χ ∈ Lrh}. (5.5)

Analogously to (1.1), we will consider the following discrete variational problem:

min
u∈Lr,kh∣∣∣∣∇Sk
h

u

∣∣∣∣≤1

u(b)=0

F kh (u) (5.6)

where F kh (u) =
∫
Skh

(∣∣∣∇
Sk
h

u
∣∣∣2 −mu) and b some �xed nodal point of the mesh

Th.

5.2 Convergence of the lifted minimizers

In order to prove the convergence of our numerical approach, let us �rst establish
that our discrete problem converges in values in the sense of Proposition 5.2.
For a function u de�ned on Skh, we introduce its lifted function ul de�ned on S,
by the relation ul(a(x)) = u(x).

We focus our analysis on the piecewise linear case r = k = 1.We will use the
notation Fh := F 1

h and Lh := L1
h. For every h > 0, the convex optimization

problem (5.6) has a unique solution um,h.

Lemma 5.1. The di�erential of the projection a : Uη → R3 onto S, when
restricted to the tangent space of Sh, is the identity, up to order 1 in h:

Da|TSh = Id
|R3

|TSh
+O(h).
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Proof. The identity estimate on Da is a direct consequence of [11] equations
(4.12), (4.13), (4.10) and (4.11).

De�ning F (u) =
∫
S

(
|∇

S
u|2 −mu

)
, we have the following proposition.

Proposition 5.2. Let um,h be the solution of problem (5.6) for k = r = 1. Let

Lulm,h :=
ulm,h

max(|∇
S
ulm,h|L∞(S),1)

be the 1-Lipschitz normalization of ulm,h. Then,

Lulm,h ∈ H1(S) and

F (Lulm,h) = min
u∈H1(S)

|∇Su|≤1

u(b)=0

F (u) +O(h
1
2 ).

Proof. Step 1. Let um be the solution of problem (1.1). For ε > 0, let wm,ε :
S → R be de�ned by:

wm,ε =

{
db(x)2

2ε if db(x) ≤ ε
um(x)− ε

2 if db(x) ≥ ε.

Recall that we have um = db in a neighborhood of b (Theorem 4.1). Therefore,
for ε > 0 small enough, we have um = db on the ball B(b, 2ε). In particular,
we deduce that wm,ε is C1 on S. As d2

b is smooth in a neighborhood of b,
the gradient of d2

b/2ε is O(ε−1)-Lipschitz on B(b, ε). Moreover, as um = db on
B(b, 2ε), the gradient of um is O(ε−1)-Lipschitz on B(b, 2ε) \ B(b, ε). Recall
that um is also locally C1,1 on S \ {b} (Theorem 4.1). Therefore its gradient is
O(ε−1)-Lipschitz on S \B(b, ε). All in all, we obtain that wm,ε is C1,1 on S and
the Lipschitz constant of its gradient is O(ε−1). Furthermore, as db and um are
both 1-Lipschitz, we have |∇

S
wm,ε| ≤ 1. Now for ε > 0, consider

vh,ε :=
Ihwm,ε

|∇
Sh
Ihwm,ε|L∞(Sh)

,

where Ihwm,ε is the P1 Lagrange interpolation of wm,ε on Sh. Therefore, vh,ε is
an admissible candidate in the minimization problem (5.6). For x ∈ Sh, observe
that we have the relation Ihwm,ε(x) = Ih(wm,ε ◦ a)(x) which says that Ihwm,ε
is the standard (�at) interpolation of the composed function wm,ε ◦ a. As the
map a : Uη → S is smooth and the gradient of wm,ε is O(ε−1)-Lipschitz, we
deduce that on every triangle of Sh, the gradient of wm,ε ◦a is O(ε−1)-Lipschitz,
uniformly on h. By the quasi uniformity of the mesh, we obtain the uniform
interpolation estimates on Sh:

Ihwm,ε(x) = (wm,ε ◦ a)(x) +O(ε−1h2) (5.7)

and
∇
Sh
Ihwm,ε(x) = ∇

Sh
(wm,ε ◦ a)(x) +O(ε−1h).
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With Lemma 5.1, we deduce for all x ∈ Sh,

∇
Sh
Ihwm,ε(x) = ∇

S
wm,ε(a(x)) +O(ε−1h). (5.8)

Recall that we have |∇
S
wm,ε|L∞(S) = 1. Therefore the last identity yields

|∇
Sh
Ihwm,ε|L∞(Sh,ε) = 1 +O(ε−1h).

Thus, vh,ε = Ihwm,ε(1 +O(ε−1h)), and so

Fh(vh,ε) = Fh(Ihwm,ε) +O(ε−1h). (5.9)

Applying Lemma 5.1 again, with a simple change of variable, we �nd that for
any function f : S → R, ∫

Sh

f ◦ a =

∫
S

f +O(h). (5.10)

Recalling (5.7) and (5.8), we obtain

Fh(Ihwm,ε) = F (wm,ε) +O(ε−1h). (5.11)

Furthermore, we have∫
S

|wm,ε − um| ≤ O(ε) and
∫
S

∣∣∣|∇S
wm,ε|2 − |∇S

um|2
∣∣∣ ≤ O(ε2),

so
F (wm,ε) = F (um) +O(ε).

Combining this with (5.9) and (5.11), we �nd

Fh(vh,ε) = F (um) +O(ε−1h) +O(ε).

Choosing ε = h
1
2 , this yields

min
u∈Lh∣∣∣∇Sh u∣∣∣≤1

u(b)=0

Fh(u) ≤ min
u∈H1(S)

|∇Su|≤1

u(b)=0

F +O(h
1
2 ). (5.12)

Step 2. Let um,h be the solution of the discrete problem (5.6), ulm,h :=

um,h ◦ (a|Sh )−1 its lifted version on S, and

Lulm,h :=
ulm,h

max(|∇
S
ulm,h|L∞(S)

, 1)
.

Using the equation um,h = ulm,h ◦ a and Lemma 5.1 as before, we obtain that
uniformly for x ∈ Sh,

∇
S
ulm,h ◦ a(x) = ∇

S
um,h(x) +O(h). (5.13)
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In particular, this implies

|∇
S
ulm,h|L∞(S)

= |∇
Sh
um,h|L∞(Sh)

+O(h) ≤ 1 +O(h),

and so
Lulm,h = ulm,h(1 +O(h)). (5.14)

From this identity we deduce

F (Lulm,h) = F (ulm,h) +O(h).

Using the estimates (5.13) and (5.10) as in step one, we �nd

Fh(um,h) = F (ulm,h) +O(h)

The last two equations together yield F (Lulm,h) = Fh(um,h) + O(h). With
(5.12), this implies

min
u∈H1(S)

|∇Su|≤1

u(b)=0

F ≤ F (Lulm,h) ≤ min
u∈H1(S)

|∇Su|≤1

u(b)=0

F +O(h
1
2 ),

which concludes the proof of the proposition.

In the proof of the next proposition, we will need the following lemma.

Lemma 5.3. Let L > 0. Let (fh)h>0 be a family of L-Lipschitz real functions
on S such that |∇fh|L1(S) → 0 as h→ 0 and for any h > 0, fh(b) = 0. Then

|fh|L1(S) −→
h→0

0.

Proof. Let ε > 0, and Sε := S \ (Cutb(S) ∪ B(b, ε)). We will use the polar
coordinates (r, θ) centered at b on Sε. In these coordinates, the surface measure
on Sε is of the form dA = A(r, θ)drdθ, with

A(r, θ) ∼
r→0

r, uniformly in θ. (5.15)

Moreover, the surface Sε is of the form

Sε = {(r, θ), θ ∈ [0, 2π), r ∈ [ε, rθ)},

for some rθ > 0 that depends on θ ∈ [0, 2π). As the (fh)h>0 are L-Lipschitz and
fh(b) = 0, we have for any θ ∈ [0, 2π), |fh(ε, θ)| ≤ Lε. Using this inequality, we

12



have∫
Sε

|fh| =
∫ 2π

0

∫ rθ

ε

|fh(r, θ)|A(r, θ)drdθ

≤
∫ 2π

0

∫ rθ

ε

|fh(r, θ)− fh(ε, θ)|A(r, θ)drdθ +

∫ 2π

0

∫ rθ

ε

|fh(ε, θ)|A(r, θ)drdθ

≤
∫ 2π

0

∫ rθ

ε

|fh(r, θ)− fh(ε, θ)|A(r, θ)drdθ +A(S)Lε

=

∫ 2π

0

∫ rθ

ε

∣∣∣∣∫ r

ε

∂rfh(t, θ)dt

∣∣∣∣A(r, θ)drdθ +A(S)Lε

≤
∫ 2π

0

∫ rθ

ε

∫ r

ε

|∇fh(t, θ)|dtA(r, θ)drdθ +A(S)Lε. (5.16)

From (5.15), we know that for some constants C1, C2 > 0, we have for any r > 0
and θ ∈ [0, 2π), C1r ≤ A(r, θ) ≤ C2. In particular, for r ≥ t ≥ ε, we get

A(r, θ) ≤ C2 ≤ C2
t

ε
≤ C2

C1ε
A(t, θ).

Setting C := C2/C1, with (5.16), we �nd∫
Sε

|fh| ≤
C

ε

∫ 2π

0

∫ rθ

ε

∫ r

ε

|∇fh(t, θ)|A(t, θ)dtdrdθ +A(S)Lε

=
C

ε

∫ 2π

0

∫ rθ

ε

∫ rθ

t

|∇fh(t, θ)|A(t, θ)drdtdθ +A(S)Lε

≤ C diam(S)

ε

∫ 2π

0

∫ rθ

ε

|∇fh(t, θ)|A(t, θ)dtdθ +A(S)Lε

=
C diam(S)

ε

∫
Sε

|∇fh|+A(S)Lε, (5.17)

where diam(S) is the diameter of S. Note that because the (fh)h>0 are L-
Lipschitz and fh(b) = 0, we have∫

S

|fh| =
∫
Sε

|fh|+
∫
B(b,ε)

|fh| ≤
∫
Sε

|fh|+A(S)Lε.

Therefore the estimate (5.17) yields∫
S

|fh| ≤
C diam(S)

ε

∫
S

|∇fh|+ 2A(S)Lε.

In particular, for any ε > 0,

lim sup
h→0

∫
S

|fh| ≤ 2A(S)Lε.

This concludes the proof.
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We can now establish the convergence of the minimizers:

Proposition 5.4.∣∣∇
S
ulm,h −∇S

um
∣∣2
L2(S)

= O(h
1
2 ) and

∣∣ulm,h − um∣∣L1(S)
−→
h→0

0.

Proof. Consider v = 1
2 (Lulm,h + um). Then, v is admissible for problem (1.1),

so F (v) ≥ F (um). Moreover, the following algebraic identity holds

F (v) =
1

2
F (Lulm,h) +

1

2
F (um)− 1

4

∫
S

|∇
S
um −∇S

Lulm,h|2.

Therefore, we have

1

2
F (Lulm,h)− 1

2
F (um) ≥ 1

4

∫
S

|∇
S
um −∇S

Lulm,h|2,

which proves, together with Proposition 5.2, that∣∣∇
S
Lulm,h −∇S

um
∣∣2
L2(S)

= O(h
1
2 ). (5.18)

In particular, as S is compact, the gradient of the function Lulm,h − um also
goes to 0 in the L1(S) norm as h → 0. Recall that the functions (Lulm,h)h>0

and um are uniformly Lipschitz, and Lulm,h(b) = um(b) = 0, so we may apply
Lemma 5.3 to the functions (Lulm,h − um)h>0, to �nd that∣∣Lulm,h − um∣∣L1(S)

−→
h→0

0. (5.19)

In the proof of Proposition 5.2, we showed that Lulm,h = ulm,h(1 +O(h)) (equa-
tion (5.14)). Together with (5.18) and (5.19), this concludes the proof.

We just proved that the gradient of the lifted minimizers of the discrete prob-
lems (5.6) converge with an order at least 1/4 to the gradient of the minimizer
of problem (1.1).

5.3 Convergence in measure of Em,λ,h

Let us recall that the set Em,λ is de�ned by

Em,λ =

{
x ∈ S \ {b} : |∇

S
um(x)|2 ≤ 1− λ2

u2
m(x)

}
.

Proposition 5.5. For any λ > 0, let us de�ne

Em,λ,h :=

{
x ∈ S \ {b} :

∣∣∇
S
ulm,h(x)

∣∣2 ≤ 1− λ2

(ulm,h)2(x)

}
.

For any ε > 0 with ε < λ/2, we have

|Em,λ+ε \ Em,λ,h| = O(h
1
4 ) and |Em,λ,h \ Em,λ−ε| = O(h

1
4 ).
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Proof. By de�nition of Em,λ and Em,λ,h, we have

Em,λ+ε \ Em,λ,h ⊂

{∣∣∇
S
ulm,h

∣∣2 − |∇
S
um|2 >

(λ+ ε)2

u2
m

− λ2

(ulm,h)2

}
.

Therefore, on Em,λ+ε \ Em,λ,h, we have

∣∣∇
S
ulm,h

∣∣2 − |∇
S
um|2 >

(λ+ ε)2 − λ2

u2
m

+ λ2

(
1

u2
m

− 1

(ulm,h)2

)

≥ 2ελ+ ε2

(diam(S))2
+ λ2

(
1

u2
m

− 1

(ulm,h)2

)
, (5.20)

where diam(S) is the diameter of S. Recall that, by proposition 5.4, ulm,h
converges to um in L1(S) as h goes to 0. As the functions um and ulm,h are
uniformly Lipschitz, this implies that ulm,h converges to um in L∞(S). Moreover,
by de�nition of Em,λ, we also have Em,λ+ε ⊂ {um ≥ (λ + ε)}, so on Em,λ+ε \
Em,λ,h, the di�erence

(
1
u2
m
− 1

(ulm,h)2

)
converges uniformly to 0 as h goes to 0.

With (5.20), this implies that for h small enough, we have on Em,λ+ε \Em,λ,h,∣∣∇
S
ulm,h

∣∣2 − |∇
S
um|2 ≥

2ελ+ ε2

2(diam(S))2
.

In particular, setting η := 2ελ+ε2

2(diam(S))2 and using proposition 5.4, we obtain

|Em,λ+ε \ Em,λ,h| ≤
{∣∣∇

S
ulm,h

∣∣2 − |∇
S
um|2 > η

}
≤ 1

η

∫
S

∣∣∣∣∣∇S
ulm,h

∣∣2 − |∇
S
um|2

∣∣∣
= O(h

1
4 ).

This concludes the proof of the �rst estimate. The other estimate is proved by
the same method.

Remark 5.6. The function um is generically suspected to be no more than C1,1

regular. This important di�culty makes the extension of the previous conver-
gence analysis to higher order elements not straightforward. However, based
on our numerical experiments (see the following paragraph), we believe that a
(k, r) approximation improves the order of convergence without being able to
provide a complete analysis of this order due to this lack of regularity.

Sections 3, 4 and 5 together justify the claim that the set Em,λ,h is a good
approximation of the cut locus of b in S, if m is big enough and λ and h are
small enough. We tried to estimate numerically the order of convergence of our
approximation. Unfortunately, the precision of our simulations was not enough
to determine if the expected order of convergence 1/4 is optimal or not.
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6 Numerical illustrations

6.1 Cut locus approximation

We established the convergence of the minimizers of problems (5.6) when h
tends to 0. For a �xed h > 0, this convex discrete problem is of quadratic
type with an in�nite number of conic pointwise constraints. By the way, it is
important to observe that for k = r = 1, the gradient pointwise bounds for a
function of P1 is equivalent to a single discrete conic constraint on every triangle
with respect to the degrees of freedom of P1(Th). In this simpli�ed context, we
observed in our experiments that using P1 elements may lead to approximated
cut loci with some tiny arti�cial connected components (see �gure 2). Observe

Figure 2: Artifacts using low order approximation

that these artifacts do not contradict our convergence estimates in Proposition
5.5. Motivated by this lack of precision, we use in all following illustrations
elements of order r > 1.

For the general case r > 1, the bound constraint on the gradient cannot be
easily reduced to a �nite set of discrete constraints. In our computations, we
approximated the constraint |∇

Sk
h

u|L∞(Skh) ≤ 1 by forcing the inequality only on

a �nite number of points of the mesh. In practice, we imposed these constraints
on g Gauss quadrature points on every triangle of Th.

We illustrate in �gures 3, 4, 5 and 6 the approximation of the cut locus pro-
vided by our approach. These computations have been carried out on meshes of
approximately 105 triangles for k = 2 and r = 3 using a high precision quadra-
ture formula associated to 17 Gauss points on every element of the mesh. More-
over, for r = 3, we imposed the conic gradient constraints on the g = 9 Gauss
points of every triangle. In order to solve the resulting linear conic constrained
quadratic optimization problem, we used the JuMP modeling language and the
�nite elements library Getfem++ [10, 17] combined with the Mosek optimiza-
tion solver [2]. For such a precision, the optimization solver identi�ed a solution
in less than one hour on a standard computer.

Observe that our approximations of cut loci provide sets with a number
of handles equal to twice the genus of the supporting surfaces. This fact is in
agreement with Proposition 3.2 since the cut locus has he same homotopy group
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as the surface (see [6] for instance).

Figure 3: Three di�erent views of the approximation of a cut locus on a standard
torus

Figure 4: Three di�erent views of the approximation of a cut locus on a standard
torus, without representing the surface
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Figure 5: Three di�erent views of the approximation of a cut locus on a torus
of genus 2

Figure 6: Three di�erent views of the approximation of a cut locus on a torus
of genus 2, without representing the surface
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6.2 Approximation of the boundary of Voronoi cells

All previous theoretical results still hold if we replace the source point b by
any compact subset of the surface S. For instance, if b is replaced by a set
of points, the singular set of the distance function can be decomposed as the
union of the boundary of Voronoi cells and the cut loci of every point intersected
with its Voronoi cell. As a consequence, if the distribution of source points is
homogeneous enough, that is every Voronoi cell is small enough, the singular
part of the distance function will be exactly equal to the boundary of the Voronoi
cells. We illustrate this remark in the following experiments. We used exactly
the same framework as in previous sections and just replaced the pointwise
condition at b with the analogous pointwise Dirichlet conditions at every source
point. Figure 7 and 8 represent the Voronoi diagrams obtained with 10, 30
and 100 points for surfaces of genus 2 and 3. The computational complexity is
exactly of the same order as with a single source point.

Figure 7: Approximation of the voronoi cells on a torus of genus 2 of 10, 30 and
100 points. Every column represent two di�erent views
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Figure 8: Approximation of the Voronoi cells on a torus of genus 3 of 10, 30
and 100 points. Every column represents two di�erent views
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