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Abstract. In this paper, we prove a Logarithmic Conjugation Theorem on finitely-connected tori.
The theorem states that a harmonic function can be written as the real part of a function whose
derivative is analytic and a finite sum of terms involving the logarithm of the modulus of a modified
Weierstrass sigma function. We implement the method using arbitrary precision and use the result
to find approximate solutions to the Laplace problem and Steklov eigenvalue problem. Using a
posteriori estimation, we show that the solution of the Laplace problem on a torus with a few holes
has error less than 10−100 using a few hundred degrees of freedom and the Steklov eigenvalues have
similar error.
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1. Introduction

Harmonic functions satisfying the Laplace equation, ∆u = 0, arise in many physical applications,
including potential flow in fluid dynamics, the stationary solution of heat conduction, and electro-
statics in the absence of charges, to name just a few. Efficient and robust numerical approaches to
solving the Laplace equation on a general domain with different boundary conditions are crucial
for understanding the aforementioned applications. In this paper, we are particularly interested
in solving the Laplace equation on finitely-connected tori, which serves as a model problem for
the study of heat or electrical conduction in the exterior of a periodic lattice of inclusions with
prescribed temperature or for fluid flow through a doubly periodic array of obstacles.

Harmonic functions. It is well-known that every harmonic function u on a simply-connected domain
Ω ⊂ C can be written as the real part of an analytic function, f(z),

(1) u(z) = ℜf(z).

For finitely-connected domains, the analogous result is known as the Logarithmic Conjugation
Theorem [2, 22]. Let Ω ⊂ C be a finitely-connected region which means that C \Ω has only finitely
many bounded connected components, {Kj}j∈[b] with b ∈ N \ {0}. For each j ∈ [b], let aj be a
point in Kj . If u is a harmonic function on Ω, then there exists an analytic function f on Ω and
real numbers cj , j ∈ [b], such that

(2) u(z) = ℜf(z) +
∑
j∈[b]

cj log |z − aj |, z ∈ Ω.
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Our main result is to extend the Logarithmic Conjugation Theorem to finitely-connected tori.
We consider a torus Tω = C/Lω, where Lω = 2ω1Z + 2ω2Z is a lattice and ω = (ω1, ω2) ∈ C2 are
half-periods, assumed not to be colinear. Let

(3) Ω = Tω \ ∪j∈[b]Kj

denote the finitely-connected torus after removing b ∈ N \ {0} disjoint, connected compact sets
{Kj}j∈[b], with smooth boundary. We also introduce the parallelogram (fundamental domain)

(4) P =
{
2ω1x+ 2ω2y ∈ C : (x, y) ∈ [0, 1]2

}
\ ∪j∈[b]Kj .

Note that Ω is obtained from P after identification of opposite sides. Recall that a meromorphic,
doubly-periodic function is called an elliptic function. Let

(5) σ̂(z, ω) = e−
1
2
γ2z2− 1

2
π|z|2/Aσ(z, ω)

denote the modified Weierstrass sigma function [14], where σ(z, ω) is the Weierstrass sigma function,
γ2 = γ2(ω) ∈ C is a lattice invariant, and A = area(Tω). We further discuss σ̂(z, ω) in section 2,
but for now just note that it is a non-holomorphic, function with a pole of order 2 at z = 0 such
that |σ̂(z, ω)| is doubly-periodic.

Theorem 1.1. Let Ω and P be defined as in (3) and (4). For each j ∈ [b], let aj be a point in Kj.
If u is a harmonic function on Ω (equivalently, harmonic and doubly-periodic on P), then there

exists an analytic function f̂ on P and real numbers cj, j ∈ [b], satisfying
∑

j∈[b] cj = 0, such that

f̂ ′ is elliptic and

(6) u(z) = ℜf̂(z) +
∑
j∈[b]

cj log |σ̂ (z − aj , ω) |, z ∈ Ω.

If there is only one connected boundary component (i.e., b = 1), then c1 = 0 and u(z) = ℜf̂(z).

A proof of theorem 1.1 is given in section 3. We comment that the result in theorem 1.1 differs
from the Logarithmic Conjugation Theorem for finitely-connected domains in several important
ways. First, the modified Weierstrass sigma function, log |σ̂(z, ω)|, plays the role of log |z|. Secondly,
and perhaps surprisingly, while the derivative f̂ ′ is elliptic, the function f̂ cannot always be taken
to be elliptic.

Computing harmonic functions on finitely-connected tori. There are a variety of methods for com-
puting harmonic functions on finitely-connected tori, including integral equation methods with
multipole acceleration [3] and the finite element method [13]. In our approach, we are inspired by
the work in [22] to use theorem 1.1 to represent doubly-periodic harmonic functions using a series

solution. Let ℘(z) = ℘(z, ω) denote the Weierstrass elliptic function, ℘(k)(z, ω), denote the k-th

derivative, and ζ̂(z) = ζ̂(z, ω) denote the “modified” form of the Weierstrass zeta function that is
doubly-periodic; these will be defined in section 2.

Theorem 1.2. Let Ω be a finitely-connected torus as in (3). For each j ∈ [b], let aj be a point
in Kj. If u is a harmonic function on Ω, then there exists a constant C ∈ R and real coefficients
(aj,k), (bj,k) and (cj) such that

u(z) = C +
∑
j∈[b]

[
aj,−1ℜζ̂(z − aj) + bj,−1ℑζ̂(z − aj) +

∑
k≥0

aj,kℜ℘(k)(z − aj) +
∑
k≥0

bj,kℑ℘(k)(z − aj)

+ cj log |σ̂ (z − aj) |
](7)

where
∑

j∈[b] cj = 0.
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Figure 1. The solution of the Laplace equation on a square torus with 25 disks
removed. Dirichlet boundary conditions equal to 0 or 1 are imposed on the boundary
of each disk. The computational domain is [−1, 1]2 and 9 copies are displayed to
emphasize periodicity. See section 4.2 for more details.

A proof of theorem 1.2 is given in section 3. We have chosen to represent the elliptic function f ′

using a sum of Weierstrass functions. Similar representations have been used to find doubly periodic
solutions in several applications, including doubly-periodic stress distributions in perforated plates
[17], solitary wave solutions to a nonlinear wave equation [8] and nonlinear Schrödinger equation
[10], lowest-Landau-level wavefunctions on the torus [14], and simulation of oil recovery [1]. Other
representations for elliptic functions are possible, including as R(℘) + ℘′S(℘) for some rational
functions R and S [7].

In section 4, we use the series representation (7) to solve the Laplace problem

∆u = 0 in Ω(8a)

u = f on ∂Ω = ∪j∈[b]∂Kj ,(8b)

where f ∈ L2(∂Ω) is given and the Steklov eigenvalue problem

∆u = 0 in Ω(9a)

∂nu = σu on ∂Ω = ∪j∈[b]∂Kj .(9b)
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As in [22], the series solution (7) are not convergent series. The coefficients depend on the truncation
of the sum (in k). For the Laplace problem, by the maximum principle, the accuracy of the
solution can be computed by looking at the error on the boundary, supx∈∂Ω |u(x)− f(x)|. For the
Steklov problem, we bound the error in the eigenvalues using an a posteriori estimate [6, 11]. We
implement the proposed numerical method in Julia using arbitrary precision and use the result
to find approximate solutions to the Laplace problem and Steklov eigenvalue problem. For a few
holes, the solution of the Laplace problem has error less than 10−100 using a few hundred degrees
of freedom and the Steklov eigenvalues have similar error. We show the solution to the Laplace
problem with 25 disks removed in fig. 1.

We conclude in section 5 with a discussion.

2. Weierstrass elliptic functions

Here we recall some background material on Weierstrass elliptic functions and establish notation
used in the paper. Excellent references include [7, 14, 21].

We consider the lattice
Lω = 2ω1Z+ 2ω2Z,

where ω = (ω1, ω2) ∈ C2 are half-periods, assumed not to be colinear. A function f : C → C is said
to be doubly-periodic if it satisfies

f(z + 2ω1) = f(z)

f(z + 2ω2) = f(z)

for all z ∈ C. A function is said to be elliptic if it is meromorphic and doubly-periodic. An example
of an elliptic function is the Weierstrass elliptic function

℘(z, ω) :=
1

z2
+

∑
ℓ∈Lω\{0}

(
1

(z − ℓ)2
− 1

(ℓ)2

)
.

The subtraction of the last term ensures the convergence of the series. Furthermore, the derivative
of Weierstrass elliptic function is an odd function satisfying the differential equation

(℘′(z))2 = 4(℘(z))3 − g2℘(z)− g3,

where g2 :=
∑

ℓ̸=0 60
1

(ℓ)4
and g3 :=

∑
ℓ̸=0 140

1
(ℓ)6

. This differential equation can be used to compute

higher-order derivatives of ℘. We obtain

℘(2)(z) = 6℘2(z)− g2
2

and

℘(n+2)(z) = 6
n∑

k=0

(
n

k

)
℘(n−k)(z)℘(k)(z), n ≥ 1.

The Weierstrass zeta function is defined by

(10) ζ(z) =
1

z
+
∑
ℓ̸=0

{
1

z − ℓ
+

1

ℓ
+

z

ℓ2

}
=

1

z
+
∑
ℓ̸=0

z3

ℓ2(z2 − ℓ2)

and satisfies
dζ

dz
= −℘(z).

It has a Laurent expansion near z = 0

ζ(z) =
1

z
−

∞∑
k=2

γ2kz
2k−1,
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where γ2k =
∑

ℓ̸=0
1
ℓ2k

, k ≥ 2. In contrast to ℘(z), the function ζ(z) does not possess the double-
periodic property. Instead, it satisfies the quasi-periodic condition:

ζ(z + 2ω1) = ζ(z) + 2η1

ζ(z + 2ω2) = ζ(z) + 2η2

where η1 = ζ(ω1) and η2 = ζ(ω2). The values η1, η2, ω1, ω2 are not independent but related by the
Legendre identity

η1ω2 − η2ω1 =
πı

2
.

The ζ function can be modified so that it is periodic,

ζ̂(z) = ζ(z)− γ2z −
π

A
z∗

where A is the area of the fundamental cell of the lattice and γ2 is given by a Eisenstein summation

and satisfies ζ(ωi) ≡ ηi = γ2ωi +
πω∗

i
A , i = 1, 2 [14]. Note that since ζ̂ depends on z∗, it is no longer

meromorphic.
Finally, the Weierstrass sigma function is defined by

σ(z, ω) = lim
ε→0

ε exp

(∫ z

ε
ζ(w,ω)dw

)
,

which is an odd, non-doubly-periodic, holomorphic function function with simple zeros at the lattice
points. It satisfies

(11) ζ(z, ω) =
σ′(z, ω)

σ(z, ω)
.

As for the zeta function, the sigma function can be modified as in (5). When defined this way, its
modulus has the lattice periodicity [14].

3. Proof of Theorems 1.1 and 1.2

Proof of theorem 1.1. The first part of the proof closely follows the proof of S. Axler for the Loga-
rithmic Conjugation Theorem [2]. Define h : Ω → C by

h(z) := ux(z)− ıuy(z).

The Cauchy-Riemann equations can be used to check that h is analytic on Ω. For each j ∈ [b], let
Γj be a closed curve in Ω that circles Kj once and no other Kk, k ̸= j. Define

cj :=
1

2πı

∮
Γj

h(w) dw.

We see that ℑcj = − 1
2πℜ

∮
Γj

h(w) dw = − 1
2πℜ

∮
Γj

ux(w)dx + uy(w)dy = 0, so cj is a real number

for each j ∈ [b]. Since u is doubly-periodic, so is h, and by the Cauchy Integral Theorem [9, Thm.1],
we have that

(12)
∑
j∈[b]

cj = 0.

We consider h to be a function on P, which we still denote by h. Fix a point z0 ∈ P, and define
f : P → C by

f(z) :=

∫ z

z0

h(w)−
∑
j∈[b]

cjζ(w − aj , ω) dw,

where the integral is taken over any path in P from z0 to z and ζ is the Weierstrass zeta function
as in (10). To show that f is well-defined, we check that the above integral is independent of the
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path from z0 to z. Take two paths from z0 to z and reverse the direction of transversal in one to
form a closed curve. Thus, we need only show that

1

2πı

∮
γ
h(z)dw =

1

2πı

∑
j∈[b]

cj

∮
γ
ζ(w − aj , ω) dw

for any closed curve γ Ω. By the Cauchy Integral Theorem and the definition of cj , the left hand
side is given by

∑
j∈[b] cjIj(γ), where Ij(γ) denotes the winding number of γ about Kj . Using that

the Laurent expansion for ζ(z, ω), which has a single pole of order one, by the Cauchy Integral
Theorem, the right hand side is also seen to be equal to

∑
j∈[b] cjIj(γ), as desired. The function

f(z) is analytic on P and we compute the derivative

(13) f ′(z) = h(z)−
∑
j∈[b]

cjζ(z − aj , ω).

Now define

(14) q(z) := ℜf(z) +
∑
j∈[b]

cj log |σ (z − aj , ω) |.

We claim that ux(z) = qx(z) and uy(z) = qy(z), so that, after adding a constant to f , we obtain
u(z) = q(z), z ∈ P. Using (11), we compute

qx(z) = ℜf ′(z) +
∑
j∈[b]

cjℜζ(z − aj , ω) = ℜh(z) = ux.

and

qy(z) = ℜ
(
ıf ′(z)

)
+

∑
j∈[b]

cjℜ (ıζ(z − aj , ω)) = ℜ (ıh(z)) = uy.

We have established that u(z) = q(z) up to a constant, z ∈ P and it remains to show that we
can rewrite q(z) in (14) so that the two terms on the right hand side are each doubly-periodic,
so can be thought of as functions on Ω. In (14), the second term on the right hand side is not
doubly-periodic since σ is not doubly-periodic. By (5), this term can be rewritten∑

j∈[b]

cj log |σ (z − aj) | =
∑
j∈[b]

cj log |σ̂ (z − aj) |+ ℜg(z)

where

g(z) =
1

2

∑
j∈[b]

cj
(
γ2(z − aj)

2 + π|z − aj |2/A
)

= αz + βz∗ + γ,

where α, β, and γ are constants and we have used (12) to drop the quadratic terms.
From (13), f ′ is doubly-periodic since h is doubly-periodic and

∑
j∈[b] cj = 0. There exists α1, α2

such that for all admissible z {
f(z + 2ω1) = f(z) + α1

f(z + 2ω2) = f(z) + α2.

Let us introduce (µ1, µ2) the unique solution of{
ω1µ1 + ω∗

1µ2 = −α1/2.
ω2µ1 + ω∗

2µ2 = −α2/2.
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Notice that previous system is non singular since the determinant is proportional to the area of the
fundamental domain, which is nonzero. Moreover, a straightforward computation shows that

f(z) + µ1z + µ2z
∗

is a doubly-periodic function. Thus, for a suitable µ, f̂(z) = f(z) + µz, is an analytic function and

ℜf̂(z) is also doubly-periodic. Note that ℑf̂(z) is not necessarily doubly-periodic and f̂ ′ is elliptic.

Summarizing our results, we have established that there exists f̂ analytic with doubly-periodic
real part and (ν, ξ) ∈ C2 such that

u = ℜf̂ +
∑
j∈[b]

cj log |σ̂ (z − aj) |+ ℜ(νz + ξz∗)

Observing that both the left hand side and the two first terms of the right hand side are doubly-
periodic, we obtain ν = ξ = 0, which concludes the proof. □

Proof of theorem 1.2. Let f̂ ′ be the elliptic function from theorem 1.1 associated with the harmonic
function u. Using a representation of elliptic functions (see, e.g., [23, p.450] or [21, p.23]), we may
write

f̂ ′(z) = τ +
∑
j∈[b]

αjζ(z − aj) +
∑
k≥0

βj,k℘
(k)(z − aj)

 ,

where τ ∈ C, αj ∈ C, and βj,k ∈ C are constants. Consequently, there exists a constant ρ ∈ C such
that

f̂(z) = τz + ρ+
∑
j∈[b]

αj log σ(z − aj) + βj,0ζ(z − aj) +
∑
k≥1

βj,k℘
(k−1)(z − aj)

 .

Introducing the periodic modifications ζ̂ and log |σ̂| of ζ and log |σ| functions respectively, we obtain
that there exists real coefficients C, aj,k, bj,k such that

u(z) = C +
∑
j∈[b]

[
aj,−1ℜζ̂(z − aj) + bj,−1ℑζ̂(z − aj) +

∑
k≥0

aj,kℜ℘(k)(z − aj) +
∑
k≥0

bj,kℑ℘(k)(z − aj)

+ cj log |σ̂ (z − aj) |
]
+ g(x, y)

for some affine function g. By periodicity of all other terms, the function g has also to be doubly-
periodic, so must be identically equal to zero. Finally,

∑
j∈[b] cj = 0 is deduced from the harmonicity

of all the terms, except the log |σ̂| terms which have a constant Laplacian. □

4. Computational method and experiments

Here we develop a computational method based on a series solution of the form (7) to solve the
Laplace problem (8) and the Steklov eigenvalue problem (9).

4.1. Computational Method. Let Ω be a finitely-connected torus as in (3). For simplicity,
we will take each region Kj , j ∈ [b] to be a closed disk, Kj = B(aj , rj), that is centered at
the point aj and has radius rj . The centers and radii are chosen such that Ki ∩ Kj = ∅ for
i ̸= j. Based on theorem 1.2, we consider a series solution of the form (7), where the sums on k
are truncated at k = kmax. We collect the (real) coefficients in the series solution into a vector
v = [C, (aj,k), (bj,k), (cj)] ∈ Rm, where m = 1+2b(kmax+2)+(b−1). For each coefficeint, vi, we let
ϕi, i ∈ [m] denote the corresponding basis function (e.g., the real part of a Weierstrass ℘ function),
so that

(15) u(z) =
∑
i∈[m]

viϕi(z).
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Figure 2. (upper panels) Approximation of the solutions of Laplace problem
in a square torus with one and two holes. (lower panels) Spectral convergence for
each of the two geometries. See section 4.2.

On each boundary component ∂Kj , we uniformly sample points with respect to arclength and
denote the collection of all sampled points by (pℓ)ℓ∈[S]. In the experiments below, we report the

value of m and take S = 3m. Define the matrices A,B ∈ RS×m by

Aℓ,i =
∂ϕi

∂n
(pl)

Bℓ,i = ϕi(pl).

Details about the computation of the normal derivatives of basis functions are given in appendix A.
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Figure 3. Approximation of the solutions of Laplace problem in an equilateral
torus. See section 4.2.

Figure 4. Exponential growth of conditional numbers of matrices BtB (left) and
BtA (right) with respect to the number of degrees of freedom.

4.2. Laplace problem. We solve the Laplace problem (8), with boundary data f(x), x ∈ ∂Ω as
follows. Define the vector b ∈ RS by bℓ = f(pℓ). The least-squares solution is found by solving the
normal equations

(16) BtBv = Btb.

The solution v then is used with the expansion in (15) as an approximate solution of (8). By the
maximum principle, the accuracy of the solution can be computed by looking at the error on the
boundary, supx∈∂Ω |u(x)− f(x)|.

We implement the numerical method in Julia using arbitrary precision provided by the packages
GenericLinearAlgebra.jl and ArbNumerics.jl (a wrapper of the Arb C library). All computational
experiments were performed with a precison of 210 bits which corresponds to a machine epsilon
approximately equal to 10−300.

We first consider a finitely-connected square torus with half-periods (ω1, ω2) = (1, i). The com-
plement is taken to be b = 1 disks with K1 = B(a1, r) with a1 = 0 and r = 0.4. We take
f(θ) = sin(5θ), where θ is the polar angle centered at a1. The resulting solution is plotted in the
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Figure 5. Approximation of the solutions of Laplace problem in a square torus
with two non convex holes.

top left panel of fig. 2. Using the maximum principle to bound the L∞(Ω) error of the solution,
we estimate ∥u(x)− f(x)∥L∞(∂Ω) in the bottom left panel of fig. 2 for increasing number of degrees
of freedom, m. This estimate is based on the maximum value obtained at the sampled points,
after doubling the number of sampled points. Spectral convergence is observed. With kmax = 150
(m = 305 degrees of freedom), the solution has error less 10−100 corresponding to at least 100 digits
of accuracy.

Next, we again consider a finitely-connected square torus with half-periods (ω1, ω2) = (1, i). The
complement is taken to be b = 2 disks with Ki = B(ai, ri), i = 1, 2 with a1 = 0.4, a2 = −0.4− 0.4i
and r1 = r2 = 0.2. On each boundary, we set f(θ) = sin(4θ) for circle i = 1 and f(θ) = sin(3θ)
for circle i = 2. The resulting solution is plotted in the top right panel of fig. 2. In the bottom
right panel of fig. 2, we can see that the solutions have similar error as the previous example, albeit
using more degrees of freedom.

Next, we consider a finitely-connected equilateral torus with half-periods (ω1, ω2) =
(
1, 12 +

√
3
2 ı

)
.

The complement is taken to be the same sets as above with one and two holes. We plot the results
in fig. 3. The solutions have similar error to the previous examples.

In fig. 5, we provide an example of convergence of the Laplace problem for two non-convex holes
in a square torus. The polar parametrizations of the boundaries of the two holes K1 and K2 are
given by ρ(θ)(cos(θ), sin(θ)) +Ai where

ρ(θ) =
3

10
+

cos(3θ)

10

and A1 = (0.4, 0.4) and A2 = −A1. The second hole has been rotated clockwise by an angle of π
3 .

We impose the Dirichlet condition 0 on the first boundary component and 1 on the second. The
sampled points are obtained using previous parametrization together with a uniform samplings of
the angles. As previously, we observe the exponential convergence and notice that the obtained
accuracy is significantly lower than in previous cases with the same number of degrees of freedom.

Finally, we consider the Laplace equation on a finitely-connected square torus with 25 disks
removed. Dirichlet boundary conditions equal to 0 or 1 are imposed on the boundary of each disk.
The results are plotted in fig. 1. The solution has error less than 10−16.

10



4.3. Steklov eigenvalue problem. To solve the Steklov eigenvalue problem (9), we consider a
generalized eigenvalue problem

(17) A v = σB v.

We can approximate solutions to this eigenvalue problem by multiplying both sides by Bt and
considering the non-symmetric generalized eigenvalue problem, BtAv = σBtBv. For kmax ≤ 50,
this formulation leads to exponentially converging eigenvalue approximations, as expected. As it
has been observed by several authors [5, 4, 11], this formulation with a larger number of degrees
of freedom may produce ill-conditioned matrices. To overcome this difficulty and avoid spurious
modes, we followed the SVD approach described in [5]: For a (small) set of randomly sampled
interior points (qr)r∈[R] we consider the evaluation matrix C ∈ RR×m

(18) Cr,i = ϕi(qr)

In all our experiments we set R = 50. We define s(σ) to be the smallest (always non-negative)
eigenvalue of the generalized eigenvalue problem

(19) D(σ)x(σ) = s(σ)CtCx(σ)

where D(σ) = (A − σB)t(A − σB). From a computational point of view, s(σ) can be efficiently
evaluated using a standard power method or an orthogonal subspace approach if the multiplicity
is suspected to be greater than one. Local minimizers of s(σ) provide stable approximations of
Steklov eigenvalues. To identify numerically these local extrema, we used a classical golden section
algorithm.

To bound the error in the eigenvalues, we use the following a posteriori estimate for Steklov
eigenvalues in [6], which extends previous estimates for Laplace-Dirichlet eigenvalues [11, 19].

Proposition 4.1 ([6]). Consider Ω a bounded open regular domain, and suppose that uε solve the
following approximate eigenvalue problem

−∆uε = 0 in Ω

∂nuε = σεuε + fε on ∂Ω.

Then if ∥fε∥L2(∂Ω) is small, there exists a constant C, depending only on Ω, and a Steklov eigenvalue
σk satisfying

|σε − σk|
σk

≤ C∥fε∥L2(∂Ω).

We study three geometrical configurations: tori which are the complement of K1 = B(a1, r) with
a1 = 0 and r = 0.4, the complement of Ki = B(ai, ri), i = 1, 2 with a1 = 0.2, a2 = −0.2 + 0.2i
and r1 = r2 = 0.1 and the complement of Ki = B(ai, ri), i = 1, 2, 3 with a1 = 0.3, a2 = 0.3i,
a3 = −0.3 − 0.3i and r1 = r2 = 0.1, r3 = 0.05. We approximated Steklov eigenfunctions of
the square torus with half-periods (ω1, ω2) = (1, i) (see figs. 6 to 8) and of the equilateral torus

with half-periods (ω1, ω2) =
(
1, 12 +

√
3
2 ı

)
in these three configurations (see figs. 9 to 11). The

first eigenvalue is zero which corresponds to a constant eigenfunction. In these figures, Steklov
eigenfunctions of indices 2 to 7 are plotted. The Steklov eigenfunctions, as expected, are oscillatory
near the boundary and decay exponentially away from the boundary. We used proposition 4.1 to
estimate the approximation error of the Steklov eigenvalues. We approximated the L2 boundary
term by a (periodic) trapezoidal quadrature formula after doubling the number of sampled points.
Convergence plots for Steklov eigenvalues on a square domain with 1, 2, and 3 punctured holes are
given in fig. 12. As expected, spectral convergence is also observed in these situations. The same
convergence rate has also been obtained studying the equilateral case.

Finally, in appendix B, we report in tables 1 to 6 our approximation of the first six non-trivial
eigenvalues of the square and equilateral tori with b = 1, 2, and 3 holes. We believe that the reported
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Figure 6. Steklov eigenfunctions of indices 2 to 7 of a punctured square torus, with
one hole. See section 4.3.

50 digits are correct in each case. As indicated in theorem 1.1, when there is only one connected
boundary component (b = 1), the eigenfunctions do not involve the logarithmic term and are
oscillatory along the boundary as shown in figs. 6 and 9. In general, eigenfunctions corresponding
to larger Steklov eigenvalues are more oscillatory near the boundary. Note that the tori parameters,
ω, effects the multiplicity of the eigenvalues. On a square torus with one hole, σ2 = σ3 and σ6 = σ7
while, on an equilateral torus with one hole, σ2 = σ3 and σ4 = σ5. Since the domains with two or
three holes do not possess symmetry, we observe that all the obtained eigenvalues are simple.

5. Discussion

In this paper, we established theorem 1.1, a Logarithmic Conjugation Theorem on finitely-
connected tori. We used the theorem to find a series solution representation of harmonic functions
on finitely-connected tori; see theorem 1.2. Implementing the numerical method in Julia using
arbitrary precision, we approximate solutions to the Laplace problem (8) and the Steklov eigenvalue
problem (9); see section 4. Using a posteriori estimation, we show that the approximate solution
of the Laplace problem has error less than 10−100 using a few hundred degrees of freedom and the
Steklov eigenvalues have similar error.

There are several future directions for this work. In [18], it is shown that the fundamental
solution of Laplacian on flat tori can be expressed as a logarithmic function involving first Jacobi
theta function; we think it would be interesting to extend this to finitely-connected tori. We have
focused on the case where the domain complement, ∪j∈[b]Kj has smooth boundary. We think it
would be interesting to extend the methods in [12] to improve the order of convergence for non-
smooth boundaries. Finally, we think it would be interesting to apply the developed numerical
methods to the numerical problem of computing extremal Steklov eigenvalue problems for finitely-
connected flat tori [15, 20].
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Figure 7. Steklov eigenfunctions of indices 2 to 7 of a punctured square torus, with
two holes. See section 4.3.

Figure 8. Steklov eigenfunctions of indices 2 to 7 of a punctured square torus, with
three holes. See section 4.3.
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Figure 9. Steklov eigenfunctions of indices 2 to 7 of a punctured equilateral torus,
with one hole. See section 4.3.

Figure 10. Steklov eigenfunctions of indices 2 to 7 of a punctured equilateral torus,
with two holes. See section 4.3.
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Figure 11. Steklov eigenfunctions of indices 2 to 7 of a punctured equilateral torus,
with three holes. See section 4.3.

Figure 12. Convergence plots for Steklov eigenvalues on a square domain with 1,
2 and 3 punctured holes. Each line corresponds to one of the first seven eigenvalues.
See section 4.3.

16



Appendix A. Computing normal derivatives

In this appendix, we provide some details for computing normal derivatives of functions of a
complex variable. Denote f(z) = u(x, y) + ıv(x, y) with z = x + ıy. Since f is analytic, we have
ux = vy and uy = −vx. Furthermore, fx = f ′(z) and fy = ıf ′(z). Thus, with n = n1 + ın2, we have

un = n1ux + n2uy = n1ux − n2vx = ℜ [(n1 + ın2)(ux + ıvx)] = ℜ(nf ′(z))

vn = n1vx + n2vy = −n1uy + n2vy = −ℑ(n1 + ın2)(uy + ıvy) = ℑ(nf ′(z)).

For example, f(z) = zk, (
ℜ
(
zk
))

n
= kℜ(nzk−1),(

ℑ
(
zk
))

n
= kℑ(nzk−1).

If f(z) = ℘(k)(z − aj), (
ℜ
(
℘(k)(z − aj)

))
n
= ℜ(n℘(k+1)(z − aj)),(

ℑ
(
℘(k)(z − aj)

))
n
= ℑ(n℘(k+1)(z − aj)).

If f(z) = ζ̂(z − aj),(
ℜ
(
ζ̂ (z − aj)

))
n
= (ℜ (ζ (z − aj)))n −

(
ℜ
(
γ2 (z − aj) +

π

A
(z − aj)

∗
))

n

= −ℜ (n℘ (z − aj))−
((

ℜ (γ2) +
π

A

)
n1 −ℑ (γ2)n2

)
,(

ℑ
(
ζ̂ (z − aj)

))
n
= (ℑ (ζ (z − aj)))n −

(
ℑ
(
γ2 (z − aj) +

π

A
(z − aj)

∗
))

n

= −ℑ (n℘ (z − aj))−
(
ℑ (γ2)n1 +

(
ℜ (γ2)−

π

A

)
n2

)
,

If f(z) = log |σ̂ (z − aj)| ,
(log |σ̂ (z − aj)|)n = n1 (log |σ̂ (z − aj)|)x + n2 (log |σ̂ (z − aj)|)y

= n1

(
ℜ
(
−1

2
γ2z

2 − 1

2

π

A
|z|2

))
x

+ n2

(
ℜ
(
−1

2
γ2z

2 − 1

2

π

A
|z|2

))
y

+ n1 (log |σ (z − aj)|)x + n2 (log |σ (z − aj)|)y
= n1

((
−ℜ (γ2)−

π

A

)
x+ ℑ (γ2) y

)
+ n2

(
ℑ (γ2)x+

(
ℜ (γ2)−

π

A

)
y
)

+ n1 (ℜ (ζ (z − aj))) + n2 (−ℑ (ζ (z − aj)))
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Appendix B. Numerical values of computed Steklov eigenvalues

Values of computed Steklov eigenvalues are given in tables 1 to 6; see section 4.3 for details.

σ2 3.21737540790552735473880286001400036767774798208487
σ3 3.21737540790552735473880286001400036767774798208487
σ4 4.85099530552467697892257589130439715581461931719259
σ5 5.15358084940676223549771471754234765157435969419525
σ6 7.50305008416767542642635086056165243882709526430554
σ7 7.50305008416767542642635086056165243882709526430554

Table 1. Steklov eigenvalues of a square torus with one hole.

σ2 6.45837308842285506198400983365912091999317179119988
σ3 9.04038374077713587651429965380130970292955686420981
σ4 9.32931391918711635803886895114746515357566095450257
σ5 11.02561512617948586321622981756262835104523220458063
σ6 12.69568331719729045908212485186369130848598658103989
σ7 19.72884655790348748027382339516572459572547368362522

Table 2. Steklov eigenvalues of a square torus with two holes.

σ2 6.54721983775026738598476089606442586801693676638247
σ3 6.79298688602543949226783518103096724408533776232952
σ4 9.02715360305747386008778464587475727275979230551042
σ5 9.75911376018587533254687022367601130464658416864329
σ6 11.11563661826511047191549742109769883301063010901993
σ7 13.08067309361125105561475152956318658177620553096385

Table 3. Steklov eigenvalues of a square torus with three holes

σ2 3.34865594380260534169550288243470971962587318064277
σ3 3.34865594380260534169550288243470971962587318064277
σ4 4.99978881548382813234141616969113198885117552416465
σ5 4.99978881548382813234141616969113198885117552416465
σ6 7.44392530690947308002824485738760008901145380307620
σ7 7.55649710043624518482844840631875099119732734059433

Table 4. Steklov eigenvalues of an equilateral torus with one hole.

σ2 6.53794803818597918794030349125758145344842633243163
σ3 9.03760803330365503342990995931942991592541389841134
σ4 9.37148419781059159007737134528684902568383756667729
σ5 11.02904931936017784776119216982004095594847249520813
σ6 12.70222698966325001285792418382443547595163064198654
σ7 19.72940718569248148461882657324755544321541234433839

Table 5. Steklov eigenvalues of an equilateral torus with two holes.

σ2 6.63530737085667505246439432756580077469480498850424
σ3 6.94424494471680808970061612948991192950478141474806
σ4 9.02318420302479178183722837786227147321263458092783
σ5 9.69311259795549433304394048074564041975314036318590
σ6 11.14183481942696624006786357768349746325365435641531
σ7 13.09270988086125229485281063758500867332548835687565

Table 6. Steklov eigenvalues of an equilateral torus with three holes.
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