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SUMMARY5

Full waveform inversion using the conventional L2 distance to measure the misfit between6

seismograms is known to suffer from cycle skipping. An alternative strategy is proposed7

in this study, based on a measure of the misfit computed with an optimal transport dis-8

tance. This measure allows to account for the lateral coherency of events within the seis-9

mograms, instead of considering each seismic trace independently, as is done generally10

in full waveform inversion. The computation of this optimal transport distance relies on a11

particular mathematical formulation allowing for the non-conservation of the total energy12

between seismograms. The numerical solution of the optimal transport problem is per-13

formed using proximal splitting techniques. Three synthetic case studies are investigated14

using this strategy: the Marmousi 2 model, the BP 2004 salt model, and the Chevron15

2014 benchmark data. The results emphasize interesting properties of the optimal trans-16

port distance. The associated misfit function is less prone to cycle skipping. A workflow17

is designed to reconstruct accurately the salt structures in the BP 2004 model, starting18

from an initial model containing no information about these structures. A high resolution19

P-wave velocity estimation is built from the Chevron 2014 benchmark data, following a20

frequency continuation strategy. This estimation explains accurately the data. Using the21

same workflow, full waveform inversion based on the L2 distance converges toward a22

local minimum. These results yield encouraging perspectives regarding the use of the op-23

timal transport distance for full waveform inversion: the sensitivity to the accuracy of the24

initial model is reduced, the reconstruction of complex salt structure is made possible, the25

method is robust to noise, and the interpretation of seismic data dominated by reflections26

is enhanced.27

Key words: Optimal transport, controlled source seismology, computational seismology,28

wave propagation, inverse theory.29
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1 INTRODUCTION30

Full waveform inversion (FWI) is a data fitting procedure aiming at computing high resolution estima-31

tions of subsurface parameters. The formalism of this method, based on the minimization of the misfit32

between observed and synthetic data, yields the possibility for estimating any parameter influencing33

the propagation of seismic waves: P- and S-wave velocities, density, attenuation, anisotropy parame-34

ters. In current applications, at the regional or global scale in seismology, and at the exploration scale35

in seismic imaging, FWI is mainly used as a high resolution velocity model building method (Fichtner36

et al. 2010; Tape et al. 2010; Peter et al. 2011; Sirgue et al. 2010; Plessix & Perkins 2010; Zhu et al.37

2012; Warner et al. 2013; Vigh et al. 2014; Borisov & Singh 2015; Operto et al. 2015). As opposed38

to conventional tomography methods based on the matching of travel-times only, FWI aims at tak-39

ing into account the whole recorded signal: all the seismic events (diving waves, pre-and post critical40

reflections, converted waves) are considered, as well as their amplitude, in the process of estimating41

the velocity. As a consequence, higher resolution estimates are expected compared to tomography42

methods, up to the theoretical limit of half the shortest wavelength of the recorded signal (Devaney43

1984).44

The mismatch between observed and synthetic seismograms is usually computed as the L2 norm45

of their difference. This is referred to as the L2 distance in the following (the use of the L1 norm and46

the hybrid L1/L2 Huber norm has also been promoted for interpreting noisy data in Brossier et al.47

(2010)). The minimization of this distance is performed through quasi-Newton methods (Nocedal &48

Wright 2006), involving the computation of the gradient and an approximation of the inverse Hessian49

operator (Pratt et al. 1998; Métivier et al. 2013, 2014a)50

The time-domain formalism of FWI has been introduced by Lailly (1983) and Tarantola (1984).51

The limitations of FWI as a high resolution velocity model building tool from reflection seismic data52

have been identified few years after. In Jannane et al. (1989), the sensitivity of the seismic signal with53

respect to low wavenumber and high wavenumber perturbations of the velocity model is studied. While54

high wavenumber perturbations have mainly an effect on the amplitude of the signal, low wavenumber55

variations of the velocity are responsible for shifting in time the seismic traces, mainly influencing the56

travel-time of the seismic events. Hence, from an inverse problem point of view, reconstructing the57

large-scale, smooth components of the velocity model, requires to match these travel-time shifts. In58

addition, this reconstruction should be achieved before injecting high wavenumber in the reconstruc-59

tion.60

Unfortunately, the L2 distance, based on a sample by sample comparison, is not adapted to capture61

the time shifts between two oscillatory signals. The two signals should have approximately the same62

shape (prediction of the same events) and the time shift should be no larger than half the period of the63
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signal. These requirements lead conventional FWI to focus (at least in the first stage of the inversion)64

on low frequency transmitted waves such as diving waves. These waves sample the subsurface with-65

out being reflected, therefore the difference between predicted and observed diving waves should be66

mainly due to shifts in time of the seismic events. However, if these time shifts are too large, reducing67

the L2 distance between the signals through a local optimization technique will generate a wrong ve-68

locity model which matches the data with one to several phase shifts. This phenomenon is commonly69

known as cycle skipping. This is the reason why the accuracy of the initial model is of primary impor-70

tance in conventional FWI: it should be kinematically compatible with the data, i.e. the phase of the71

main seismic events should be predicted within half a period.72

Mitigating this strong dependence on the accuracy of the starting model is a long term issue in73

FWI. A first strategy, proposed by Pratt (1999) in the frequency-domain, consists in matching the74

lowest frequency components of the data as a preliminary step. This increases the attraction valley75

of the misfit function as, in this case, the initial velocity model should only explain the data up to76

half the period corresponding to the low frequency components that have been extracted. Following a77

hierarchical approach, the result of this first inversion serves as an initial model for an inversion of data78

containing higher frequencies. This procedure can be iterated until the whole seismic data has been79

interpreted. This is the strategy followed for instance in Bunks et al. (1995); Sirgue & Pratt (2004) and80

Operto et al. (2004).81

This hierarchical approach can be complemented with offset and time-windowing strategies. Time-82

windowing is used to select the diving waves and remove the reflected energy from the observed seis-83

mograms. The offset is increased progressively, as large offsets correspond to diving waves traveling84

across a long distance between the subsurface, therefore containing a large number of oscillations, and85

more subject to cycle skipping. Time-windowing and offset selection is also known as layer stripping86

technique: the shallow part of the subsurface is first reconstructed, the depth of investigation being87

progressively increased by this data selection strategy. Examples of applications can be found for in-88

stance in Shipp & Singh (2002); Wang & Rao (2009) in the 2D acoustic approximation, or in Brossier89

et al. (2009) for the interpretation of onshore data in the 2D elastic approximation.90

Despite these successful applications, the hierarchical approach does not really overcome the cycle91

skipping limitation. Instead, the data interpretation is re-organized in such a way that this limitation92

does not preclude the estimation of the velocity through FWI. Commonly encountered difficulties for93

real data application preventing this strategy to produce reliable velocity estimations encompass: the94

impossibility of building an accurate enough and kinematically compatible initial velocity model, the95

presence of strong noise corrupting the low frequency part of the data, or offset limitations in the96

acquisition design.97
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In the last decades, several attempts have been made to modify the FWI misfit function itself, to98

avoid comparing the seismic signal using the L2 distance, and to yield a more robust, convex misfit99

function, less prone to cycle skipping. Two classes of strategies designed to achieve this objective can100

be identified, referred to as data-domain and image-domain techniques in the following.101

The underlying concept of data-domain technique relies so far on a hybridization between to-102

mography methods and FWI. These hybrid methods try to emphasize the matching of travel-times103

instead of the full signal, to recover the properties of tomography methods, while still benefiting from104

the expected high resolution power of FWI. One of the first attempt in this direction is the design105

of the wave-equation tomography (WETT) proposed by Luo & Schuster (1991). This is a tomogra-106

phy method, aiming at matching travel-times. However, while classical tomography methods rely on107

travel-time picking in the observed data (a possibly heavy pre-processing step) and the computation of108

travel-times through asymptotic approaches for instance, the travel-times misfit is directly estimated109

from the cross-correlation of the observed and synthetic traces. This method is interesting as it bridges110

the gap between tomography and FWI from a formal point of view: a full wave modeling engine is111

used to compute the synthetic data, and the method can be interpreted as a modification of the FWI112

misfit function, making possible to use the adjoint formalism to compute the associated gradient, as is113

commonly done in FWI. Originating from exploration geophysics, this strategy has been adopted by114

the seismology community as the finite-frequency tomography method (Dahlen et al. 2000; Montelli115

et al. 2004; Tromp et al. 2005; Nolet 2008).116

However, exploiting WETT results as an initial model for FWI is not straightforward. It is well117

known that the resolution of the tomography method may be too low for producing an accurate enough118

starting model for FWI (Claerbout 1985). A sufficient accuracy of the initial model is not guaranteed119

and cycle skipping could still prevent FWI to converge to a reliable estimation. Second, in the presence120

of non-predicted events (i.e. reflections), the estimation of the time-shifts through cross-correlation121

collapses. Indeed, evaluating time-shifts between two traces through cross-correlation requires that122

the signal have approximately the same shape.123

While the first difficulty is intrinsic to tomography method, an attempt to enhance the robustness124

of the automatic travel-time misfit computation through warping has been recently proposed by Ma &125

Hale (2013). Dynamic image warping is a technology originally designed for pattern recognition in126

signal processing. In a recent study, Hale (2013) has demonstrated that this method could be applied127

to determine time shifts between seismograms.128

More recently, the design of a misfit function based on deconvolution has been proposed by Luo129

& Sava (2011). The method has been initially designed to overcome another limitation of cross-130

correlation based tomography. Luo & Sava (2011) recognize that standard implementations of this131
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method using a penalization of the nonzero time lags, as proposed for instance by van Leeuwen &132

Mulder (2010), make the implicit assumption that the seismic data has been acquired with an impul-133

sive source with an infinite spectrum. When applied to real data acquired with band-limited sources,134

this could result in non negligible artifacts in the gradient. To this purpose, Luo & Sava (2011) propose135

to compute the travel-time misfit between the synthetic and observed data through a deconvolution of136

the synthetic data by the observed data, instead of using a cross-correlation of the two signals. This137

method has started to be applied to realistic scale case-studies in seismic exploration and seems to138

provide a more robust misfit function, less prone to cycle skipping (Warner & Guasch 2014).139

In seismology, other data-domain modifications of the misfit function have been proposed. Ficht-140

ner et al. (2008) propose to use a time-frequency analysis of the data through a Gabor transform in141

order to extract both the travel-times and the amplitude envelope information from the seismic signal.142

This allows to define a misfit function as a sum of two terms measuring the misfit between travel-times143

and amplitude envelope separately. Compared to cross-correlation (Luo & Schuster 1991) or dynamic144

warping (Ma & Hale 2013), the extraction of the travel-times is performed following a more robust145

technique based on a multi-scale analysis in the time-frequency space. Besides, the information on146

the amplitude of the signal is not completely discarded as the amplitude envelope is also matched in147

the inversion process. A similar strategy has been proposed by Bŏzdag et al. (2011) where the ampli-148

tude and travel-time information are computed following a Hilbert transform. Compared to the Gabor149

transform, the Hilbert transform is a purely time-domain related technique, and should thus require150

less data processing than the Gabor transform. Both strategies can be used in combination with differ-151

ent time-windowing strategies (Maggi et al. 2009). Envelope inversion has also been investigated in152

the context of exploration seismology (Luo & Wu 2015).153

Parallel to the development of these data-domain techniques, the development of image-domain154

techniques started with the design of Differential Semblance Optimization (DSO) (Symes & Kern155

1994) and later on wave equation migration velocity analysis (WEMVA) (Sava & Biondi 2004a,b;156

Symes 2008). These methods rely on the separability of scales assumption: the velocity model is de-157

composed as the sum of a smooth background model and a high wavenumber reflectivity model. The158

reflectivity is related to the smooth background model through an imaging condition: it is the sum for159

each source of the cross-correlation between the incident wavefield and the back-propagated residuals160

computed in the smooth background velocity model. This imaging condition can be extended using161

either an offset selection (Symes & Kern 1994) or an illumination angle selection (Biondi & Symes162

2004) in the residuals (the angles are easily accessible when the reflectivity is computed through163

asymptotic techniques), or a time lag in the cross-correlation (Faye & Jeannot 1986; Sava & Fomel164

2006; Biondi & Almomin 2013). Within this framework, an extended image thus consists in a collec-165
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tion of reflectivity models depending on one of these additional parameters (offset, angle, time lag).166

This extended image is used to probe the consistency of the smooth background velocity model: the167

uniqueness of the subsurface implies that for the correct background, the energy should be focused in168

the image domain, either along the offset/angle dimension, or at zero lag. A new optimization problem169

is thus defined, either as the penalization of the defocusing of the energy, or as the maximization of the170

coherency of the energy in the image domain. The corresponding misfit function is minimized itera-171

tively, following standard numerical optimization schemes. The main drawback of these approaches172

is related to their computational cost. A large number of migration operations has to be performed to173

build the extended image, and this has to be performed at each iteration of the reconstruction of the174

smooth background velocity model. This high computational cost seems to have precluded the use175

of these techniques for 3D waveform inversion up to now. It should also be noted that these methods176

are based on the assumption that only primary reflections will be used to generate the extended im-177

age through migration, which requires non negligible data pre-processing. Locally coherent events in178

the image-domain associated with, for instance, multiple reflections, would yield inconsistent smooth179

background velocity models (Lambaré 2002).180

Recently, new data-domain modifications of the misfit function based on concepts developed in181

image processing have emerged. While Baek et al. (2014) promote the use of warping strategies,182

Engquist & Froese (2014) propose to replace the L2 distance by the Wasserstein distance to compare183

seismic signals. The Wasserstein distance is a mathematical tool derived from the optimal transport184

theory, which has already numerous application in computational geometry and image processing185

(Villani 2003). The underlying idea is to see the comparison of two distributions as an optimal mapping186

problem. An optimization problem is thus solved to compute the distance between two distributions,187

also known as the Monge-Kantorovich problem. A cost is associated with all the mappings, accounting188

for instance for the sum of all the displacements required to map one distribution onto the other.189

The Wasserstein distance is computed as the minimal cost over the space of all the mappings. These190

mathematical concepts originate from the work of the French engineer Gaspard Monge at the end of191

the 18th century, in an attempt to conceive the optimal way of transporting sand to a building site.192

The Wasserstein distance is then used to define a misfit function measuring the discrepancy between193

predicted and observed data, which is minimized over the subsurface parameters to be reconstructed.194

The resulting strategy can thus be seen as a two-level optimization strategy with an outer level for the195

update of the subsurface parameters and an inner level for the computation of the misfit function using196

the Wasserstein distance.197

In the study proposed by Engquist & Froese (2014), the properties of the Wasserstein distance for198

the comparison of 1D seismic signals are investigated. In particular, the convexity of the corresponding199
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misfit function with respect to time-shifts of the signal is emphasized. This can be well understood, as200

within this context, the measure of the distance is not based on the pure difference of the oscillatory201

signals, but on all the mappings that can shift and distort the original signal to map the targeted one.202

Therefore, an information on the travel-time shifts as well as on the amplitude variations of the signal203

is captured by this distance.204

In this study, we are interested in an extension of this method to the comparison of entire seis-205

mograms, more precisely common shot-gathers, which are collections of traces corresponding to one206

seismic experiment. Compared to individual seismic traces, the shot-gathers (which can be seen as207

2D images), contain important additional information as lateral coherency corresponds to identifiable208

seismic events, such as reflections, refraction, or diving waves. Hence, the aim of this study is twofold.209

The first objective is to present how shot-gathers can be compared using an optimal transport based210

distance. The second objective consists in demonstrating the interest of using such a distance in the211

context of FWI through different case studies.212

The proposition from Engquist & Froese (2014) is to use the Monge-Ampère formulation of the213

optimal transport problem for comparing the Wasserstein distance between 1D traces, following earlier214

studies from Knott & Smith (1984) and Brenier (1991). The computation of the Wasserstein distance is215

brought back to the solution of the Monge-Ampère problem, a nonlinear system of partial-differential216

equations, which can be solved efficiently using finite-difference based method (Benamou et al. 2014)217

or semi-discrete strategies (Mérigot 2011). These are supposed to be amenable strategies for large218

scale optimal transport problems, however, they may still lack robustness to be extensively used within219

FWI. A more fundamental difficulty is related to the positivity of the signals and the energy conser-220

vation. Two underlying assumptions of the Wasserstein distance is that the compared signals should221

be positive, and that no energy is lost in the process of mapping one signal to the other. These two222

assumptions are not verified when comparing seismic signals. First, these are oscillatory signals, and223

the positivity cannot be satisfied. Second, regarding the energy conservation, aside the difficulty of224

predicting accurately the signal amplitude which requires an accurate information on the attenuation225

and the density of the subsurface together with the use of sophisticated forward modeling engines226

based on the visco-elasto-dynamic equations, there is no fundamental reason that the predicted data227

contains the same energy as the observed data. Generally, in the simple case of missing reflectors in228

the models, predicted seismograms will contain less energy than the observed ones. In addition, noise229

corrupts the data, which is in essence a non-predictable quantity. A strict conservation of the total230

energy is thus inappropriate for waveform inversion.231

A new strategy is introduced in this study to overcome these difficulties. Instead of using the232

Wasserstein distance, a variant of this distance is used. This variant relies on the dual formulation of233
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the Monge-Kantorovich problem, and is defined as a maximization problem over the space of bounded234

functions with variations bounded by the unity (bounded 1-Lipschitz functions). This allows to over-235

come the restriction associated with the positivity and the strict conservation of the energy between the236

signals which are compared. An efficient numerical method is designed to compute this distance, mak-237

ing possible the comparison of realistic size seismograms, involving several thousands of time steps238

and receivers. This method uses an algorithm recently developed in the context of image processing,239

the Simultaneous Descent Method of Multipliers (SDMM), an instance of the Rockafellar proximal240

point algorithm (Rockafellar 1976) which is based on proximal splitting techniques (Combettes &241

Pesquet 2011).242

The first synthetic case study on the Marmousi 2 benchmark model (Martin et al. 2006) empha-243

sizes the properties of the misfit function based on the optimal transport distance compared to the244

misfit function based on the L2 distance. The sensitivity of both strategies to the choice of the start-245

ing model is investigated. Better P-wave velocity estimations are systematically recovered when the246

optimal transport distance is used. The second synthetic case study is based on the BP 2004 model247

(Billette & Brandsberg-Dahl 2004). The presence of complex salt structures makes this benchmark248

model challenging for seismic imaging. Most of the energy of the seismic signal is reflected at the249

interface between the water and these structures, and few percent of the energy travels from the inside250

of the structures back to the receivers. Starting from a background model containing no information251

on the presence of the salt structures, a workflow is designed using the optimal transport distance mis-252

fit function allowing for a correct reconstruction of the salt bodies. This was not possible using a L2
253

distance based misfit function. Finally, the third synthetic case study is presented on the benchmark254

dataset issued by Chevron in 2014. This 2D streamer elastic dataset is challenging for FWI as the255

maximum offset of 8 km limits the depth of penetration of the diving waves to the first 3 kilometers.256

The quality control on the data, the migrated images and the CIG show that the P-wave velocity es-257

timation obtained with the optimal transport distance is reliable. The Chevron dataset also illustrates258

that the optimal transport distance is robust to noise, a nice property having its roots in the regularizing259

properties of the numerical solution of the optimal transport problem which is defined.260

In the remainder of the study, the mathematical formalism for the computation of the Wasserstein261

distance is first introduced. Its definition is given, and a general presentation of the numerical method262

implemented for its numerical approximation is presented. For the sake of clarity, the technical details263

regarding the solution of the discrete optimal transport problem are presented in the Appendices B264

and C. On this basis, a strategy for computing the gradient of the optimal transport distance misfit265

function using the adjoint-state method is presented, and a numerical illustration on a schematic ex-266

ample using a borehole-to-borehole transmission acquisition is introduced. The three synthetic cases267
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studies mentioned previously are then presented to outline characteristic properties and performances268

of FWI based on the optimal transport distance. A discussion and a conclusion are given in the two269

last sections.270
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2 THEORY271

2.1 Definition of the Wasserstein distance272

Consider two functions f(x) and g(x) defined on a domain X subset of Rd, such that

f, g : X −→ R, X ⊂ Rd, (1)

and M a function from X to X

M : X −→ X. (2)

The Lp Wasserstein distance between f and g, denoted by W p(f, g), is defined by a norm on Rd,

denoted by ‖.‖, an exponent p ≥ 1, and the constrained minimization problem
W p(f, g) = min

M

∫
x∈X
‖x−M(x)‖pf(x)dx,

where ∀A ⊂ X,
∫

x∈A
g(x)dx =

∫
M(x)∈A

f(x)dx.

(3a)

(3b)

The equation (3b) is a constraint which specifies that M belongs to the ensemble of all the mappings

from f to g. In this study, we consider the Wasserstein distance defined by the exponent p = 1 and the

`1 distance ‖.‖1 on Rd such that

∀x = (x1, . . . , xd) ∈ Rd, ‖x‖1 =
d∑

i=1

|xi|. (4)

We denote this distance by W 1(f, g). Instead of using the previous (primal) formulation given by

equations (3a) and (3b), which involves a nonlinear constraint associated with energy conservation,

the Wasserstein distance W 1(f, g) has the interesting property that it can be computed through the

solution of the (dual) linear problem

W 1 (f, g) = max
ϕ∈Lip1

∫
x∈X

ϕ(x) (f(x)− g(x)) dx, (5)

where Lip1 is the space of 1-Lipschitz functions, such that

∀(x, y) ∈ X, |ϕ(x)− ϕ(y)| ≤ ‖x− y‖1. (6)

From this definition, one can see that the 1-Lipschitz property (6) ensures bounded variations of the273

function and precludes fast variations and discontinuities of the function ϕ.274

The dual definition of the Wasserstein distance W 1(f, g) given in equation (5) can be found in

classical optimal transport textbooks such as Evans (1997) or Villani (2008). The maximization prob-

lem (5) is well defined if and only if the energy between f(x) and g(x) is conserved in the sense
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that

Ef,g ≡
∫

x∈X
(f(x)− g(x)) dx = 0. (7)

Indeed, let ϕ(x) = α ∈ R be a constant function. This function is 1-Lipschitz, and satisfies∫
x∈X

ϕ(x) (f(x)− g(x)) dx = αEf,g. (8)

Therefore, if (7) is not satisfied, the solution of (5) is the constant function equal to∞ or−∞ depend-275

ing on the sign of Ef,g.276

As the conservation of the energy can not be guaranteed in seismic imaging (Ef,g 6= 0 in practice),

a generalization of the Wasserstein distance W 1(f, g) for the non-conservative case is considered in

this study. This generalization relies on an additional constraint: the function ϕ(x) ∈ Lip1 should be

also bounded, such that

∃c > 0, ∀x ∈ X, |ϕ(x)| ≤ c. (9)

This condition can be seen as a threshold: instead of increasing toward the infinity, the function is

limited to reach a fixed, constant value c. The space of bounded 1-Lipschitz functions is denoted by

BLip1 in the following. The distance defined between two functions f and g should thus be computed

as the solution of the maximization problem

W̃ 1 (f, g) = max
ϕ∈BLip1

∫
x∈X

ϕ(x) (f(x)− g(x)) dx. (10)

Note that some theoretical links exist between the Wasserstein W 1 and the distance W̃ 1: see for277

instance the work of Hanin (1992). A mathematical analysis of this link is, however, beyond the scope278

of this study.279

Common shot-gathers are collections of seismic traces recorded after the explosion of one source,

in the time-receiver domain. As such, they can be considered as real functions defined in a two-

dimensional space. The observed and calculated shot-gathers are denoted respectively by

ds
obs(xr, t) and ds

cal[m](xr, t). (11)

The variable xr is associated with the receiver position and the variable t corresponds to time. The

superscript s corresponds to the shot-gather number in a seismic survey containing S shot-gathers.

The dependence of the calculated data on to the model parameter m is denoted by [m]. The following

misfit function is thus introduced

ffW 1(m) =
S∑

s=1

W̃ 1 (ds
cal[m], ds

obs) , (12)



Optimal transport distance for FWI 13

where

W̃ 1 (ds
cal[m], ds

obs) = max
ϕ∈BLip1

∫
t

∫
xr

ϕ(xr, t) (ds
cal[m](xr, t)− ds

obs(xr, t)) dxrdt. (13)

For comparison, the conventional L2 misfit function is

fL2(m) =
S∑

s=1

∫
t

∫
xr

|ds
cal[m](xr, t)− ds

obs(xr, t)|2 dxrdt. (14)

2.2 Numerical computation of W̃ 1(dcal, dobs)280

The numerical computation of the solution to the problem (13) is presented here. The discrete analo-

gous of the distance W̃ 1 distance is defined as
W̃ 1 (dcal[m], dobs) = max

ϕ

Nr∑
i=1

Nt∑
j=1

ϕij ((dcal[m])ij − (dobs)ij) ∆t∆xr

∀(i, j), |ϕij | < c,

∀(i, j), (k, l) |ϕij − ϕkl| < |(xr)i − (xr)k|+ |tj − tl| .

(15a)

(15b)

(15c)

In (15), Nr and Nt are the number of receivers and discrete time steps respectively, and the standard

discrete notations are used

(xr)i = (i− 1)×∆xr, tj = (j − 1)×∆t, ϕij = ϕ((xr)i, tj), (16)

where ∆xr and ∆t are the discretization steps in the receiver coordinate and time dimensions respec-281

tively.282

With these notations, the total number of discrete points for the representation of one shot-gather

is N = Nt × Nr. The system (15) defines a linear programming problem involving 2N2 + 2N

linear constraints. From a computational point of view, the algorithmic complexity involved for the

solution of such a problem would not be affordable for realistic size seismograms, which can involve

thousands of receivers positions and discrete time steps, yielding a complexityN = O(106). However,

an equivalent discrete problem involving only 6N linear constraints can be derived by imposing only

local constraints on ϕ to enforce the 1-Lipschitz property. This yields the linear programming problem



W̃ 1 (dcal[m], dobs) = max
ϕ

Nr∑
i=1

Nt∑
j=1

ϕij ((dcal[m])ij − (dobs)ij) ∆t∆xr

∀(i, j), |ϕij | < c,

∀(i, j), |ϕi+1j − ϕij | < |(xr)i+1 − (xr)i| = ∆xr

∀(i, j), |ϕij+1 − ϕij | < |tj+1 − tj | = ∆t.

(17a)

(17b)

(17c)

(17d)
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The two linear programming problems (15) and (17) are equivalent. This results from a particular283

property of the `1 distance. The proof of this equivalence is given in appendix A.284

The function hdcal[m],dobs
(ϕ) is now introduced, such that

hdcal[m],dobs
(ϕ) =

Nr∑
i=1

Nt∑
j=1

ϕij ((dcal[m])ij − (dobs)ij) ∆t∆xr. (18)

Let K be the unit hypercube of R3N

K =
{
x ∈ R3N , |xi| ≤ 1, i = 1, . . . 3N

}
. (19)

The indicator function of K, denoted by iK is defined as

iK(x) =

∣∣∣∣∣∣ 0 if x ∈ K

+∞ if x /∈ K.
(20)

With these notations, the linear programming problem (17) can be rewritten as

W 1 (dcal[m], dobs) = max
ϕ

hdcal[m],dobs
(ϕ)− iK(Aϕ), (21)

where the matrixA is a 3N×N , sparse, rectangular matrix representing the constraints on ϕ following

the equations (17.b)-(17.d). Assuming an ordering of the discrete vectors ϕij

ϕ = [ϕ11, ϕ21, . . . ϕNr1, ϕ12, . . . , ϕNrNt , ] (22)

the matrix A is such that

(Aϕ)k =

∣∣∣∣∣∣∣∣∣∣

ϕk

c
for k = 1, . . . , N

ϕk+1 − ϕk

∆xr
for k = N + 1, . . . , 2×N

ϕk+Nr − ϕk

∆xt
for k = 2×N + 1, . . . , 3×N.

(23)

The matrix A is thus a column block matrix with one diagonal block and two bi-diagonal blocks. This285

pattern is due to the locality of the discrete constraints which are imposed. In the formulation (21), the286

constraints are encoded in the term−iK(Aϕ). Indeed, the linear programming problem amounts to the287

maximization of the function expressed in (21). According to the definition of iK , the corresponding288

misfit function equals −∞ as soon as one of the linear constraints is not respected, therefore any289

solution of the maximization problem has to satisfy these constraints.290

Rewriting the problem (17) as the problem (21) recasts a linear programming problem into a291

convex non-smooth optimization problem. The advantage of such a transformation is that there ex-292

ist efficient techniques to solve such convex non-smooth optimization problems, based on proximal293

splitting techniques. These techniques use the concept of proximity operator. For the sake of compact-294

ness, the definition of proximity operators is given in appendix B, as well as the proximity operator295
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of the functions hdcal[m],dobs
and iK , denoted by proxhdcal[m],dobs

and proxiK
. These operators have a296

closed-form and can be calculated with a linear complexity, making them inexpensive to compute.297

In this study, the problem (21) is solved using the simultaneous direction method of multipli-

ers (SDMM) described in Combettes & Pesquet (2011), which is an instance of the proximal point

algorithm (Rockafellar 1976). Following this method, the solution of (21) is obtained through the it-

erative scheme described in Algorithm 1. At each iteration of this algorithm, the proximity operators

proxhdcal[m],dobs
and proxiK

are invoked, as well as the solution of a linear system involving the square

matrix of size N

Q = IN +ATA, (24)

where IN is the identity matrix of size N . The solution of these linear systems is the more in-298

tensive computational task in the SDMM algorithm, as the application of the proximity operators299

proxhdcal[m],dobs
and proxiK

has a linear complexity in number of operations and a negligible cost in300

terms of memory requirement.301

The matrix Q is a sparse square matrix of size N , symmetric positive definite by construction,302

related only to the definition of the equations (17.b)-(17.d). As a consequence, the matrix Q remains303

constant throughout the whole FWI process. In a first attempt to design an efficient algorithm for the304

solution of (21), it can be interesting, in a pre-processing step, to factorize this matrix as a product305

LLT , where L is a lower triangular matrix, using a Cholesky decomposition. Under the assumption306

Nt ' Nr, this allows to benefit from a complexity in O(N3/2) for the solution of these linear systems307

through forward and backward substitutions. However, the memory requirement associated with the308

storage of the factor L is also inO(N3/2), which is non negligible for realistic size problems for which309

the size N can reach O(106).310

For this reason, an alternative method to solve the linear systems related to Q is designed in311

this study, which takes advantage of the particular structure of Q. This method is adapted from the312

work of Buzbee et al. (1970). A reduction of the memory requirement from O(N3/2) to O(N) is313

achieved, while maintaining the same computational complexity as forward and backward substitution314

in O(N3/2). In addition, while these operations are intrinsically sequential, the algorithm proposed315

in this study is based on matrix-vector products which can be easily parallelized. For the sake of316

compactness, the full description of this strategy is given in Appendix C.317
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2.3 Minimization of the optimal transport distance based misfit function and gradient318

computation319

The minimization of the misfit function (12) is based on conventional quasi-Newton techniques. From

an initial estimation m0, these methods construct the sequence

mk+1 = mk + αk∆mk, (25)

where αk is a positive scalar parameter computed through a linesearch strategy (Nocedal & Wright

2006; Bonnans et al. 2006), and ∆mk is a model update satisfying

∆mk = −Hk∇ffW1
(mk). (26)

In equation (26),∇ffW1
(mk) is the gradient of the misfit function (12), and Hk is an estimation of the320

inverse of its Hessian. In this study, this estimation is computed through the l-BFGS approximation321

(Nocedal 1980). This approximation is based on the values of the gradient at iteration k and the l322

previous iterations k − 1, . . . k − l + 1.323

Therefore, the practical implementation of the proposed strategy in the FWI context only requires324

the capability of computing the misfit function ffW1
(m) and its gradient ∇ffW1

(m). To this purpose,325

the adjoint-state technique is used (Lions 1968; Chavent 1974; Plessix 2006). For the sake of notation326

simplification, the case of one single shot-gather is considered here (S = 1), as the generalization to327

several shot-gathers is straightforward by summation.328

The following Lagrangian function is introduced

L(m,u, dcal, λ, µ) = W̃ 1 (dcal, dobs) + (F (m,u), λ)W + (Ru− dcal, µ)D, (27)

where the standard Euclidean scalar product in the wavefield space and the data space is denoted by

(., .)W and (., .)D respectively. The state variables are the incident wavefield, denoted by u, and the

calculated data, denoted by dcal. The adjoint variables are denoted by λ and µ. The extraction operator

which maps the incident wavefield to the receiver locations is denoted by R. The two state equations

relating the state variables and the model m are

F (m,u) = 0, dcal = Ru. (28)

Using the adjoint-state approach, the gradient∇ffW1
(m) is given by

∇ffW1
(m) =

(
∂F (m,u(m))

∂m
, λ

)
, (29)

where u(m) and λ(m) are respectively the incident and the adjoint wavefields satisfying the state329

equation and the adjoint state equation (see Plessix (2006) for the derivation of (29)).330

The adjoint-state equations are obtained by canceling the derivatives of the Lagrangian function
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with respect to the state variables. This gives
∂F (m,u(m))T

∂u
λ = −RTµ

µ =
∂W̃ 1 (dcal, dobs)

∂dcal
.

(30)

The first of these two equations involves the adjoint of the wave operator. The wavefield λ thus cor-

responds to the back-propagation of the source term −RTµ. The second equation relates µ to the

derivatives of the misfit function with respect to the calculated data. Therefore, as already noticed in

Brossier et al. (2010) and Luo & Sava (2011) for instance, the modification of the misfit function only

impacts the source term of the adjoint wavefield λ. Remarking that

∂W̃ 1 (dcal, dobs)
∂dcal

=
∂

∂dcal

(
max

ϕ∈BLip1

∫
ϕ(xr, t) (dcal(xr, t)− dobs(xr, t)) dxrdt

)
, (31)

the secondary adjoint wavefield µ is simply given by

µ = arg max
ϕ∈BLip1

∫
ϕ(xr, t) (dcal(xr, t)− dobs(xr, t)) dxrdt. (32)

The difference between equations (32) and (13) should be emphasized here. The equation (13) de-331

fines W̃ 1 as the maximal value of the criterion over the space of bounded 1-Lipschitz functions. The332

equation (32) defines µ as the particular bounded 1-Lipschitz function for which this maximal value333

is reached. This is the meaning to be given to the notations max and arg max. Compared to a L2
334

norm-based misfit function where µ would be the difference between the observed and calculated335

seismograms, here µ is computed as the maximizer of the optimal transport problem designed to com-336

pute the W̃ 1 distance between these seismograms.337

This has the following consequence regarding the implementation of the proposed strategy. The338

additional computational cost related to the modification of the misfit function from the standard L2
339

norm to the W̃ 1 distance is related to the solution of the maximization problem (21). This solution340

yields not only the misfit function value, which is the value of the criterion to be maximized, but also341

the adjoint variable µ, which corresponds to the function ϕ ∈ BLip1 which achieves this maximiza-342

tion. Hence, one optimal transport problem is solved per source, and its solution allows to compute343

the misfit function as well as the adjoint variable µ, which is back-propagated following the adjoint344

state-strategy for getting the adjoint field λ . From λ and the incident wavefield u, the gradient of the345

misfit function (12) is computed using the equation (29).346

2.4 Numerical illustration on a simple synthetic study347

An illustration of the optimal transport based distance for FWI on a schematic 2D example is now348

presented. A borehole to borehole transmission acquisition is considered, as presented in Figure 1.349
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The two boreholes are 2500 m apart. A single source is used, located at 2500 m depth in the leftmost350

borehole. An array of 196 receivers equally spaced each 25 m is located in the second borehole, from351

50 m depth to 4900 m depth. A Ricker source centered on 5 Hz is used to generate a single shot-gather.352

The modeling is performed in the acoustic approximation and the pressure wavefield is recorded. The353

density model is kept constant, equal to 1000 kg.m−3. The velocity of the true medium is homogeneous354

and set to v∗P = 2000 m.s−1. One synthetic shot-gather is computed in a homogeneous medium with355

a velocity set to vP = 1500 m.s−1 and with the correct density.356

The convergence of the SDMM algorithm is investigated along 50 iterations. The bound c cor-357

responding to the constraint (17b) is set to 1. This pragmatical choice is done in conjunction with a358

scaling of the residuals prior to the solution of the optimal transport problem. The rationale behind this359

scaling is that the bound constraint (17b) should be active at the convergence of the SDMM algorithm360

as the solution of such convex constrained optimization problem lies on the boundary of the convex361

set. The evolution of µ throughout the SDMM iterations is presented in Figure 2, and compared to the362

standard L2 residuals.363

The standard residuals (Fig. 2a) present two distinct arrivals: the first one corresponds to the364

observed data, the second corresponds to the synthetic data. The predicted data arrives later compared365

to the observed one as the velocity is underestimated. The temporal support of the two arrivals does366

not overlap, which is a situation typical of cycle skipping: the data is predicted with more than half a367

phase delay. The SDMM method starts from the initial residual, and converges to an estimation of ϕ368

where the two distinct arrivals are progressively smoothed. The negative values of the two arrivals are369

also progressively removed. These negative values correspond to the white part in the initial residuals.370

In counterpart, the area below the last arrival is set to an almost constant negative value (white zone371

below the last arrival). To assess the convergence of this maximization problem with linear constraints,372

the relative evolution of the criterion from the previous to the current iterations is considered. When373

no progress is observed, the convergence is assumed to be reached. Figure 3 confirms the convergence374

towards a stationary point after 50 iterations.375

The shape of the optimal transport solution may not be intuitive. To better understand how this

can be an approximate solution of the problem (21), consider the situation where the constraints on ϕ

would be only to be bounded by c, relaxing the 1-Lipschitz constraint. In this case, the solution of the

discrete maximization problem would be

ϕi =

∣∣∣∣∣∣ c if dcal,i[m]− dobs,i > 0

−c if dcal,i[m]− dobs,i < 0
(33)

which would correspond to a discontinuous solution. The effect of the 1-Lipschitz constraint thus con-376

sists in smoothing the solution of the maximization problem. This hard constraint forces the SDMM377
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algorithm to find a trade-off between this imposed regularity and the maximization of the criterion.378

The selected solution thus starts by giving more weight to the large positive values of the original379

arrivals (black areas), while the smoothing constraint tends to remove the strong initial oscillations,380

therefore setting weak positive weights in the position of the negative values of the original arrivals381

(white areas). Because the zone below the last arrival in the original residuals is slightly negative, the382

SDMM algorithm sets a negative values in all this area to further maximize the criterion while preserv-383

ing the smooth property of the solution. Two transverse traces are extracted from the L2 residuals and384

the solution found by SDMM in Figures 4 and 5. The first is a vertical trace extracted for the receiver385

located at at 2.5 km in depth. The second is a horizontal trace extracted at time t = 2 s. These traces386

emphasize the regularity of the optimal transport solution compared to the L2 residuals. The shape of387

the optimal transport traces resembles the envelope of the L2 traces.388

For further analysis of this schematic example, the L2 and W̃ 1 misfit function are evaluated for389

velocity values going from vP = 1500 m.s−1 to vP = 2500 m.s−1 with 20 m.s−1 sampling. The390

results are presented in Figure 6. The W̃ 1 misfit function is evaluated for a number of SDMM iterations391

going from 5 to 50. As expected, the misfit functions all reach the global minimum at v = 2000 m.s−1.392

The L2 misfit function presents two secondary minima at vP = 1780 m.s−1 and vP = 2300 m.s−1.393

This is an illustration of cycle skipping. For these two values of velocity, the seismogram generated394

by the Ricker source in v∗P is matched up to one phase delay. Interestingly, the W̃ 1 misfit function395

profiles tends to become more and more convex as the value of SDMM iterations increases. The396

secondary minima still exist, however, they are progressively lifted up, rendering the misfit function397

closer from a convex function. At the same time, the valley of attraction remains as sharp as for the398

L2 misfit, which ensures that the “resolution power” of the method is unchanged. This behavior is399

notably different from the one observed for the cross-correlation based misfit function which ensures400

more convex misfit function detrimental to the size of the valley of attraction which is significantly401

broadened, leading to lower resolution methods (van Leeuwen & Mulder 2010).402

This schematic example provides a first insight on the behavior of the optimal transport distance403

for the comparison of seismograms in application to FWI. Using this distance does not prevent from404

cycle skipping issues, as secondary minima are still present. However, the misfit function tends to be405

more convex as the numerical approximation of the optimal transport distance converges to a stationary406

point. In addition, the corresponding back-propagated residuals can be seen as smooth version of the407

standardL2 residuals, the smoothing operator being related to the computation of the optimal transport408

distance between the observed and predicted seismograms, and more specifically to the enforcement409

of the 1-Lipschitz constraint.410
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3 CASE STUDIES411

3.1 Settings412

The numerical experiments which are presented in this section are based on a 2D acoustic time-domain413

full waveform inversion code. The wave modeling is performed using a 4th order (for the Marmousi414

and BP 2004 case studies) and a 8th-order (for the Chevron 2014 benchmark dataset) finite-difference415

stencil for the spatial discretization. A second-order leap-frog scheme is implemented for the time416

discretization. The three case studies are performed in a marine seismic environment. A free surface417

condition is implemented at the water/air interface. A windowed sinc interpolation is used to account418

for receivers not located on grid points in the Chevron case study (Hicks 2002).419

The minimization of the misfit function, either the standard L2 misfit function or the W̃ 1 misfit420

function, is performed using the preconditioned l-BFGS method (Nocedal 1980). The SEISCOPE421

optimization toolbox is used to implement this minimization scheme (Métivier & Brossier 2015).422

This requires to compute the misfit function and its gradient. The gradient is computed as the cross-423

correlation in time of the incident wavefield and the adjoint wavefield (equation 29) following the424

adjoint-state method. A vertical scaling linear in depth is used as a preconditioner for the Marmousi425

and Chevron case studies. This preconditioning compensates for the loss of amplitude of the gradient426

in depth associated with geometrical spreading effects when using surface acquisition.427

In terms of implementation, the computation of the cross-correlation of the incident and adjoint428

wavefields requires the capability of accessing to the two wavefields at a given time step. This is a429

well known difficulty in time-domain FWI or Reverse Time Migration approaches, as the incident430

wavefield is propagated from an initial condition while the adjoint wavefield is back-propagated from431

a final condition (Clapp 2009). The strategy implemented in our code consists of first computing the432

incident wavefield from the initial condition, and storing it at each time steps only at the boundaries433

of the domain. The incident wavefield is then backpropagated from its final state, reversing in time434

the boundary conditions which have been stored. The adjoint is backpropagated conjointly with the435

incident wavefield from its final condition. A more detailed description of this strategy is given in436

Brossier et al. (2014). The method is based on the assumption that no attenuation is taken into account,437

otherwise the backpropagation of the incident wavefield is numerically unstable.438

Besides, a hybrid MPI/OpenMP is used to execute the code in parallel. The MPI communicator is439

used to perform the computations associated with each shot-gather in parallel. For each shot-gather,440

the computation of the incident and adjoint wavefields is further accelerated using OpenMP paral-441

lelization of the spatial finite-difference loops. The time cross-correlation loop for the computation of442

the gradient is also accelerated with OpenMP directives.443
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In the three following experiments, the computation of the optimal transport distance and the444

corresponding adjoint source is performed through 50 iterations of the SDMM method (Algorithm 1).445

This is a rather pragmatical choice, as it guarantees a manageable additional computational cost (see446

for instance Table 3 for the Chevron benchmark dataset case studies), while the convergence of the447

SDMM iterations appears to be reached: although not shown here, the maximization of the criterion448

and the solution of the optimal transport problem only marginally evolves after 50 SDMM iterations.449

As for the previous experiment, the bound c of the constraint (17b) is also set to 1 and a scaling of the450

residuals is employed.451

3.2 Marmousi 2 case study452

For the Marmousi 2 case study, a fixed-spread surface acquisition is used, involving 128 sources lo-453

cated every 125 m and 168 receivers located every 100 m at 50 m depth. The density model is assumed454

to be homogeneous, set to the value ρ0 = 1000 kg.m−3. The topography of the original Marmousi 2455

model is also modified so that the water layer has no horizontal variations (flat bathymetry). This layer456

is kept fixed to the water P-wave velocity vP = 1500 m.s−1 during the inversion.457

The observed data is generated using a filtered Ricker wavelet, centered on a 5 Hz frequency. The458

low frequency content of this wavelet, below 2.5 Hz, is removed using a minimum phase Butterworth459

filter. For real seismic marine data, the noise level below this frequency is too strong for the information460

to be relevant to constrain the P-wave velocity model. The spectrum and the shape of the resulting461

wavelet are presented in Figure 7. The spatial discretization step is set to 25 m to guarantee at least462

4 discretization points by wavelength. The time discretization step is set to 0.0023 s according to the463

Courant Friedriech Levy (CFL) condition. The recording is performed over 2000 time steps, which464

corresponds to a total recording time of 4.6 s. In this experiment, a Gaussian filter smoothing with a465

short correlation length (between 60 m and 100 m depending on the local dominant wavelength) is466

applied to the gradient, to remove fast oscillations which are due to a sparse acquisition design (only467

one source every 125 m).468

Two initial models are created by smoothing the exact model using a Gaussian filter, with vertical469

and horizontal correlation lengths equal to 250 m and 2000 m respectively. The first model is very470

close from the exact model, with only smoother interfaces. The second models is more distant from471

the exact model, as it presents almost only vertical variations, and underestimates the increase of the472

velocity in depth.473

Starting from these two initial models, FWI using the L2 misfit function and the optimal transport474

distance based misfit function is used to interpret the data. The results are presented in Figure 8. For475

the first initial model, the results obtained after 100 iterations are presented (Fig. 8c,d). For the second476
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initial model, the best results obtained using the two misfit functions are presented (Fig. 8f,g). The477

exact data as well as the corresponding residuals in the initial and the calculated models are presented478

in Figure 9.479

Starting from the first initial model, both the L2 distance and the optimal transport distance yield480

estimations very close from the exact model (Fig. 8c,d). However, a difference can be noted regarding481

the reconstruction of the low velocity zone near x = 11 km and z = 2.5 km. A high velocity artifact482

is present in this zone in the estimation obtained with the L2 distance. This is not the case in the483

estimation obtained with the optimal transport distance.484

Starting from the second initial model, FWI based on the L2 distance is unable to provide a485

satisfactory P-wave velocity estimation (Fig. 8f). This is emphasized by the residuals computed in486

the corresponding final estimations (Fig. 9f). In comparison, the P-wave velocity estimation obtained487

using FWI based on the optimal transport distance is significantly closer from the exact model (Fig.488

8g). Low velocity artifacts, typical of cycle skipping, can still be seen in depth, below 3 km. Low489

wavenumber artifacts are also visible on the left part of the model (x < 1 km). However, in the central490

part, the P-wave velocity model is correctly recovered, even starting from this crude approximation.491

The computed estimation seems to explain correctly the data, as can be seen in Figure 9g . Compared492

to the results obtained using the first initial model, there are unexplained seismic events, especially for493

late arrivals around T = 4 s. However, most of the data is explained by the computed estimation.494

To complete this analysis on the Marmousi case study, theL2 residuals in the two initial models are495

compared with their optimal transport counterpart (the adjoint variable µ defined by equation (32)) in496

Figure 10. The optimal transport residuals are smoother than the L2 residuals, with a lower frequency497

content. An emphasis of particular seismic events in the optimal transport residuals is also noticeable,498

compared to the L2 residuals. This is mainly observable for the reflections around 3 s and 8 km offset,499

and this does not depend on the initial model. The optimal transport thus seems to weight differently500

the uninterpreted part of the seismograms.501

The effect of the modification of the residuals by the optimal transport distance is also emphasized502

in Figure 11, where two gradients, one associated with the L2 distance, the other with the optimal503

transport distance, are compared. These gradient are computed in the second initial model, which504

generates a strong cycle skipping effect with the L2 distance. In order to interpret these gradient as505

velocity updates, they have been multiplied by −1: they represent the first model perturbation used506

by a steepest descent method. Cycle skipping can be detected in the L2 gradient through the strong507

shallow low velocity updates, in a zone where the velocity should be increased. The optimal transport508

distance seems to be able to efficiently mitigate these strong artifacts. The energy in depth is also better509

balanced. The main interfaces constituting the Marmousi model also appear in this velocity update.510
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From this first experiment, the optimal transport distance based misfit function appears more ro-511

bust than the conventional L2 norm-based misfit function. For each initial model, a better P-wave512

velocity estimation is computed using the optimal transport than using the L2 distance. In particular,513

correct estimations are obtained in the shallow part located above the depth z = 3 km, even starting514

from a very crude approximation of the exact model. This is a first indication that using the optimal515

transport distance may be an interesting strategy to mitigate cycle skipping issues in the context of full516

waveform inversion.517

3.3 BP 2004 case study518

The BP 2004 benchmark model is representative of the geology of the Gulf of Mexico (Billette &519

Brandsberg-Dahl 2004). This area is characterized by a deep water environment and the presence of520

complex salt structures. The large P-wave velocity value of the salt structures is responsible for most521

of the energy of the seismic signal to be reflected back to the receivers from the interface between522

the water layer and the salt. Only a few percentage of energy of the seismic signal travels within the523

structure and below before being recorded. This particular configuration makes seismic imaging in the524

presence of salt structures challenging. The first challenge is to correctly identify and delineate the salt525

structures. The second challenge consists in correctly imaging zones below the salt structure (sub-salt526

imaging).527

A fixed-spread surface acquisition is used, with 128 sources and 161 receivers distant from 125 m528

and 100 m respectively. The depth of the sources and receivers is set to z = 50 m. The density model529

is assumed to be homogeneous such that ρ0 = 1000 kg.m−3. The wavelet used to generate the data530

is based on a Ricker wavelet centered on 5 Hz. A whitening of the frequency content is performed531

before a minimum phase Butterworth low-pass and high-pass filters are applied. The spectrum of the532

resulting wavelet is within an interval from 3 Hz to 9 Hz (Fig. 12). The spatial discretization step is set533

to 25 m and the time discretization step is set to 0.0023 s to respect the CFL condition. The maximum534

recording time is performed over 4500 time steps, which corresponds to a recording time of 10.3 s.535

The exact and initial models are presented in Figures 13a and 13b. The left part of the original536

BP 2004 model has been extracted (Billette & Brandsberg-Dahl 2004). The initial model has been537

designed such that the imprint of the salt structure has been totally removed: it contains no information538

on the presence of salt. From this starting model, FWI using a standard L2 distance fails to produce539

meaningful results, as can be seen in Figure 13c. The time-window is reduced to 4.6 s to focus the540

inversion on the shallowest part of the model and reduce cycle skipping issues, however this does not541

prevent the minimization from converging towards a local minimum far from the exact model. The542

incorrect P-wave velocity estimation of the starting model prevents the FWI algorithm from locating543
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the reflectors associated with the top of the salt. Instead, diffracting points are created to match the544

most energetic events without lateral coherency. In comparison, the same experiment is performed545

using the optimal transport distance. The results are presented in Figure 13d. As can be seen, the546

top of the salt structure is correctly delineated. Synthetic shot-gathers corresponding to the source547

located at x = 8 km, computed in the exact model, initial model, L2 estimation, and optimal transport548

estimation, are presented in Figure 14. This picture shows clearly that the strong reflection coming549

from the top of salt is inaccurately predicted by the L2 estimation; in particular, the reflected energy550

which is introduced is discontinuous (Fig.14c). In comparison, the optimal transport estimation yields551

a correct prediction of this reflection (Fig.14d). The L2 residuals and the optimal transport residuals552

(the adjoint variable µ defined by the equation (32)) computed in the initial model are presented in553

Figure 15. The uninterpreted diving waves appearing in the left bottom corner of the L2 residuals554

(Fig. 15a) seem to be strongly damped in the corresponding optimal transport residuals. The optimal555

transport distance seems to rather enhance the reflected events, which is consistent with the previous556

observations.557

Building on this result, a layer stripping workflow is suggested. Five increasing time-windows558

are defined, with recording time equal to 4.6 s, 5.75 s, 6.9 s, 9.2 s, and finally 10.3 s. For each559

time-window, two to three successive inversions are performed. A Gaussian smoothing with a small560

correlation length is applied to the model computed after each inversion, which serves as an initial561

model for the next inversion. This Gaussian smoothing serves only to remove high frequency artifacts562

appearing in the late iterations of the inversion. Alternative strategies such as Tikhonov regularization563

or gradient smoothing could have been used instead. A total of 15 inversions is performed following564

this process, with in average 221 iterations of the l-BFGS algorithm for each inversion. The stopping565

criterion is only based on a linesearch failure to give the possibility to the optimizer to minimize as566

much as possible the misfit function based on the optimal transport distance. The detailed workflow is567

summarized in Table 1.568

The results obtained after the 1st, 3rd, 6th, 9th, 12th, and 15th inversions are presented in Figure 16.569

As can be seen, the salt structure is practically entirely recovered at the end of the cycle of inversions570

(Fig 16f). A continuous progression is achieved from the initial delineation of the top of the salt571

structure to the full reconstruction of its deeper parts. The subsalt zone, however, whose reconstruction572

is critical, is not satisfactorily recovered. To this purpose, a possibility would consist in building an573

initial model from this reconstruction by freezing the salt, which is correctly delineated, and smoothing574

below the salt. From such an initial model, our previous study show that FWI based on the the L2
575

distance with a truncated Newton optimization strategy should be able to reconstruct accurately the576

subsalt region (Métivier et al. 2014a).577
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A better insight of the reconstruction process is given by the synthetic data computed in interme-578

diate models throughout the different steps of the workflow presented in Figure 17. The shot-gathers579

are computed for a source located at x = 8 km. A particular attention should be accorded to the left580

part of the seismogram (red rectangles), as this part corresponds to the main salt structure in the exact581

model. After interpreting correctly the reflections coming from the salt roof (Fig.17a), the transmitted582

wave traveling within and below the salt is progressively adjusted while deeper reflections are also583

progressively integrated (Fig.17b to Fig.17f). This behavior is in contrast with standard multi-scale584

approaches for which the transmitted energy is fitted prior to the reflected energy. However, this may585

not be inputted to the use of the optimal transport distance. Due to the high velocity contrast, the586

reflected energy dominates the transmitted energy in the data. This, in conjunction with the layer strip-587

ping strategy which focuses the prior steps of the inversion toward short offset data, favors the fit of588

the reflections prior to the diving waves.589

3.4 Chevron 2014 case study590

In 2014, the Chevron oil company has issued a blind benchmark synthetic dataset for FWI. The aim of591

such blind benchmark is to provide realistic exploration seismic data to practitioners with which they592

can experiment various FWI workflow and test methodological developments. As the exact model593

which has served to build the data is not known, such a case study is closer from an application to field594

data than synthetic experiments for which the exact model is known.595

The Chevron 2014 benchmark dataset is built from a 2D isotropic elastic modeling engine. A596

frequency-dependent noise has been added to the data to mimic a realistic dataset. Especially, the Sig-597

nal Over Noise Ratio (SNR) for low frequencies (below 3 Hz) is much less than for higher frequencies.598

Free surface multiples are incorporated in the data. A streamer acquisition is used, with a maximum599

of 8 km offset, with 321 receivers by sources equally spaced each 25 m. The depth of the sources and600

receivers is z = 15 m. Among the 1600 available shots gathers, 256 have been used in this study, with601

a distance of 150 m between each sources. A frequency continuation strategy similar to the one pro-602

posed by Bunks et al. (1995) is implemented: Butterworth low-pass and high-pass filters are applied603

to the selected shot-gathers to generate an ensemble of 15 datasets with an increasing bandwidth from604

2− 4 Hz to 2− 25 Hz.605

The shot-gathers corresponding to the source located at x = 150 m are presented for the 1st, 5th,606

10th and 15th frequency bands in Figure 18. As mentioned previously, the noise imprint is clearly607

stronger for the first frequency bands.608

The initial model provided by Chevron is presented in Figure 19a. This is a 1D layered model609

with no horizontal variations except for the water layer on top for which the correct bathymetry has610
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been incorporated. The P-wave velocity in the water layer is set to 1500 m.s−1. The initial model611

incorporates an important feature: a low velocity layer is located between the depth z = 2.3 km and612

z = 3 km. This velocity inversion and the relatively short available offsets (only 8 km) prevent diving613

waves from sampling the deepest part of the model. This makes the benchmark data challenging as614

only reflection information is available for constraining the deep part of the model.615

The workflow which is applied to the Chevron benchmark dataset is the following. Prior to inver-616

sion, an estimation of the source wavelet is performed in the initial model, for each frequency band,617

following the frequency-domain strategy introduced by Pratt (1999). For the first ten frequency bands,618

20 iterations of a preconditioned l-BFGS algorithm are performed. For the frequency bands 11 and619

12, 50 iterations are performed. For the last three frequency bands, 40 iterations are performed with a620

restart of the l-BFGS algorithm after the 20 first iterations. This restart is only due the configuration621

of the queue of the Blue Gene/Q machine of the IDRIS center, which does not accept jobs running622

longer than 20 hours. The restart could be avoided by storing the l-BFGS approximation on disk, how-623

ever this option is not yet implemented in the SEISCOPE optimization toolbox. The spatial and time624

discretization steps are set to 37.5 m and 0.004 s respectively for the 8 first frequency bands. They are625

decreased to 25 m and 0.003 s respectively for the frequency bands 9 to 12. For the last three frequency626

bands, the discretization step is set to 12.5m and the time step to 0.001 s. The misfit function is based627

on the optimal transport distance. According to the frequency continuation strategy, the P-wave veloc-628

ity model estimated for one frequency band serves as the initial model for the next frequency band.629

No regularization is introduced throughout the inversion. However, the model estimated at the end of630

each inversion is smoothed using a Gaussian filter with a correlation length adapted to the resolution631

expected after the inversion of each frequency-band. The workflow is summarized in Table 2.632

The 256 shot-gathers are inverted using 1024 core units of the Blue Gene/Q machine of the IDRIS633

center. This yields the possibility to assign 16 threads (4 physical thread × 4 hyperthreads) for each634

shot-gather. For such a configuration, the computational times for one gradient depending on the dis-635

cretization are summarized in Table 3. In particular, we are interested in the additional cost due to636

the use of the optimal transport distance. The results presented in Table 3 show that the proportion637

of computational time spent for the solution of the optimal transport problem decreases from 75 %638

to 20 % as the size of the discrete problem increases. This interesting feature is due to the fact the639

computational complexity of the SDMM algorithm is in O(N2
r × Nt) (see Appendix C), while the640

computational complexity of the solution of one wave propagation problem is in O(Nt ×Nx ×Nz),641

Nx and Nz being the number of grid points in the horizontal and vertical dimensions respectively.642

The results obtained after inverting the data up to 4 Hz (frequency band 1), 10 Hz (frequency band643

8), 16 Hz (frequency band 12) and 25 Hz (frequency band 15) are presented in Figure 19b,c,d,e. Three644
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shallow low velocity anomalies are recovered at approximately 500 m depth and at the lateral positions645

x = 12 km, x = 18 km and x = 30 km. An additional small scale low velocity anomaly appears at646

x = 14.75 km and z = 1 km in the highest resolution estimation. The original layered structure of647

the initial model is tilted in the final estimation. The upper (faster) layers bend downward (from left to648

right), while the low velocity layer at depth z = 2.5 km bends upward. Three high velocity anomalies649

are also recovered on top of the layer above the low velocity layer, at depth 1.8 km and lateral positions650

x = 8 km, x = 19 km, x = 22 km. The deeper part of the model, below 3 km depth, seems less well651

reconstructed, as it could be expected from the lack of illumination of this zone. However, a curved652

interface seems to be properly recovered at a depth between 4.5 and 5 km. A flat reflector is also653

clearly visible at the bottom of the model, at depth z = 5.8 km.654

As the exact model is not known, it is important to perform quality controls of the computed P-655

wave velocity estimation. A synthetic shot-gather in the model estimated at 25 Hz is computed and656

compared to the corresponding benchmark shot-gather in Figure 20. The similarity between the two657

gathers is important. The kinematic of the diving waves is correctly predicted. Most of the reflected658

events are in phase. Destructive interference due to free surface effects are also correctly recovered.659

A slight time-shift can however be observed for the long-offsets diving waves. This time-shift is not660

in the cycle skipping regime. A similar phenomenon is observed in Operto et al. (2015) where FWI661

is applied to invert the 3D Valhall data. As mentioned in this study, this time-shift may be due to662

the accumulation of error with propagating time or an increasing kinematic inconsistency with large663

scattering angles. The residuals between the two datasets are presented in Figure 21. As both diving664

and reflected waves are (almost) in phase, the differences are mainly due to amplitude mismatch.665

This is not surprising as the inversion is based on acoustic modeling. The amplitude mismatch should666

therefore be the imprint of elastic effects not accounted for in the inversion.667

As a second quality control, migrations of the data in the initial model and the estimated models at668

10 Hz and 16 Hz are performed. The migration results correspond to impedance gradients computed669

on 30 Hz low-pass filtered data, with a filter applied on the diving waves to focus on reflection data670

only. The spatial and time discretization steps are set to 12.5 m and 0.001 s respectively. The number671

of sources is doubled to 512 (one source each 75 m) to avoid spatial aliasing. As a post-processing, a672

polynomial gain is used to balance the energy in depth. The resulting images are presented in Figure673

22. The migrated image obtained in the estimated model at 10 Hz is significantly improved in the674

shallow part of the model (above 3 km depth) (Fig. 22b). A significant uplift of this part of the model675

can be observed. The continuity and the flatness of the reflectors is globally improved. However, the676

reflectors in the deepest part of the model (z > 2.5 km) remain unfocused . The migrated image in the677

estimated model at 16 Hz yields a better delineation of these deep reflectors, as indicated by the three678
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red arrows at the bottom (Fig. 22c). In particular, a continuous tilted reflector appears clearly at 5 km679

depth in the left part of the model. This is an indication of a progress in constraining the deep part of680

the P-wave velocity model, even if this remains challenging as only reflections sample this part of the681

model.682

Another conventional control for assessing the quality of velocity model consists in considering683

the flatness of CIG. The CIG presented in Figure 23 are obtained by computing migrated images fol-684

lowing the previous strategy for different offset ranges. A dip filtering is used in addition, to remove685

events associated with low-energy S-waves. Consistently with what is observed for the migrated im-686

ages, the curve and the offset extension of the shallowest reflectors is improved by the P-wave velocity687

model obtained at 10 Hz (Fig 23b). The P-wave velocity model obtained at 16 Hz further improves688

this energy refocusing. Some of the deeper reflectors are also better flatten, as indicated by the bottom689

arrows in Figure 23c, even if the progress in depth are less significant than the improvement observed690

in the shallow part.691

Finally, a vertical well log of the exact P -wave velocity model taken at x = 39375 m, at a depth692

between 1000 m and 2450 m is provided in the benchmark data. The corresponding log is extracted693

from the final estimation obtained at 25 Hz maximum frequency and compared to this log in Figure694

24. This provides another criterion to assess the quality of the estimation. As can be seen in Figure 24,695

the agreement between the exact and estimated logs is excellent. However, only the shallowest part of696

the model is constrained here. A deeper exact log would be interesting to have quality control on the697

deeper part of the model, which is more challenging to recover in this configuration.698

To emphasize the benefits provided by using the optimal transport distance, the same frequency699

continuation workflow is applied to the Chevron 2014 benchmark dataset, with a FWI algorithm based700

on the conventional L2 distance. The results obtained after the first frequency band and the 8th fre-701

quency band are compared to the results obtained when the optimal transport distance is used in Figure702

25. As can be seen, the L2 distance based FWI converges to a local minimum. Already after the first703

frequency band, the shallow part of the P -wave velocity estimation seems incorrect as a strong, flat re-704

flector is introduced at the depth z = 500 m. Note that for this simple comparison, no data-windowing705

strategy is used. As previous experiments in our group indicate, better results using the L2 distance706

can be obtained for the reconstruction of the shallow part of the model by designing a hierarchical707

workflow based on the interpretation of transmitted energy first.708

To complement this comparison, the residuals associated with the L2 norm and the optimal trans-709

port distance in the initial model, for the first frequency band, are presented in Figure 26. This Figure710

emphasizes the regularization role played by the optimal transport distance. Besides the smoothing711

effect already detected in the first numerical test, the SDMM algorithm seems to act as a coherency712
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filter, restoring the continuity of the main seismic events. This feature is particularly important for the713

interpretation of real data, as the signal over noise ratio of seismic signal below 3 Hz is generally poor.714
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4 DISCUSSION715

The method proposed in this study is designed to mitigate issues related to the use of the L2 norm to716

compare seismic signals in the framework of full waveform inversion. An optimal transport distance is717

used instead. This change in the measure of the misfit between seismograms appears to bring a more718

robust strategy, capable of overcoming cycle skipping issues, allowing to better interpret seismic data719

through FWI. In addition, it seems to facilitate the interpretation of noisy data as it acts as a coherency720

filter on the residuals which are back-propagated to form the gradient through the adjoint-state method.721

Distances based on Lp norms are built as a sum of mismatch over each source and each receiver.722

As a consequence, these distances consider each seismic traces individually, without accounting for723

a potential correlation between these traces. However, it is well known from seismic imaging practi-724

tioners that shot-gathers, presented in the 2D receiver/time plane, carry much more information than725

individual traces. Seismic events such as reflection, refraction, conversion, are identifiable on 2D shot-726

gathers from their lateral coherency in the receiver dimension. In conventional FWI based on Lp dis-727

tance, this information is used for visualizing the data, but is not accounted for in the inversion. This728

loss of information is severe and penalizes the inversion. The main advantage of the optimal transport729

distance presented in this study is its capability of accounting for this lateral coherency in the gather730

panel. Indeed, the traces of one common shot-gather are now interpreted jointly, through a measure of731

the distance in the 2D receiver/time plane.732

To illustrate this property, a comparison with an alternative strategy based on 1D optimal trans-733

port is performed on the Marmousi 2 model. This strategy is closer from the approach promoted by734

Engquist & Froese (2014): the seismic data is considered as a collection of 1D time signals which735

are compared independently using a 1D optimal transport distance. The resulting misfit function is a736

summation over all the traces of this distance between observed and calculated data. The lateral co-737

herency of the seismic event in the receiver dimension is thus not accounted for. This method can be738

implemented easily using the SDMM method (Algorithm 1). The block tridiagonal system reduces to739

a tridiagonal system which can be efficiently solved using the Thomas algorithm. The computational740

complexity of the solution of these 1D optimal transport problem reduces to O(Nt × Nr) = O(N)741

(compared to O(N3/2) for the 2D optimal transport distance). However this reduction of the com-742

plexity comes with a price, as is shown on Figure 27. The reconstruction (Fig. 27d), although more743

accurate than the reconstruction obtained using the L2 distance (Fig. 27c), is far from being as accu-744

rate as the one obtained with the 2D optimal transport distance (Fig. 27e). A strong degradation of the745

results thus occurs when neglecting the lateral coherency of the events in the receiver dimension.746

For further 2D and 3D large size application to real seismic data, the question of the computational747

cost of the optimal transport distance remains opened. In 3D, as the acquisition comprises inline and748
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crossline receivers, common shot-gathers should be represented as data cubes, with a coherency of749

seismic events both in inline and crossline directions. The previous experiment, based on 1D optimal750

transport, suggests that there is an interest in fully exploiting the lateral coherency of the seismic751

signal. However, further numerical improvements are required to design a method with a manageable752

computational time in such a configuration. This could be achieved through a better account of the753

structure of the matrix Q, which is related to a second-order discretization of the Laplacian operator754

with Neumann boundary conditions. The linear system to be solved at each iteration of the SDMM755

algorithm could thus be identified as a Poisson equation, for which fast solver exist, either based on756

Fast Fourier Transform (Swarztrauber 1974), or multigrid methods (Brandt 1977; Adams 1989). If757

this strategy reveals unfeasible, dimensionality reduction (such as the one presented here from 2D to758

1D optimal transport) could still be worthy to investigate, using appropriate regularization techniques.759

Another option may also consist in changing the formulation of the optimal transport problem to a760

primal formulation with entropic regularization, as this strategy is indicated to benefit from a reduced761

computational complexity (Benamou et al. 2015).762

Regarding the application of the method, the results obtained on the BP 2004 case study indi-763

cate that the measure of the distance between synthetic and observed data through optimal transport764

distance yields the possibility to better recover salt structures. This may be a first step toward more765

efficient sub-salt reconstructions. This could be assessed on more realistic datasets than the synthetic766

BP 2004 model. The Chevron 2012 Gulf Of Mexico dataset could be investigated to this purpose.767

An enhancement of the results obtained on the Chevron 2014 benchmark, especially in the deep768

part of the model, could be possibly obtained by combining the use of optimal transport distance769

with reflection-based waveform inversion strategies. These methods aim at enhancing the recovery of770

velocity parameters in zones where the subsurface is mainly sampled by reflected waves rather than771

transmitted waves. They are based on the scale separability assumption and alternatively reconstruct772

the smooth velocity and the reflectivity model. This generates transmission kernels between the reflec-773

tors and the receivers which provide low wavenumber update of the velocity. The method has been first774

introduced by Chavent et al. (1994); Plessix et al. (1999), then extended by Xu et al. (2012); Brossier775

et al. (2015); Zhou et al. (2015). In the Chevron 2014 benchmark dataset, relatively short offsets are776

used (8 km streamer data), and the velocity inversion in the low velocity layer prevents diving waves777

to penetrate deeply the subsurface. A combination of the optimal transport distance with reflection778

FWI is thus a potentially interesting investigation.779

Another important current issue in FWI is its ability to reconstruct several classes of parameters780

simultaneously, in a multi-parameter framework. An overview of the challenges associated with this is-781

sue is given in Operto et al. (2013). In particular, the importance of an accurate estimation of the inverse782
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Hessian operator to mitigate as much as possible trade-offs between parameters is emphasized. To this783

purpose, recent results indicate the interest of using truncated Newton techniques instead of more con-784

ventional quasi-Newton optimization strategies (Métivier et al. 2014b, 2015; Castellanos et al. 2015).785

These techniques rely on an efficient estimation of Hessian-vector products through second-order ad-786

joint state formulas. An extension of this formalism to the case where the optimal transport distance787

is used instead of the standard L2 should thus be investigated.788
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5 CONCLUSION789

A FWI algorithm using a misfit function based on an optimal transport distance is presented in this790

study. Instead of using the Wasserstein distance, as proposed in (Engquist & Froese 2014), a modified791

Monge-Kantorovich problem is solved to compute the distance between seismograms, yielding the792

possibility to account for non-conservation of the energy. The numerical computation of this distance793

requires the solution of a linear programming problem, which is solved through the SDMM algorithm.794

This algorithm is based on proximal splitting techniques (Combettes & Pesquet 2011). The main795

computationally intensive task to be performed within this algorithm is related to the solution of linear796

systems involving a matrix associated with the constraints of the linear programming problem. An797

efficient algorithm, based on the work of Buzbee et al. (1970), is set up to solve these linear systems798

with a complexity in O(N) and O(N3/2) in terms of memory requirement and number of operations799

respectively.800

Synthetic experiments emphasize the properties of this distance when applied to FWI. The result-801

ing misfit function is more convex, which helps to mitigate cycle skipping issues related to the use of802

the more conventional L2 norm. This is illustrated on a simple transmission from borehole to bore-803

hole experiment, as well as on the Marmousi 2 case study. From crude initial models, more reliable804

estimations of the P -wave velocity model are obtained using the optimal transport distance.805

The property of the optimal transport distance is also tested in the context of salt imaging. The806

experiment on the BP 2004 case study emphasizes the capability of the method to recover the salt807

structures from an initial model containing no information about their presence. This yields interesting808

perspectives in terms of sub-salt imaging.809

The experiment on the more realistic Chevron 2014 benchmark dataset emphasizes the satisfactory810

performances of the method, particularly its robustness to noise. It seems also able to provide a reliable811

estimation of the P -wave velocity in the zone which are sampled by diving waves. In the deepest part812

where the seismic information is dominated by reflection, the method faces the same difficulties as813

conventional FWI. This could be overcome by combining the use of the optimal transport distance814

with reflection FWI strategies.815

The proposed method thus seems promising and should be investigated in more realistic configu-816

rations, implying 3D waveform inversion. Measuring the misfit between data cubes using the optimal817

transport distance is a challenging issue, which could yield interesting perspectives for 3D FWI. The818

introduction of viscous, elastic and anisotropic effects should also be investigated. As the proposed819

strategy is data-domain oriented, such extension should be straightforward. Finally, specific investi-820

gations have to be made to extend the formalism of the method for the computation of second-order821
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derivatives information (Hessian-vector products) through the adjoint-state method. These investiga-822

tions should be carried on in the perspective of applying this method to multi-parameter FWI.823
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APPENDIX A: EQUIVALENCE BETWEEN LINEAR PROGRAMMING PROBLEMS824

In this appendix, the proof of equivalence between the linear programming problems (15) and (17)825

is given. The first of these two problems is the discrete analogous of the problem (10), which uses826

global constraints to impose the Lipschitz property. The second only uses local constraints to impose827

the Lipschitz property and is therefore less expensive to solve numerically.828

It is straightforward to see that if the global constraints are imposed, the local constraints are

satisfied. Interestingly, the reciprocal is also true. To see this, consider a pair of points v = (xv, tv)

and w = (xw, tw) in the 2D grid. A sequence of N points zi = (xi, ti), i = 1, . . . , N , with z1 = v

and zN = w can be chosen to form a path from v to w, such that the points zi are all adjacent on

the grid, with monotonically varying coordinates: this means that each of the sequences xi and zi are

either increasing or decreasing monotonically. The key is to see that, for such a sequence of points,

the `1 distance (also known as Manhattan distance) ensures that

||w − v||1 =
∑

i

||zi+1 − zi||1. (A.1)

Now, consider a function ϕ satisfying only the local constraints. The triangle inequality yields

||ϕ(w)− ϕ(v)||1 ≤
∑

i

||ϕ(zi+1)− ϕ(zi)||1. (A.2)

As the points zi are adjacent, the local inequality satisfied by ϕ can be used to obtained∑
i

||ϕ(zi+1)− ϕ(zi)||1 ≤
∑

i

||zi+1 − zi||1. (A.3)

Putting together equations (A.2), (A.3) and (A.1) yields

||ϕ(w)− ϕ(v)||1 ≤ ||w − v||1. (A.4)

This proves that satisfying the local constraints implies that the global constraints are verified. The829

linear programming problem (17) is thus the one which is solved to approximate the solution of the830

continuous problem (10).831

APPENDIX B: PROXIMITY OPERATORS832

For a given convex function f(x), its proximity operator proxf is defined by

proxf (x) = arg min
y
f(y) +

1
2
‖x− y‖22, (B.1)

where the standard Euclidean distance on Rd is denoted by ‖.‖2. Closed-form proximity operators

exist for numerous convex functions, which can make them inexpensive to compute. This is the case

for the proximity operators of the indicator function iK and the linear function h(ϕ). The proximity
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operator of the indicator function iK corresponds to the projection on the ensemble K (Combettes &

Pesquet 2011).

∀i = 1, . . . , 3N,
(
proxiK

(x)
)
i

=

∣∣∣∣∣∣∣∣∣
xi if −1 < xi < 1

1 if xi > 1

−1 if xi < −1.

(B.2)

This can be seen as a thresholding operation: any value of x lower than −1 (respectively higher than

1) is set to the threshold value −1 (respectively 1). The values between −1 and 1 remain unchanged.

Following the definition (B.1), the proximity operator of the function hdcal[m],dobs
(ϕ) is simply

proxhdcal[m],dobs
(ϕ) = ϕ− dcal[m] + dobs. (B.3)

APPENDIX C: EFFICIENT SOLUTION OF THE BLOCK TRIDIAGONAL LINEAR833

SYSTEM WITHIN THE SDMM ALGORITHM834

The solution of the problem (21) with the SDMM algorithm involves solving at each iteration a linear

system of type

Qx = b, (x, b) ∈ RN × RN , Q ∈MN (R), (C.1)

where Q is defined by the equation (24) and MN (R) denotes the ensemble of square matrices of size

N with real coefficients. The following ordering is used for the vectors of RN . Recall that the total

size N is the product of the number of time steps Nt and the number of receivers Nr. The vectors of

RN are decomposed in Nt blocks of size Nr, such that for all x ∈ RN

x = [x1, . . . xNt ] ∈ RN , (C.2)

and

∀i = 1, . . . , Nt, xi = [xi1, . . . xiNr ] ∈ RNr . (C.3)

The matrix Q is block tridiagonal such that

Q =



F +B B

B F B

. . . . . . . . .

B F B

B F +B


. (C.4)

Introducing α = 1
∆x2

r
, β = 1

∆t2
, B is the diagonal matrix

B = diag(−β) ∈MNr(R), (C.5)
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and F is the tridiagonal symmetric positive definite matrix

F =



1 + α+ 2β −α

−α 1 + 2(α+ β) −α
. . . . . . . . .

−α 1 + 2(α+ β) −α

−α 1 + α+ 2β


∈MNr(R). (C.6)

The matrix Q is thus decomposed in Nt blocks of size Nr. The method for block tridiagonal Toeplitz

matrices proposed by Buzbee et al. (1970) can be adapted to the solution of this system using the

following strategy. First each row of Q is multiplied by B−1, which yields the system
(E + I)x1 + x2 = b′1

xi−1 + Exi + xi+1 = b′i, i = 2, Nt − 1

xNt−1 + (E + I)xNt = b′Nt
,

(C.7)

where b′i = B−1bi and E = B−1F . The matrix E is symmetric positive definite by construction, and

can be factorized as

E = PDP T , D = diag(dj), j = 1, . . . Nr, P TP = I. (C.8)

Using this factorization in (C.7) yields
(D + I)y1 + y2 = c1

yi−1 + Dyi + yi+1 = ci, i = 2, Nt − 1

yNt−1 + (D + I)yNt = cNt ,

(C.9)

where

yi = P Txi, ci = P T b′i, i = 1, . . . Nt. (C.10)

The system (C.9) can now be expanded as
(dj + 1)y1j + y2j = c1j , j = 1, Nr

yi−1j + djyij + yi+1j = cij , i = 2, Nt − 1, j = 1, Nr

yNt−1j + (dj + 1)yNtj = cNtj j = 1, Nr,

(C.11)

The vectors y∗j and c∗j such that

∀j = 1, . . . , Nr, y∗j = [y1j , . . . , yNtj ] ∈ RNt , c∗j = [c1j , . . . , cNtj ] ∈ RNt (C.12)

are introduced. These vectors satisfy the equation

Kjy∗j = c∗j , (C.13)
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where Kj is the tridiagonal matrix

Kj =



dj + 1 1

1 dj 1
. . . . . . . . .

1 dj 1

1 dj + 1


. (C.14)

These transformations yield the algorithm 2 to solve the initial system (C.1). As a pre-processing step,835

the matrixE is factorized as in (C.8), and the eigenvectors are stored in the matrix P . The computation836

cost and the memory requirement of this operation is inO(N2
r ) asE is tridiagonal. The solution of the837

equation (C.1) is then obtained through the following operations. First, the vectors bi are multiplied by838

the diagonal matrixB−1 which requiresO(N) operations. Second, the vectors ci are formed following839

equation (C.10). As the matrix P is full, this requiresO(N2
r×Nt) operations. Third, the vectors y∗j are840

computed through the solution ofNr tridiagonal systems of sizeNt. Tridiagonal systems are efficiently841

solved through the Thomas algorithm which has a linear complexity (Golub 1996) . Therefore, the842

computation cost of computing y∗j is merely in O(Nr × Nt) = O(N). The final step consists in843

computing the vector x from the vectors y∗j through the equation (C.10). This requires to multiply844

each vector yi by P , which costs O(N2
r ×Nt) operations. The overall complexity of the algorithm is845

thus O(N2
r × Nt), and the memory requirement in O(N). In contrast, a Cholesky factorization has846

the same computational complexity, but requires to store O(N3/2) elements. In addition, the forward847

backward substitution is an intrinsically sequential algorithm, while the most expensive part of the848

algorithm 2 are the matrix-vector multiplications involving the eigenvectors of the matrix E, which849

can be efficiently parallelized. As a final remark, in the case Nt < Nr, the matrices and vectors can be850

re-organized in Nr blocks of size Nt to yield a complexity in O(N2
t ×Nr) instead of O(N2

r ×Nt).851
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Chavent, G., Clément, F., & Gòmez, S., 1994. Automatic determination of velocities via migration-based910

traveltime waveform inversion: A synthetic data example, SEG Technical Program Expanded Abstracts 1994,911

pp. 1179–1182.912

Claerbout, J., 1985. Imaging the Earth’s interior, Blackwell Scientific Publication.913

Clapp, R., 2009. Reverse time migration with random boundaries, chap. 564, pp. 2809–2813.914

Combettes, P. L. & Pesquet, J.-C., 2011. Proximal splitting methods in signal processing, in Fixed-Point915

Algorithms for Inverse Problems in Science and Engineering, vol. 49 of Springer Optimization and Its916

Applications, pp. 185–212, eds Bauschke, H. H., Burachik, R. S., Combettes, P. L., Elser, V., Luke, D. R., &917

Wolkowicz, H., Springer New York.918
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Inversion step Recording time l-BFGS iterations Smoothing

1 4.6 s 218 rz = 125 m, rx = 125 m

2 4.6 s 251 rz = 125 m, rx = 125 m

3 4.6 s 150 rz = 125 m, rx = 125 m

4 5.75 s 279 rz = 75 m, rx = 75 m

5 5.75 s 199 rz = 75 m, rx = 75 m

6 6.9 s 130 rz = 75 m, rx = 75 m

7 6.9 s 230 rz = 75 m, rx = 75 m

8 8.05 s 177 rz = 75 m, rx = 75 m

9 8.05 s 269 rz = 75 m, rx = 75 m

10 8.05 s 283 rz = 75 m, rx = 75 m

11 9.2 s 152 rz = 75 m, rx = 75 m

12 9.2 s 366 rz = 75 m, rx = 75 m

13 10.35 s 192 rz = 75 m, rx = 75 m

14 10.35 s 287 rz = 75 m, rx = 75 m

15 10.35 s 144 rz = 75 m, rx = 75 m

Table 1. Workflow followed for the BP 2004 case study.
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Band Range Steps l-BFGS iterations Final smoothing

1 2-4 Hz ∆x = 37.5 m, ∆t = 0.004 s 20 rz = 112.5 m, rx = 750 m

2 2-4.5 Hz ∆x = 37.5 m, ∆t = 0.004 s 20 rz = 112.5 m, rx = 750 m

3 2-5 Hz ∆x = 37.5 m, ∆t = 0.004 s 20 rz = 112.5 m, rx = 750 m

4 2-5.5 Hz ∆x = 37.5 m, ∆t = 0.004 s 20 rz = 112.5 m, rx = 750 m

5 2-6 Hz ∆x = 37.5 m, ∆t = 0.004 s 20 rz = 112.5 m, rx = 750 m

6 2-7 Hz ∆x = 37.5 m, ∆t = 0.004 s 20 rz = 112.5 m, rx = 750 m

7 2-8 Hz ∆x = 37.5 m, ∆t = 0.004 s 20 rz = 37.5 m, rx = 375 m

8 2-10 Hz ∆x = 37.5 m, ∆t = 0.004 s 20 rz = 37.5 m, rx = 375 m

9 2-11 Hz ∆x = 25 m, ∆t = 0.003 s 20 rz = 25 m, rx = 250 m

10 2-12 Hz ∆x = 25 m, ∆t = 0.003 s 20 rz = 25 m, rx = 250 m

11 2-14 Hz ∆x = 25 m, ∆t = 0.003 s 50 rz = 25 m, rx = 250 m

12 2-16 Hz ∆x = 25 m, ∆t = 0.003 s 50 rz = 0 m, rx = 250 m

13 2-18 Hz ∆x = 12.5 m, ∆t = 0.001 s 40 rz = 0 m, rx = 250 m

14 2-20 Hz ∆x = 12.5 m, ∆t = 0.001 s 40 rz = 0 m, rx = 250 m

15 2-25 Hz ∆x = 12.5 m, ∆t = 0.001 s 40 rz = 0 m, rx = 125 m

Table 2. Workflow followed for the Chevron 2014 benchmark case study.

1053



Optimal transport distance for FWI 49

Frequency bands Nx ×Nz Nt Gradient Incident Adjoint + incident SDMM % of time for SDMM

1-8 20,960 2001 171 s 9 s 33 s 127s 74%

9-12 47,160 2667 332 s 39 s 121 s 171 s 51%

13-15 1,886,400 8001 2455 s 479 s 1461 s 511 s 20%

Table 3. Computational times for one gradient. This time is decomposed in the following steps: computation

of the incident wavefield, backpropagation of the adjoint and the incident wavefields, solution of the optimal

transport problem.

1054



50 L. Métivier et al.

Algorithms1055

y0
1 = 0, y0

2 = 0, z0
1 = 0, z0

2 = 0;

for n = 0, 1, . . . do
ϕn =

(
IN +ATA

)−1 [(yn
1 − zn

1 ) +AT (yn
2 − zn

2 )
]
;

yn+1
1 = proxhdcal[m],dobs

(ϕn + zn
1 ) ;

zn+1
1 = zn

1 + ϕn − yn+1
1 ;

yn+1
2 = proxiK

(Aϕn + zn
2 ) ;

zn+1
2 = zn

2 +Aϕn − yn+1
2 ;

end
Algorithm 1: SDMM method for the solution of the problem (21).
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Pre-processing step: compute the eigenvectors of E and store them in P ;

for i = 1, . . . , Nt do
b′i = B−1bi;

end

for i = 1, . . . , Nt do
ci = P T b′i;

end

for j = 1, . . . , Nr do
form c∗j from c = [c1, . . . , cNt ];

solve Kjy∗j = c∗j ;

end

for i = 1, . . . , Nt do
form ci from c∗j from c = [c∗1, . . . , c∗Nr ];

xi = Pci;
end

Algorithm 2: Efficient solution of the block tridiagonal linear system.



52 L. Métivier et al.

Figures1056
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Figure 1. Configuration of the borehole to borehole experiment.
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Figure 2. L2 residuals (a) and optimal transport based residuals with 5(b), 10 (c), 25 (d), 50 (e) SDMM itera-

tions.
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Figure 3. Evolution of the criterion maximized by the SDMM method along 50 iterations on the borehole to

borehole schematic experiment. The criterion tends asymptotically toward a maximum value of 4000, which

suggest that the convergence is reached. This is supported by the evolution of the solution which also seems to

have reached a stationary point (Fig. 2).
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Figure 4. Traces extracted at 2.5 km depth from the original residuals (black) and from the solution computed

after 50 SDMM iterations for the borehole to borehole schematic experiment.

Figure 5. Traces extracted at time t = 2 s from the original residuals (black) and from the solution computed

after 50 SDMM iterations for the borehole to borehole schematic experiment.
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Figure 6. L2 misfit function (black) and Wasserstein misfit function obtained with 5 (red), 10 (blue), 25 (green)

and 50 (purple) SDMM iterations. The misfit functions are evaluated for a background velocity value ranging

from 1500 m.s−1 to 2500 m.s−1.
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Figure 7. Source wavelet used to generate the synthetic dataset on the Marmousi model (a). This source is

obtained from a Ricker wavelet centered on 5 Hz after applying a minimum phase Butterworth filter below 2.5

Hz. Corresponding spectrum (b).
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Figure 8. Marmousi 2 exact P-wave velocity model (a). Initial P-wave velocity models, computed from the exact

model using a Gaussian filter with a correlation length of 250 m (b) and 2000 m (e). Corresponding P-wave

velocity estimations with FWI using the L2 misfit function (c),(f). Corresponding P-wave velocity estimations

with FWI using the optimal transport distance based misfit function (d),(g).
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Figure 9. Marmousi 2 exact data for the shot-gather corresponding to the source position xS = 8 km (a).

Associated residuals in the initial P-wave velocity models (b),(e). Associated residuals in the P-wave velocity

models estimated with FWI using the L2 misfit function (c),(f). Associated residuals in the P-wave velocity

models estimated with FWI using optimal transport distance based misfit function (d),(g).
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Figure 10. L2 residuals in the initial model 1 (a) and 2 (c). Corresponding optimal transport residuals (b),(d).
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Figure 11. Initial descent direction (opposite of the gradient) in the intitial model 3 using the L2 distance (a)

and the optimal transport distance (b).
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Figure 12. Source wavelet used to generate the synthetic dataset on the BP 2004 model (a). This source is

obtained from a Ricker wavelet centered on 5 Hz. A whitening of its frequency content is performed before a

low-pass and high-pass filter are applied, so that the corresponding spectrum spans an interval from 3 Hz to 9

Hz (b).
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Figure 13. BP 2004 exact model (a) and initial model (b). P-wave velocity estimation with a standard L2 norm

on short-time window data (4.6 s) (c). The same with the optimal transport distance (d).
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Figure 14. BP 2004 exact data (a) and initial data (b). Predicted data in the final model using a standard L2 norm

(c). Predicted data in the final model using the optimal transport distance using together with a layer stripping

workflow (d). The red ellipses highlight the reflection on the salt roof. This reflection is not present in the initial

data (b). Its reconstruction using the L2 distance is discontinuous (c). The use of the optimal transport distance

yields a better reconstruction of this event (d).
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Figure 15. BP 2004 case study. L2 residuals in the initial model (a). Optimal transport residuals in the initial

model (b).
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Figure 16. BP 2004 P-wave velocity estimation computed after the 1st(a), 3rd (b), 6th (c), 9th (d), 12th (e), and

15th (f) inversion using the optimal transport distance.
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Figure 17. Synthetic data in the exact model (a) and in the intermediate models obtained with FWI using

an optimal transport distance after the 1st(b), 3rd (c), 6th (d), 9th (e), 12th (f), and 15th (g) inversion. The red

rectangles highlight the shot-gather zone associated with the diving waves traveling within the salt dome and

the reflections generated by deeper interfaces.
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Figure 18. Chevron 2014 dataset. Common shot-gather for the source situated at x = 0 km for the frequency

bands 1 (a), 5 (b), 10 (c), and 15 (d).
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Figure 19. Chevron 2014 starting P-wave velocity model (a). Estimated P-wave velocity model at 4 Hz (b), 10

Hz (c), 16 Hz (d), 25 Hz (e).
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Figure 20. Exact common shot-gather for the left most source at 25 Hz, compared to the corresponding synthetic

in the final model at 25 Hz (orange panels). The synthetic data is mirrored and placed on both sides of the real

data to better compare the match of the different phases.
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Figure 21. Residuals between the exact common shot-gather for the left most source at 25 Hz and the corre-

sponding synthetic common shot-gather.



Optimal transport distance for FWI 73

Figure 22. Migrated images in the initial model (a), in the model obtained at 10 Hz maximum frequency (b),

in the model obtained at 16 Hz maximum frequency (c). Red arrows indicate identifiable improvements of the

reconstruction of the reflectors and re-focusing of the energy. Improvements in the shallow part (above 3 km)

are already obtained with the 10 Hz P-wave velocity estimation (b). Improvements in the deeper part (below 3

km) are yielded by the P-wave estimation at 16 Hz.
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Figure 23. CIG in the initial model (a), in the model obtained at 10 Hz maximum frequency (b), in the model

obtained at 16 Hz maximum frequency (c). Red arrows indicate identifiable improvement of the CIG continuity

in the offset direction. As for the migrated images, improvements in the shallow part (above 3 km) are already

obtained with the 10 Hz P-wave velocity estimation (b). Improvements in the deeper part (below 3 km) are

yielded by the P-wave estimation at 16 Hz.
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Figure 24. Vertical P -wave velocity log taken at x = 39, 375 km. Initial model (blue), exact model (black),

estimation at 25 Hz (red).
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Figure 25. Chevron 2014 starting P-wave velocity model (a). Estimated P-wave velocity model at 4 Hz with

the optimal transport distance (b), with the L2 distance (c). Estimated P-wave velocity model at 10 Hz with the

optimal transport distance (d), with the L2 distance (e).
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Figure 26. Residuals in the initial model for the first frequency band, using the L2 norm misfit function (a),

using the optimal transport distance (b).
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Figure 27. Exact Marmousi 2 P-wave velocity model (a). Initial model corresponding to the third initial model

of Figure 8 (b). Reconstructed model using the L2 distance (c), using 1D optimal transport distance (d), 2D

optimal transport distance (e).


