Vincent Neiger

XLIM, Univ. Limoges, France
\rightarrow LIP6, Sorbonne Univ., France
Clément Pernet

Deterministic computation of the characteristic polynomial in the time of matrix multiplication

Séminaire Aric, LIP, ENS de Lyon March 9, 2022

outline

context \& result
previous work
overview of the approach
obstacles \& spin-offs

outline

context \& result

- computing with matrices over \mathbb{K} and $\mathbb{K}[x]$
- reductions to matrix multiplication
- framework for complexity bounds
previous work
overview of the approach
- obstacles \& spin-offs

matrices: multiplication

$\mathbf{M}=\left[\begin{array}{cccc}28 & 68 & 75 & 70 \\ 38 & 25 & 75 & 55 \\ 24 & 1 & 56 & 28\end{array}\right] \in \mathbb{K}^{3 \times 4} \longrightarrow 3 \times 4$ matrix over \mathbb{K} (here \mathbb{F}_{97})
fundamental operations on $m \times m$ matrices:

- addition is "quadratic": $\mathrm{O}\left(\mathrm{m}^{2}\right)$ operations in \mathbb{K}
- naive multiplication is cubic: $\mathrm{O}\left(\mathrm{m}^{3}\right)$
[Strassen'69]
subcubic matrix multiplication

matrices: multiplication

$\mathbf{M}=\left[\begin{array}{cccc}28 & 68 & 75 & 70 \\ 38 & 25 & 75 & 55 \\ 24 & 1 & 56 & 28\end{array}\right] \in \mathbb{K}^{3 \times 4} \longrightarrow 3 \times 4$ matrix over $\mathbb{K}\left(\right.$ here $\left.\mathbb{F}_{97}\right)$
fundamental operations on $m \times m$ matrices:

- addition is "quadratic": $\mathrm{O}\left(\mathrm{m}^{2}\right)$ operations in \mathbb{K}
- naive multiplication is cubic: $\mathrm{O}\left(\mathrm{m}^{3}\right)$

[Strassen'69]

subcubic matrix multiplication

- complexity exponent $\omega \approx 2.81$ \qquad i.e. $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$ complexity
- used in practice for $m \geqslant$ a few 100 s in NTL, FLINT, fflas-ffpack...
- best-known exponent $\omega \approx 2.373$
[Le Gall'14] [Alman-Williams'20]
- "galactic" algorithms: strongly impractical as such

measuring efficiency: algebraic complexity

efficient algorithms for polynomials, matrices, ... with coefficients in some base field \mathbb{K}

- low complexity bound
- low execution time
low memory usage, power consumption,
prime field $\mathbb{F}_{\mathfrak{p}}=\mathbb{Z} / \mathrm{p} \mathbb{Z}$
field extension $\mathbb{F}_{\mathfrak{p}}[\mathrm{x}] /\langle\mathfrak{f}(\mathrm{x})\rangle$ rational numbers \mathbb{Q}

measuring efficiency: algebraic complexity

efficient algorithms for polynomials, matrices, ... with coefficients in some base field \mathbb{K}

- low complexity bound
 - low execution time

low memory usage, power consumption,
prime field $\mathbb{F}_{\mathfrak{p}}=\mathbb{Z} / \mathrm{p} \mathbb{Z}$
field extension $\mathbb{F}_{\mathfrak{p}}[\mathrm{x}] /\langle\mathfrak{f}(\mathrm{x})\rangle$ rational numbers \mathbb{Q}
algebraic complexity bounds
\rightsquigarrow count number of operations in \mathbb{K}
16 standard complexity model for algebraic computations
${ }^{16}$ good predictor of practical performance for finite fields \mathbb{K}
9' ignores coefficient growth, e.g. over $\mathbb{K}=\mathbb{Q}$

characteristic polynomial of a matrix

$$
\text { given } \mathbf{M} \in \mathbb{K}^{\mathfrak{m} \times \mathfrak{m}} \text {, compute } \operatorname{det}\left(x \mathbf{I}_{\mathfrak{m}}-\mathbf{M}\right) \in \mathbb{K}[x]
$$

\mathbb{K}-linear algebra: reductions of most problems to matrix multiplication

characteristic polynomial of a matrix

$$
\text { given } \mathbf{M} \in \mathbb{K}^{\mathfrak{m} \times \mathfrak{m}} \text {, compute } \operatorname{det}\left(x \mathbf{I}_{\mathfrak{m}}-\mathbf{M}\right) \in \mathbb{K}[x]
$$

\mathbb{K}-linear algebra: reductions of most problems to matrix multiplication

$\left.\begin{array}{c}\text { LinSys } \\ \text { Det } \\ \text { Rank } \\ \text { PLUQ } \\ \text { TRSM } \\ \text { Inverse }\end{array}\right\}=\mathrm{O}($ MatMul $)$

MatMul $=\mathrm{O}$ (CharPoly) [Baur-Strassen 1983]

characteristic polynomial of a matrix

$$
\text { given } \mathbf{M} \in \mathbb{K}^{\mathfrak{m} \times \mathfrak{m}} \text {, compute } \operatorname{det}\left(\chi \mathbf{I}_{\mathfrak{m}}-\mathbf{M}\right) \in \mathbb{K}[x]
$$

\mathbb{K}-linear algebra: reductions of most problems to matrix multiplication

[Vincent Neiger \& Clément Pernet, 2021] deterministic algorithm with complexity $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$

- polynomial matrices
- ternary divide and conquer
- partial triangularization
- exploiting degree knowledge
characteristic polynomial in the time of matrix multiplication

[Vincent Neiger \& Clément Pernet, 2021] deterministic algorithm with complexity $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$

```
-polynomial matrices >ternary divide and conquer
-partial triangularization
- exploiting degree knowledge
```


characteristic polynomial in the time of matrix multiplication

summary of previous results

- deterministic, general: $\mathrm{O}\left(\mathrm{m}^{\omega} \log (\mathrm{m})\right)$
- deterministic, generic input: $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$
- randomized, general: $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$
[Keller-Gehrig 1985]
[Giorgi-Jeannerod-Villard 2003]
[P.-Storjohann 2007]

[Vincent Neiger \& Clément Pernet, 2021] deterministic algorithm with complexity $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$

```
- polynomial matrices
- ternary divide and conquer
- partial triangularization
- exploiting degree knowledge
```


characteristic polynomial in the time of matrix multiplication

framework for complexity - clarification is needed!

For any MatMul exponent ω feasible (as of today),
there is a MatMul algorithm in $\mathrm{O}\left(\mathrm{m}^{\omega-\varepsilon}\right)$ for some $\varepsilon>0$
\Rightarrow the CharPoly algorithm of [Keller-Gehrig'85] is

- deterministic
- in $\mathrm{O}\left(\mathrm{m}^{\omega-\varepsilon} \log (\mathrm{m})\right) \subset \mathrm{O}\left(\mathrm{m}^{\omega}\right)$
not entirely satisfactory...

[Vincent Neiger \& Clément Pernet, 2021] deterministic algorithm with complexity $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$

- polynomial matrices
- ternary divide and conquer
- partial triangularization
- exploiting degree knowledge

characteristic polynomial in the time of matrix multiplication

framework for complexity - classical requirements
matrix multiplication in $\mathbb{K}^{m \times m}$

- choose a MatMul algorithm in $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$
- use this one for all MatMul instances
our requirement: $2<\omega \leqslant 3$
we gladly accept $\omega=2.1$, please provide the algorithm
requirement: matrices in $\mathbb{K}[x]_{\leqslant d}^{m \times m}$ multiplied in $\mathrm{O}\left(\mathrm{m}^{\omega} \mathrm{M}(\mathrm{d})\right)$
polynomial multiplication in $\mathbb{K}[x]$
- choose a PolMul algorithm in $\mathrm{O}(\mathrm{M}(\mathrm{d}))$
- use this one for all PolMul instances
our requirement: $M(d)$ is superlinear and submultiplicative and reasonably good

$$
\begin{aligned}
& 2 M(d) \leqslant M(2 d) \quad M\left(d_{1} d_{2}\right) \leqslant M\left(d_{1}\right) M\left(d_{2}\right) \\
& M(d) \in O\left(d^{\omega}-1-\varepsilon\right) \text { for some } \varepsilon>0
\end{aligned}
$$

polynomial matrices

operations on $\mathbb{K}[x]_{<d}^{m \times m}$

- combination of matrix and polynomial computations
- addition in $\mathrm{O}\left(\mathrm{m}^{2} \mathrm{~d}\right)$, naive multiplication in $\mathrm{O}\left(\mathrm{m}^{3} \mathrm{~d}^{2}\right)$
[Cantor-Kaltofen'91]
multiplication in $O\left(m^{\omega} d \log (d)+m^{2} d \log (d) \log \log (d)\right)$

$$
\in \mathrm{O}\left(\mathrm{~m}^{\omega} \mathrm{M}(\mathrm{~d})\right) \subset \mathrm{O}^{\sim}\left(\mathrm{m}^{\omega} \mathrm{d}\right)
$$

polynomial matrices

$\mathbf{A}=\left[\begin{array}{ccc}3 x+4 & x^{3}+4 x+1 & 4 x^{2}+3 \\ 5 & 5 x^{2}+3 x+1 & 5 x+3 \\ 3 x^{3}+x^{2}+5 x+3 & 6 x+5 & 2 x+1\end{array}\right] \in \mathbb{K}[x]^{3 \times 3}$
3×3 matrix of degree 3 with entries in $\mathbb{K}[x]=\mathbb{F}_{7}[x]$
operations on $\mathbb{K}[x]_{<d}^{m \times m}$

- combination of matrix and polynomial computations
- addition in $\mathrm{O}\left(\mathrm{m}^{2} \mathrm{~d}\right)$, naive multiplication in $\mathrm{O}\left(\mathrm{m}^{3} \mathrm{~d}^{2}\right)$
[Cantor-Kaltofen'91]
multiplication in $O\left(m^{\omega} d \log (d)+m^{2} d \log (d) \log \log (d)\right)$

$$
\in \mathrm{O}\left(\mathrm{~m}^{\omega} \mathrm{M}(\mathrm{~d})\right) \subset \mathrm{O}^{\sim}\left(\mathrm{m}^{\omega} \mathrm{d}\right)
$$

charpoly: matrix $x \mathbf{I}_{m}-\mathbf{M}$ is $m \times m$ of degree 1
\rightarrow during algorithm: smaller size, larger degree

- some problems\&techniques shared with matrices over \mathbb{K}
- some problems\&techniques specific to entries in $\mathbb{K}[x]$

polynomial matrices: main computational problems

reductions of most problems to polynomial matrix multiplication

$$
\begin{aligned}
\text { matrix } \mathrm{m} \times \mathrm{m} \text { of degree } \mathrm{d} & \rightarrow \mathrm{O}^{\sim}\left(\mathrm{m}^{\omega} \mathrm{d}\right) \\
\text { of "average" degree } \frac{\mathrm{D}}{\mathrm{~m}} & \rightarrow \mathrm{O}^{\sim}\left(\mathrm{m}^{\omega} \frac{\mathrm{D}}{\mathrm{~m}}\right)
\end{aligned}
$$

classical matrix operations

- multiplication
- inversion $\quad \mathrm{O}^{\sim}\left(\mathrm{m}^{3} \mathrm{~d}\right)$
- kernel, system solving
-rank, determinant
univariate relations
- Hermite-Padé approximation
- vector rational interpolation
- syzygies, modular equations
transformation to normal forms
-triangularization: Hermite form
- row reduction: Popov form
-diagonalization: Smith form

outline

context \& result

- computing with matrices over \mathbb{K} and $\mathbb{K}[x]$
- reductions to matrix multiplication
- framework for complexity bounds
previous work
overview of the approach
- obstacles \& spin-offs

outline

context \& result

- computing with matrices over \mathbb{K} and $\mathbb{K}[x]$
- reductions to matrix multiplication
- framework for complexity bounds
- based on matrices over \mathbb{K}
- based on matrices over $\mathbb{K}[x]$
- where do log factors come from?
overview of the approach
obstacles \& spin-offs

charpoly via \mathbb{K}-linear algebra

traces of powers
 $$
\mathrm{O}\left(\mathrm{~m}^{4}\right) \text { or } \mathrm{O}\left(\mathrm{~m}^{\omega+1}\right)
$$

- [LeVerrier 1840] [Faddeev'49, Souriau'48, ...]
- used by [Csanky'75] to prove CharPoly $\in \mathcal{N} \mathrm{C}^{2}$

charpoly via \mathbb{K}-linear algebra

traces of powers $\quad \mathrm{O}\left(\mathrm{m}^{4}\right)$ or $\mathrm{O}\left(\mathrm{m}^{\omega+1}\right)$
 - [LeVerrier 1840] [Faddeev'49, Souriau'48, ...]
 - used by [Csanky'75] to prove CharPoly $\in \mathcal{N e}^{2}$

determinant expansion

- [Samuelson'42, Berkowitz'84]
- suited to division free algorithms
[Abdlejaoued-Malaschonok'01, Kaltofen-Villard'05]

charpoly via \mathbb{K}-linear algebra

traces of powers $\quad \mathrm{O}\left(\mathrm{m}^{4}\right)$ or $\mathrm{O}\left(\mathrm{m}^{\omega+1}\right)$
 - [LeVerrier 1840] [Faddeev'49, Souriau'48, ...]
 - used by [Csanky'75] to prove CharPoly $\in \mathcal{N} \mathrm{C}^{2}$

determinant expansion

- [Samuelson'42, Berkowitz'84]
- suited to division free algorithms
[Abdlejaoued-Malaschonok'01, Kaltofen-Villard'05]

Krylov methods [Danilevskij'37, Keller-Gehrig'85, P.-Storjohann'07]

- deterministic $\mathrm{O}\left(\mathrm{m}^{3}\right)$ or $\mathrm{O}\left(\mathrm{m}^{\omega} \log (\mathrm{m})\right)$
- generic $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$
- Las Vegas randomized, requires large field $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$

$$
\text { i.e. } \operatorname{card}(\mathbb{K}) \geqslant 2 m^{2}
$$

charpoly via polynomial matrices

determinant of matrix $\mathbf{A} \in \mathbb{K}[x]^{m \times m}$

charpoly via polynomial matrices

determinant of matrix $\mathbf{A} \in \mathbb{K}[x]^{m \times m}$

evaluation-interpolation [folklore]
 $\mathrm{O}\left(\mathrm{m}^{\omega+1}\right)$

at $\sim m d$ points, requires large field
costs: for \mathbf{A} of degree $\mathrm{d}=1$

charpoly via polynomial matrices

determinant of matrix $\mathbf{A} \in \mathbb{K}[x]^{m \times m}$

evaluation-interpolation [folklore]
 $\mathrm{O}\left(\mathrm{m}^{\omega+1}\right)$

at \sim md points, requires large field
costs: for \mathbf{A} of degree $\mathrm{d}=1$
diagonalization [Storjohann 2003] $\mathrm{O}\left(\mathrm{m}^{\omega} \log (\mathrm{m})^{2}\right)$

Smith form: Las Vegas randomized, requires large field

charpoly via polynomial matrices

determinant of matrix $\mathbf{A} \in \mathbb{K}[x]^{m \times m}$

evaluation-interpolation [folklore]
 $\mathrm{O}\left(\mathrm{m}^{\omega+1}\right)$

at \sim md points, requires large field

diagonalization [Storjohann 2003] $\mathrm{O}\left(\mathrm{m}^{\omega} \log (\mathrm{m})^{2}\right)$
Smith form: Las Vegas randomized, requires large field

partial triangularization

- iterative [Mulders-Storjohann 2003]
via weak Popov form computations
- divide and conquer, generic [Giorgi-Jeannerod-Villard 2003] $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$ diagonal of Hermite form must be $1, \ldots, 1, \operatorname{det}(\mathbf{A})$
- divide and conquer [Neiger-Labahn-Zhou 2017]
- divide and conquer with half-dimension blocks \rightarrow no $\log (m)$
- iterative approaches in m steps \rightarrow sometimes no $\log (m)$ [p.-Storjohann'07]
- explicit Krylov iteration: compute $\left(\begin{array}{llll}v & \mathbf{M} v & \cdots & \mathbf{M}^{\mathrm{m}} v\end{array}\right) \rightarrow \log (m)$

$$
\text { in } \mathbb{K} \text {-linear algebra }
$$

sources of log factors

- divide and conquer with half-dimension blocks \rightarrow no $\log (\mathfrak{m})$
- iterative approaches in m steps \rightarrow sometimes no $\log (\mathbb{m})$ [p-Storionann우]
- explicit Krylov iteration: compute ($\left.\begin{array}{llll}v & \mathbf{M} v & \cdots & \mathbf{M}^{m} v\end{array}\right) \rightarrow \log (m)$

in \mathbb{K}-linear algebra

sources of log factors

for polynomial matrices

- divide and conquer with half-dimension blocks \rightarrow no $\log (m)$
provided degrees are controlled, e.g. kernel basis [Zhou-Labahn-Storjohann'12]
- divide and conquer on degree $\rightarrow \log (d)$ but no $\log (m)$
e.g. $\mathbb{K}[x]-M a t M u l$ and approximant basis [Giorgi-Jeannerod-Villard'03]
- explicit Krylov iterations on constant matrices e.g. [Jeannerod-Neiger-Schost-

Villard'17]
since base cases of recursions on degree $=$ matrices over \mathbb{K} typically adds $\mathrm{O}\left(\mathrm{m}^{\omega} \mathrm{d} \log (\mathrm{m})\right)$ to the cost, non-negligible when $\mathrm{d}=\mathrm{O}(1)$

- looking for a matrix with unpredictable, unbalanced degrees $\log (m)$ steps in dimension $m \times m$, to uncover the degree profile [Zhou-Labahn'13] reminiscent of obstacles in the derandomization of [P.-Storjohann'07]

outline

context \& result

- computing with matrices over \mathbb{K} and $\mathbb{K}[x]$
- reductions to matrix multiplication
- framework for complexity bounds
- based on matrices over \mathbb{K}
- based on matrices over $\mathbb{K}[x]$
- where do log factors come from?
overview of the approach
obstacles \& spin-offs

outline

context \& result

previous work
overview of the approach

- computing with matrices over \mathbb{K} and $\mathbb{K}[x]$
- reductions to matrix multiplication
- framework for complexity bounds
- based on matrices over \mathbb{K}
- based on matrices over $\mathbb{K}[x]$
- where do log factors come from?
- determinant via partial triangularization
- overview of the new recursive approach
- complexity of this ternary recursion

partial block triangularization

[Mulders-Storjohann 2003, Giorgi-Jeannerod-Villard 2003, Zhou 2012, Neiger-Labahn-Zhou 2017]
triangularization of $m \times m$ matrix \mathbf{A} using $\frac{\mathfrak{m}}{2} \times \frac{\mathfrak{m}}{2}$ blocks
kernel basis of $\left[\begin{array}{l}\mathbf{A}_{1} \\ \mathbf{A}_{3}\end{array}\right]$

$$
\text { property: } \operatorname{det}(\mathbf{A})=\operatorname{det}(\mathbf{R}) \operatorname{det}(\mathbf{B})
$$

partial block triangularization

[Mulders-Storjohann 2003, Giorgi-Jeannerod-Villard 2003, Zhou 2012, Neiger-Labahn-Zhou 2017]
triangularization of $m \times m$ matrix \mathbf{A} using $\frac{\mathfrak{m}}{2} \times \frac{\mathfrak{m}}{2}$ blocks

kernel basis of $\left[\begin{array}{l}\mathbf{A}_{1} \\ \mathbf{A}_{3}\end{array}\right] \quad \mathrm{K}_{1} \mathbf{A}_{2}+\mathbf{K}_{2} \mathbf{A}_{4} \quad$ row basis of $\left[\begin{array}{l}\mathbf{A}_{1} \\ \mathbf{A}_{3}\end{array}\right]$
property: $\operatorname{det}(\mathbf{A})=\operatorname{det}(\mathbf{R}) \operatorname{det}(\mathbf{B})$
generic input \Rightarrow det(A) witnoutiog(il) [GOTg-Jeannerod-Villard'03]
\mathbf{A}_{1} and \mathbf{A}_{3} are coprime $\Rightarrow \mathbf{R}=\mathbf{I}_{\mathbf{m} / 2} \Rightarrow \operatorname{det}(\mathbf{A})=\operatorname{det}(\mathbf{B})$

- compute kernel $\left[\mathrm{K}_{1} \mathrm{~K}_{2}\right.$; deduce B by MatMul
- recursively, compute $\operatorname{det}(\mathbf{B})$, return it

A and $\left[\begin{array}{lll}\mathbf{K}_{1} & \mathbf{K}_{2}\end{array}\right]$ have degree $\mathrm{d} \Rightarrow \mathbf{B}$ has degree 2d: controlled total degree

$$
\text { complexity } \mathcal{C}(m, d)=\mathcal{C}\left(\frac{\mathfrak{m}}{2}, 2 d\right)+\mathrm{O}\left(\mathrm{~m}^{\omega} \mathrm{M}(\mathrm{~d}) \log (\mathrm{d})\right)
$$

partial block triangularization

[Mulders-Storjohann 2003, Giorgi-Jeannerod-Villard 2003, Zhou 2012, Neiger-Labahn-Zhou 2017]
triangularization of $m \times m$ matrix \mathbf{A} using $\frac{\mathfrak{m}}{2} \times \frac{\mathfrak{m}}{2}$ blocks

kernel basis of $\left[\begin{array}{l}\mathbf{A}_{1} \\ \mathbf{A}_{3}\end{array}\right] \quad \mathrm{K}_{1} \mathbf{A}_{2}+\mathbf{K}_{2} \mathbf{A}_{4} \quad$ row basis of $\left[\begin{array}{l}\mathbf{A}_{1} \\ \mathbf{A}_{3}\end{array}\right]$
property: $\operatorname{det}(\mathbf{A})=\operatorname{det}(\mathbf{R}) \operatorname{det}(\mathbf{B})$
general input \Rightarrow deufiy wiuntog(mi) [Labahn-Neiger-Zhou'17]
matrix degree not controlled: degree of \mathbf{B} up to $\mathrm{D}=\sum \operatorname{rdeg}(\mathbf{A}) \leqslant \mathrm{md}$ but controlled average row degree: at most $\frac{\mathrm{D}}{\mathrm{m}}$

- compute kernel $\left[\begin{array}{ll}K_{1} & K_{2}\end{array}\right]$; deduce B by MatMul $O^{\sim}\left(m^{\omega} \frac{D}{m}\right)$
- compute row basis \mathbf{R}
$\mathrm{O}^{\sim}\left(\mathrm{m}^{\omega} \frac{\mathrm{D}}{\mathrm{m}}\right)$ with $\log (\mathrm{m})$
- recursively, compute $\operatorname{det}(\mathbf{R})$ and $\operatorname{det}(\mathbf{B})$, return $\operatorname{det}(\mathbf{R}) \operatorname{det}(\mathbf{B})$

partial block triangularization

[Mulders-Storjohann 2003, Giorgi-Jeannerod-Villard 2003, Zhou 2012, Neiger-Labahn-Zhou 2017]
triangularization of $m \times m$ matrix \mathbf{A} using $\frac{\mathfrak{m}}{2} \times \frac{\mathfrak{m}}{2}$ blocks

kernel basis of $\left[\begin{array}{l}\mathbf{A}_{1} \\ \mathbf{A}_{3}\end{array}\right] \quad \mathbf{K}_{1} \mathbf{A}_{2}+\mathbf{K}_{2} \mathbf{A}_{4} \quad$ row basis of $\left[\begin{array}{l}\mathbf{A}_{1} \\ \mathbf{A}_{3}\end{array}\right]$
property: $\operatorname{det}(\mathbf{A})=\operatorname{det}(\mathbf{R}) \operatorname{det}(\mathbf{B})$
be lazy: if hard to compuie, coir compuie
[Neiger-P.'21]
obstacle $=$ removing log factors in row basis computation
\Rightarrow solution: remove row basis computation

$$
\left[\begin{array}{cc}
\mathbf{I}_{\mathfrak{m} / 2} & \mathbf{0} \\
\mathrm{~K}_{1} & \mathrm{~K}_{2}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{A}_{1} & \mathbf{A}_{2} \\
\mathbf{A}_{3} & \mathbf{A}_{4}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{A}_{1} & \mathbf{A}_{2} \\
\mathbf{0} & \mathrm{~B}
\end{array}\right]
$$

$$
\text { property: } \operatorname{det}(\mathbf{A})=\operatorname{det}\left(\mathbf{A}_{1}\right) \operatorname{det}(\mathbf{B}) / \operatorname{det}\left(\mathbf{K}_{2}\right)
$$

further obstacles (consequences of laziness)

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\mathbf{I}_{\mathfrak{m} / 2} & \mathbf{0} \\
\mathbf{K}_{1} & \mathbf{K}_{2}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{A}_{1} & \mathbf{A}_{2} \\
\mathbf{A}_{3} & \mathbf{A}_{4}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{A}_{1} & \mathbf{A}_{2} \\
\mathbf{0} & \mathbf{B}
\end{array}\right]} \\
& \text { property: } \operatorname{det}(\mathbf{A})=\operatorname{det}\left(\mathbf{A}_{1}\right) \operatorname{det}(\mathbf{B}) / \operatorname{det}\left(\mathbf{K}_{2}\right)
\end{aligned}
$$

further obstacles (consequences of laziness)

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\mathbf{I}_{\mathfrak{m} / 2} & \mathbf{0} \\
\mathbf{K}_{1} & \mathbf{K}_{2}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{A}_{1} & \mathbf{A}_{2} \\
\mathbf{A}_{3} & \mathbf{A}_{4}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{A}_{1} & \mathbf{A}_{2} \\
\mathbf{0} & \mathbf{B}
\end{array}\right]} \\
& \text { property: } \operatorname{det}(\mathbf{A})=\operatorname{det}\left(\mathbf{A}_{1}\right) \operatorname{det}(\mathbf{B}) / \operatorname{det}\left(\mathbf{K}_{2}\right)
\end{aligned}
$$

no $\log (\mathfrak{m})$ in the computation of $\mathbf{A}_{1}, \mathbf{B}, \mathbf{K}_{2}$

- 9 requires nonsingular \mathbf{A}_{1}, otherwise $\operatorname{det}\left(\mathbf{K}_{2}\right)=0$
- 3 recursive calls in matrix size $m / 2$ is $\boldsymbol{1}$, but requires $\sum \operatorname{rdeg}\left(\mathbf{A}_{1}\right) \leqslant \mathrm{D} / 2$ otherwise degree control is too weak.
(this implies $\sum \operatorname{rdeg}\left(\mathbf{K}_{2}\right) \leqslant \mathrm{D} / 2$)

further obstacles (consequences of laziness)

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\mathbf{I}_{\mathfrak{m} / 2} & \mathbf{0} \\
\mathbf{K}_{1} & \mathbf{K}_{2}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{A}_{1} & \mathbf{A}_{2} \\
\mathbf{A}_{3} & \mathbf{A}_{4}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{A}_{1} & \mathbf{A}_{2} \\
\mathbf{0} & \mathbf{B}
\end{array}\right]} \\
& \text { property: } \operatorname{det}(\mathbf{A})=\operatorname{det}\left(\mathbf{A}_{1}\right) \operatorname{det}(\mathbf{B}) / \operatorname{det}\left(\mathbf{K}_{2}\right)
\end{aligned}
$$

re no $\log (m)$ in the computation of $\mathbf{A}_{1}, \mathbf{B}, \mathbf{K}_{2}$

- \boldsymbol{r} requires nonsingular \mathbf{A}_{1}, otherwise $\operatorname{det}\left(\mathbf{K}_{2}\right)=0$
- 3 recursive calls in matrix size $m / 2$ is $\boldsymbol{1}$, but requires $\sum \operatorname{rdeg}\left(\mathrm{A}_{1}\right) \leqslant \mathrm{D} / 2$ otherwise degree control is too weak.
(this implies $\left.\sum \operatorname{rdeg}\left(\mathbf{K}_{2}\right) \leqslant \mathrm{D} / 2\right)$

solution: require A in weak Popov form

(the characteristic matrix $\mathbf{A}=x \mathbf{I}_{\mathrm{m}}-\mathbf{M}$ is in Popov form)

1. implies \mathbf{A}_{1} nonsingular and $\sum \operatorname{rdeg}\left(\mathbf{A}_{1}\right) \leqslant \mathrm{D} / 2$ up to easy transformations
${ }_{16}$ both \mathbf{A}_{1} and \mathbf{B} are also in weak Popov form \Rightarrow suitable for recursive calls
¢ \mathbf{K}_{2} is in "shifted reduced" form. . . find weak Popov \mathbf{P} with same determinant

further obstacles (consequences of laziness)

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\mathbf{I}_{\mathfrak{m} / 2} & \mathbf{0} \\
\mathbf{K}_{1} & \mathbf{K}_{2}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{A}_{1} & \mathbf{A}_{2} \\
\mathbf{A}_{3} & \mathbf{A}_{4}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{A}_{1} & \mathbf{A}_{2} \\
\mathbf{0} & \mathbf{B}
\end{array}\right]} \\
& \text { property: } \operatorname{det}(\mathbf{A})=\operatorname{det}\left(\mathbf{A}_{1}\right) \operatorname{det}(\mathbf{B}) / \operatorname{det}\left(\mathbf{K}_{2}\right)
\end{aligned}
$$

16 no $\log (m)$ in the computation of $\mathbf{A}_{1}, \mathbf{B}, \mathbf{K}_{2}$

- \mathbf{r} requires nonsingular \mathbf{A}_{1}, otherwise $\operatorname{det}\left(\mathbf{K}_{2}\right)=0$
- 3 recursive calls in matrix size $m / 2$ is \boldsymbol{i}, but requires $\sum \operatorname{rdeg}\left(\mathbf{A}_{1}\right) \leqslant \mathrm{D} / 2$ otherwise degree control is too weak.

solution: require A in weak Popov form

(the characteristic matrix $\mathbf{A}=x \mathbf{I}_{\mathrm{m}}-\mathbf{M}$ is in Popov form)

16 implies \mathbf{A}_{1} nonsingular and $\sum \operatorname{rdeg}\left(\mathbf{A}_{1}\right) \leqslant \mathrm{D} / 2$ up to easy transformations
${ }_{16}$ both \mathbf{A}_{1} and \mathbf{B} are also in weak Popov form \Rightarrow suitable for recursive calls
¢ \mathbf{K}_{2} is in "shifted reduced" form... find weak Popov \mathbf{P} with same determinant
solution: exploit degree knowledge to accelerate transformations

$$
\boldsymbol{s} \text {-reduced } \Rightarrow \boldsymbol{s} \text {-weak Popov } \Rightarrow \boldsymbol{s} \text {-Popov }
$$

ternary recursion \& complexity analysis

determinant of $\mathbf{A} \in \mathbb{K}[x]^{m \times m}$ of average row degree $\frac{D}{m}=\frac{\text { degdet }}{m}$

$$
\mathcal{C}(m, D) \leqslant 2 \mathcal{C}\left(\frac{m}{2}, \frac{D}{2}\right)+\mathcal{C}\left(\frac{m}{2}, D\right)+O\left(m^{\omega} M^{\prime}\left(\frac{D}{m}\right)\right)
$$

ternary recursion \& complexity analysis

determinant of $\mathbf{A} \in \mathbb{K}[x]^{m \times m}$ of average row degree $\frac{D}{m}=\frac{\text { degdet }}{m}$

$$
\mathcal{C}(m, D) \leqslant 2 \mathcal{C}\left(\frac{m}{2}, \frac{D}{2}\right)+\mathcal{C}\left(\frac{m}{2}, D\right)+O\left(m^{\omega} M^{\prime}\left(\frac{D}{m}\right)\right)
$$

ternary recursion \& complexity analysis

determinant of $\mathbf{A} \in \mathbb{K}[x]^{m \times m}$ of average row degree $\frac{D}{m}=\frac{\text { degdet }}{m}$

$$
\mathcal{C}(m, D) \leqslant 2 \mathcal{C}\left(\frac{m}{2}, \frac{D}{2}\right)+\mathcal{C}\left(\frac{m}{2}, D\right)+O\left(m^{\omega} M^{\prime}\left(\frac{D}{m}\right)\right)
$$

ternary recursion \& complexity analysis

determinant of $\mathbf{A} \in \mathbb{K}[x]^{m \times m}$ of average row degree $\frac{D}{m}=\frac{\text { degdet }}{m}$

$$
\mathcal{C}(m, D) \leqslant 2 \mathcal{C}\left(\frac{m}{2}, \frac{D}{2}\right)+\mathcal{C}\left(\frac{m}{2}, D\right)+O\left(m^{\omega} M^{\prime}\left(\frac{D}{m}\right)\right)
$$

ternary recursion \& complexity analysis

determinant of $\mathbf{A} \in \mathbb{K}[x]^{m \times m}$ of average row degree $\frac{D}{m}=\frac{\text { degdet }}{m}$

$$
\mathcal{C}(m, D) \leqslant 2 \mathcal{C}\left(\frac{m}{2}, \frac{D}{2}\right)+\mathcal{C}\left(\frac{m}{2}, D\right)+O\left(m^{\omega} M^{\prime}\left(\frac{D}{m}\right)\right)
$$

ternary recursion \& complexity analysis

determinant of $\mathbf{A} \in \mathbb{K}[x]^{m \times m}$ of average row degree $\frac{D}{m}=\frac{\text { degdet }}{m}$

$$
\mathcal{C}(m, D) \leqslant 2 \mathcal{C}\left(\frac{m}{2}, \frac{D}{2}\right)+\mathcal{C}\left(\frac{m}{2}, D\right)+O\left(m^{\omega} M^{\prime}\left(\frac{D}{m}\right)\right)
$$

ternary recursion \& complexity analysis

determinant of $\mathbf{A} \in \mathbb{K}[x]^{m \times m}$ of average row degree $\frac{D}{m}=\frac{\text { degdet }}{m}$

$$
\mathcal{C}(m, D) \leqslant 2 \mathcal{C}\left(\frac{m}{2}, \frac{D}{2}\right)+\mathcal{C}\left(\frac{m}{2}, D\right)+O\left(m^{\omega} M^{\prime}\left(\frac{D}{m}\right)\right) \in O\left(m^{\omega} M^{\prime}\left(\frac{D}{m}\right)\right)
$$

outline

context \& result

previous work
overview of the approach

- computing with matrices over \mathbb{K} and $\mathbb{K}[x]$
- reductions to matrix multiplication
- framework for complexity bounds
- based on matrices over \mathbb{K}
- based on matrices over $\mathbb{K}[x]$
- where do log factors come from?
- determinant via partial triangularization
- overview of the new recursive approach
- complexity of this ternary recursion

outline

context \& result

previous work
overview of the approach
obstacles \& spin-offs

- computing with matrices over \mathbb{K} and $\mathbb{K}[x]$
- reductions to matrix multiplication
- framework for complexity bounds
- based on matrices over \mathbb{K}
- based on matrices over $\mathbb{K}[x]$
- where do log factors come from?
- determinant via partial triangularization
- overview of the new recursive approach
- complexity of this ternary recursion
- main obstacles and solutions
- spin-off results on shifted forms
- summary and perspectives

Hermite and Popov forms

working over $\mathbb{K}=\mathbb{Z} / 7 \mathbb{Z}$
$\mathbf{A}=\left[\begin{array}{ccc}3 x+4 & x^{3}+4 x+1 & 4 x^{2}+3 \\ 5 & 5 x^{2}+3 x+1 & 5 x+3 \\ 3 x^{3}+x^{2}+5 x+3 & 6 x+5 & 2 x+1\end{array}\right]$
using elementary row operations, transform \mathbf{A} into...

Hermite form $\mathbf{H}=\left[\begin{array}{ccc}x^{6}+6 x^{4}+x^{3}+x+4 & 0 & 0 \\ 5 x^{5}+5 x^{4}+6 x^{3}+2 x^{2}+6 x+3 & x & 0 \\ 3 x^{4}+5 x^{3}+4 x^{2}+6 x+1 & 5 & 1\end{array}\right]$

Popov form $\mathbf{P}=\left[\begin{array}{ccc}x^{3}+5 x^{2}+4 x+1 & 2 x+4 & 3 x+5 \\ 1 & x^{2}+2 x+3 & x+2 \\ 3 x+2 & 4 x & x^{2}\end{array}\right]$

Hermite and Popov forms

nonsingular $\mathbf{A} \in \mathbb{K}[x]^{\mathfrak{m} \times \mathfrak{m}}$

elementary row transformations

Hermite form [Hermite, 1851]

- triangular
- column normalized
$\left[\begin{array}{llll}\mathbf{1 6} & & & \\ 15 & \mathbf{0} & & \\ 15 & & 0 & \\ 15 & & & 0\end{array}\right]\left[\begin{array}{llll}4 & & & \\ 3 & 7 & & \\ 1 & 5 & 3 & \\ 3 & 6 & 1 & 2\end{array}\right]$

Hermite and Popov forms

nonsingular $\mathbf{A} \in \mathbb{K}[x]^{m \times m}$

Hermite form [Hermite, 1851]

- triangular
- column normalized

Popov form [Popov, 1972]

- row reduced/distinct pivots
- column normalized

Hermite and Popov forms

nonsingular $\mathbf{A} \in \mathbb{K}[x]^{m \times m}$
elementary row transformations

Popov form [Popov, 1972]

Hermite form [Hermite, 1851]

- triangular
- column normalized

Hermite and Popov forms

nonsingular $\mathbf{A} \in \mathbb{K}[x]^{\mathfrak{m} \times \mathfrak{m}}$

Hermite form [Hermite, 1851]

- triangular
- column normalized

Popov form [Popov, 1972]

- row reduced/distinct pivots - column normalized
$\left[\begin{array}{llll}16 & & & \\ 15 & \mathbf{0} & & \\ 15 & & 0 & \\ 15 & & & 0\end{array}\right]\left[\begin{array}{llll}4 & & & \\ 3 & \mathbf{7} & & \\ 1 & 5 & \mathbf{3} & \\ 3 & 6 & 1 & 2\end{array}\right] \quad\left[\begin{array}{llll}4 & 3 & 3 & 3 \\ 3 & 4 & 3 & 3 \\ 3 & 3 & 4 & 3 \\ 3 & 3 & 3 & 4\end{array}\right] \quad\left[\begin{array}{llll}7 & 0 & 1 & 5 \\ 0 & 1 & & 0 \\ 6 & & 2 & \\ 6 & 1 & \mathbf{6}\end{array}\right]$
invariant: $\mathrm{D}=\operatorname{deg}(\operatorname{det}(\mathbf{A}))=4+7+3+2=7+1+2+6$
- average column degree is $\frac{D}{m}$
- size of object is $m D+m^{2}=m^{2}\left(\frac{D}{m}+1\right)$

Hermite and Popov forms

nonsingular $\mathbf{A} \in \mathbb{K}[x]^{m \times m}$

Hermite form [Hermite, 1851]

- triangular
- column normalized
$\left[\begin{array}{llll}16 & & & \\ 15 & \mathbf{0} & & \\ 15 & & \mathbf{0} & \\ 15 & & & 0\end{array}\right]\left[\begin{array}{llll}4 & & & \\ 3 & \mathbf{7} & & \\ 1 & 5 & \mathbf{3} & \\ 3 & 6 & 1 & 2\end{array}\right] \quad\left[\begin{array}{llll}4 & 3 & 3 & 3 \\ 3 & 4 & 3 & 3 \\ 3 & 3 & 4 & 3 \\ 3 & 3 & 3 & 4\end{array}\right] \quad\left[\begin{array}{llll}7 & 0 & 1 & 5 \\ 0 & 1 & & 0 \\ 6 & & \mathbf{2} & \\ 0 & 1 & \mathbf{6}\end{array}\right]$
[Beckermann-Labahn-Villard, 1999; Mulders-Storjohann, 2003]
weak Popov form $=$ not column normalized
$=$ minimal, non-reduced, t.o.p. Gröbner basis

shifted forms

shift: integer tuple $\mathbf{s}=\left(s_{1}, \ldots, s_{m}\right)$ acting as column weights \rightarrow connects Popov and Hermite forms

$\mathbf{s}=$$(0,0,0,0)$ Popov
$\left.\mathbf{s}=\begin{array}{llll}4 & 3 & 3 & 3 \\ 3 & 4 & 3 & 3 \\ 3 & 3 & 4 & 3 \\ 3 & 3 & 3 & 4\end{array}\right]$

0 \& \mathbf{1} \& \& 0

\mathbf{s} -Popov

6 \& 0 \& \mathbf{2} \& \mathbf{6}\end{array}\right]\)

- normal form, average column degree D / m
- shifts arise naturally in algorithms (approximants, kernel, ...)
-they allow one to specify non-uniform degree constraints

back to obstacles: easy ones

recall: $\mathbf{A}=\left[\begin{array}{ll}\mathbf{A}_{1} & \mathbf{A}_{2} \\ \mathbf{A}_{3} & \mathbf{A}_{4}\end{array}\right]$ in weak Popov form, we want:

- \mathbf{A}_{1} nonsingular: ok by definition
(principal submatrices of \mathbf{A} are weak Popov \Rightarrow are nonsingular)
- $\sum \operatorname{rdeg}\left(\mathbf{A}_{1}\right) \leqslant \mathrm{D} / 2$: either ok for \mathbf{A}, or ok for $\left[\begin{array}{ll}\mathbf{A}_{4} & \mathbf{A}_{3} \\ \mathbf{A}_{2} & \mathbf{A}_{1}\end{array}\right]$
(almost weak Popov... easily transformed into it, with same determinant)

back to obstacles: easy ones

recall: $\mathbf{A}=\left[\begin{array}{ll}\mathbf{A}_{1} & \mathbf{A}_{2} \\ \mathbf{A}_{3} & \mathbf{A}_{4}\end{array}\right]$ in weak Popov form, we want:

- \mathbf{A}_{1} nonsingular: ok by definition
(principal submatrices of \mathbf{A} are weak Popov \Rightarrow are nonsingular)
- $\sum \operatorname{rdeg}\left(\mathbf{A}_{1}\right) \leqslant \mathrm{D} / 2$: either ok for \mathbf{A}, or ok for $\left[\begin{array}{ll}\mathbf{A}_{4} & \mathbf{A}_{3} \\ \mathbf{A}_{2} & \mathbf{A}_{1}\end{array}\right]$ (almost weak Popov... easily transformed into it, with same determinant)
shifts in kernel basis computation
[Zhou-Labahn-Storjohann'12]
$\left[\begin{array}{ll}\mathbf{K}_{1} & \mathbf{K}_{2}\end{array}\right]$ kernel basis of $\left[\begin{array}{l}\mathbf{A}_{1} \\ \mathbf{A}_{3}\end{array}\right]$ computed in $\operatorname{rdeg}(\mathbf{A})$-weak Popov form: cost $O\left(m^{\omega} \mathrm{M}^{\prime}\left(\frac{\mathrm{D}}{\mathrm{m}}\right)\right), \quad \sum \mathrm{rdeg}\left(\mathbf{K}_{2}\right) \leqslant \mathrm{D} / 2, \quad \mathbf{K}_{2}$ in s-weak Popov form
$\mathrm{D}=\sum \operatorname{rdeg}(\mathbf{A})=\operatorname{deg} \operatorname{det}(\mathbf{A}) \quad \mathbf{s}=\operatorname{rdeg}\left(\mathbf{A}_{4}\right)=\operatorname{last} \mathrm{m} / 2$ entries of $\operatorname{rdeg}(\mathbf{A})$
using the shift rdeg (A) (and s) has crucial advantages:
- towards correctness: $\mathbf{B}=\left[\begin{array}{ll}\mathbf{K}_{1} & \mathbf{K}_{2}\end{array}\right]\left[\begin{array}{l}\mathbf{A}_{2} \\ \mathbf{A}_{4}\end{array}\right]$ is in 0-weak Popov form
- towards efficiency: implies small degrees in \mathbf{K}_{2} and best speed both for kernel and product B

back to obstacles: easy ones

recall: $\mathbf{A}=\left[\begin{array}{ll}\mathbf{A}_{1} & \mathbf{A}_{2} \\ \mathbf{A}_{3} & \mathbf{A}_{4}\end{array}\right]$ in weak Popov form, we want:

- \mathbf{A}_{1} nonsingular: ok by definition
(principal submatrices of \mathbf{A} are weak Popov \Rightarrow are nonsingular)
$-\sum \operatorname{rdeg}\left(\mathbf{A}_{1}\right) \leqslant \mathrm{D} / 2$: either ok for \mathbf{A}, or ok for $\left[\begin{array}{ll}\mathbf{A}_{4} & \mathbf{A}_{3} \\ \mathbf{A}_{2} & \mathbf{A}_{1}\end{array}\right]$ (almost weak Popov... easily transformed into it, with same determinant)
shifts in kernel basis computation
[Zhou-Labahn-Storjohann'12]
$\left[\begin{array}{ll}\mathbf{K}_{1} & \mathbf{K}_{2}\end{array}\right]$ kernel basis of $\left[\begin{array}{c}\mathbf{A}_{1} \\ \mathbf{A}_{3}\end{array}\right]$ computed in $\operatorname{rdeg}(\mathbf{A})$-weak Popov form: cost $O\left(m^{\omega} \mathrm{M}^{\prime}\left(\frac{\mathrm{D}}{\mathrm{m}}\right)\right), \quad \sum \mathrm{rdeg}\left(\mathbf{K}_{2}\right) \leqslant \mathrm{D} / 2, \quad \mathbf{K}_{2}$ in s-weak Popov form

$$
\mathrm{D}=\sum \operatorname{rdeg}(\mathbf{A})=\operatorname{deg} \operatorname{det}(\mathbf{A}) \quad \mathbf{s}=\operatorname{rdeg}\left(\mathbf{A}_{4}\right)=\operatorname{last} \mathrm{m} / 2 \text { entries of } \operatorname{rdeg}(\mathbf{A})
$$

using the shift rdeg (A) (and \mathbf{s}) has crucial advantages:

- towards correctness: $\mathbf{B}=\left[\begin{array}{ll}\mathbf{K}_{1} & \mathbf{K}_{2}\end{array}\right]\left[\begin{array}{c}\mathbf{A}_{2} \\ \mathbf{A}_{4}\end{array}\right]$ is in 0-weak Popov form
- towards efficiency: implies small degrees in \mathbf{K}_{2} and best speed both for kernel and product B
. . . but we cannot call the algorithm recursively on K_{2}

approaching the main obstacle

input: \mathbf{K}_{2} in s-weak Popov form, with $s \geqslant 0$
output: \mathbf{P} in 0 -weak Popov form, with $\operatorname{det}(\mathbf{P})=\operatorname{det}\left(\mathbf{K}_{2}\right)$

approaching the main obstacle

input: \mathbf{K}_{2} in s-weak Popov form, with $s \geqslant 0$ output: \mathbf{P} in 0 -weak Popov form, with $\operatorname{det}(\mathbf{P})=\operatorname{det}\left(\mathbf{K}_{2}\right)$

Idea 1.a: change of shift from \mathbf{s} to $\mathbf{0}$, i.e. $\mathbf{P}=\mathrm{WeakPopov}\left(\mathbf{K}_{2}\right)$ \boldsymbol{q} known methods are only efficient for increasing \boldsymbol{s} to a larger shift
[Jeannerod-Neiger-Schost-Villard'17]
Idea 1.b: normalization of \mathbf{K}_{2} into its s-Popov form \mathbf{P}
$\rightsquigarrow \mathbf{P}^{\boldsymbol{T}}$ is 0 -weak Popov by construction, and $\operatorname{det}\left(\mathbf{P}^{\boldsymbol{T}}\right)=\operatorname{det}(\mathbf{P})$
$\boldsymbol{\square}$ amounts to a change of shift from \boldsymbol{s} to $-\delta \leqslant 0$ [Neiger'16] \Rightarrow same issue

approaching the main obstacle

input: \mathbf{K}_{2} in s-weak Popov form, with $s \geqslant 0$ output: \mathbf{P} in 0 -weak Popov form, with $\operatorname{det}(\mathbf{P})=\operatorname{det}\left(\mathbf{K}_{2}\right)$

Idea 1.a: change of shift from \mathbf{s} to $\mathbf{0}$, i.e. $\mathbf{P}=$ WeakPopov $\left(\mathbf{K}_{2}\right)$
$\boldsymbol{\square}$ known methods are only efficient for increasing \mathbf{s} to a larger shift
[Jeannerod-Neiger-Schost-Villard'17]
Idea 1.b: normalization of \mathbf{K}_{2} into its s-Popov form \mathbf{P}
$\rightsquigarrow \mathbf{P}^{\boldsymbol{\top}}$ is 0 -weak Popov by construction, and $\operatorname{det}\left(\mathbf{P}^{\boldsymbol{\top}}\right)=\operatorname{det}(\mathbf{P})$
$\boldsymbol{\nabla}$ amounts to a change of shift from \mathbf{s} to $-\delta \leqslant 0$ [Neiger'16] \Rightarrow same issue
Fact: \mathbf{K}_{2}^{\top} is $-\mathbf{t}$-weak Popov, for some $-\mathbf{t} \leqslant 0$
$\bullet \mathbf{t}=\operatorname{rdeg}_{\mathbf{s}}\left(\mathbf{K}_{2}\right)=\mathbf{s}+\boldsymbol{\delta} \geqslant 0$
\rightarrow ignoring some row/column permutations for simplicity

approaching the main obstacle

input: \mathbf{K}_{2} in s-weak Popov form, with $s \geqslant 0$ output: \mathbf{P} in 0 -weak Popov form, with $\operatorname{det}(\mathbf{P})=\operatorname{det}\left(\mathbf{K}_{2}\right)$

Idea 1.a: change of shift from \mathbf{s} to $\mathbf{0}$, i.e. $\mathbf{P}=$ WeakPopov $\left(\mathbf{K}_{2}\right)$ $\boldsymbol{\square}$ known methods are only efficient for increasing \mathbf{s} to a larger shift

Idea 1.b: normalization of \mathbf{K}_{2} into its s-Popov form \mathbf{P}
$\rightsquigarrow \mathbf{P}^{\boldsymbol{\top}}$ is 0 -weak Popov by construction, and $\operatorname{det}\left(\mathbf{P}^{\boldsymbol{\top}}\right)=\operatorname{det}(\mathbf{P})$
$\boldsymbol{\nabla}$ amounts to a change of shift from \mathbf{s} to $-\delta \leqslant 0$ [Neiger'16] \Rightarrow same issue

$$
\begin{aligned}
\text { Fact: } \mathbf{K}_{2}^{\top} \text { is }- & t \text {-weak Popov, for some }-\mathbf{t} \leqslant 0 \\
-t & =\operatorname{rdeg}_{\mathbf{s}}\left(\mathbf{K}_{2}\right)=\mathbf{s}+\boldsymbol{\delta} \geqslant 0 \\
& \text { ignoring some row/column permutations for simplicity }
\end{aligned}
$$

Idea 2.a: change of shift from $-\mathbf{t}$ to $\mathbf{0}$, i.e. $\mathbf{P}=\operatorname{WeakPopov}\left(\mathbf{K}_{2}^{\top}\right)$ $\boldsymbol{\oplus} \boldsymbol{i n c r e a s i n g}$ shift, but \mathbf{K}_{2}^{\top} has large average rdeg (we control $\operatorname{cdeg}\left(\mathbf{K}_{2}^{\top}\right)=\operatorname{rdeg}\left(\mathbf{K}_{2}\right)$)

approaching the main obstacle

input: \mathbf{K}_{2} in s-weak Popov form, with $s \geqslant 0$ output: \mathbf{P} in 0 -weak Popov form, with $\operatorname{det}(\mathbf{P})=\operatorname{det}\left(\mathbf{K}_{2}\right)$

Idea 1.a: change of shift from \mathbf{s} to $\mathbf{0}$, i.e. $\mathbf{P}=$ WeakPopov $\left(\mathbf{K}_{2}\right)$
$\boldsymbol{\square}$ known methods are only efficient for increasing \mathbf{s} to a larger shift
[Jeannerod-Neiger-Schost-Villard'17]
Idea 1.b: normalization of \mathbf{K}_{2} into its s-Popov form \mathbf{P}
$\rightsquigarrow \mathbf{P}^{\boldsymbol{\top}}$ is 0 -weak Popov by construction, and $\operatorname{det}\left(\mathbf{P}^{\boldsymbol{\top}}\right)=\operatorname{det}(\mathbf{P})$
\boldsymbol{q} amounts to a change of shift from \boldsymbol{s} to $-\delta \leqslant 0$ [Neiger'16] \Rightarrow same issue

$$
\begin{aligned}
\text { Fact: } \mathbf{K}_{2}^{\top} \text { is }- & t \text {-weak Popov, for some }-\mathbf{t} \leqslant 0 \\
-\mathbf{t} & =\operatorname{rdeg}_{\mathbf{s}}\left(\mathbf{K}_{2}\right)=\mathbf{s}+\boldsymbol{\delta} \geqslant 0 \\
& \text { ignoring some row/column permutations for simplicity }
\end{aligned}
$$

Idea 2.a: change of shift from $-\mathbf{t}$ to $\mathbf{0}$, i.e. $\mathbf{P}=$ WeakPopov $\left(\mathbf{K}_{2}^{\mathbf{T}}\right)$ $\boldsymbol{q}^{\boldsymbol{7}}$ increasing shift, but \mathbf{K}_{2}^{\top} has large average rdeg (we control $\operatorname{cdeg}\left(\mathbf{K}_{2}^{\top}\right)=\operatorname{rdeg}\left(\mathbf{K}_{2}\right)$)

spin-offs: faster transformations of shifted forms

	weak Popov \rightarrow Popov
Input:	$\mathbf{s} \in \mathbb{Z}^{m}$, a shift,
	$\mathbf{A} \in \mathbb{K}^{m}[x]^{m \times m}$, a matrix in s-weak Popov form
Output:	the \mathbf{s}-Popov form of \mathbf{A}
Requirement:	$-\mathbf{s} \geqslant \operatorname{DiagonalDegrees~}(\mathbf{A})$
Complexity:	$\mathrm{O}\left(\mathrm{m}^{\omega} \mathrm{M}\left(\frac{\mathrm{D}}{\mathrm{m}}\right) \log \left(\frac{\mathrm{D}}{m}\right)\right)$, where $\mathrm{D}=\sum \mathbf{s}$

improvement and generalization of [Sarkar-Storjohann 2011, Section 4]
\rightsquigarrow support nonzero shifts and involve average degree $\frac{\mathrm{D}}{\mathrm{m}}$

- problem viewed as a change of shift with known output degrees
- introduction of partial linearization techniques for kernel bases

spin-offs: faster transformations of shifted forms

weak Popov \rightarrow Popov

Input:
$\mathbf{s} \in \mathbb{Z}^{\mathfrak{m}}$, a shift,
$\mathbf{A} \in \mathbb{K}[x]^{m \times m}$, a matrix in \boldsymbol{s}-weak Popov form
Output:
Requirement: the s-Popov form of \mathbf{A}

Complexity:
$-\mathbf{s} \geqslant$ DiagonalDegrees(A)
$\mathrm{O}\left(m^{\omega} \mathrm{M}\left(\frac{\mathrm{D}}{\mathrm{m}}\right) \log \left(\frac{\mathrm{D}}{\mathrm{m}}\right)\right)$, where $\mathrm{D}=\sum \mathrm{s}$
improvement and generalization of [Sarkar-Storjohann 2011, Section 4]
\rightsquigarrow support nonzero shifts and involve average degree $\frac{D}{m}$

- problem viewed as a change of shift with known output degrees
- introduction of partial linearization techniques for kernel bases

reduced \rightarrow weak Popov

Input: $\mathbf{s} \in \mathbb{Z}^{n}$, a shift
$\mathbf{A} \in \mathbb{K}[x]^{m \times n}$, a matrix in s-reduced form
Output: an s-weak Popov form of \mathbf{A}
Complexity:
$\mathrm{O}\left(\mathrm{m}^{\omega-1} \mathfrak{n}\left(\frac{\mathrm{D}}{\mathrm{m}}+1\right)\right)$, where $\mathrm{D}=\sum \operatorname{rdeg}_{\mathrm{s}}(\mathbf{A})-\mathrm{m} \min (\mathbf{s})$
easy extension of [Sarkar-Storjohann 2011, Section 3] to shifted forms

open questions: Frobenius and Smith forms

deterministic, log-free Frobenius form

open questions: Frobenius and Smith forms

deterministic, log-free Frobenius form

deterministic Smith form

$$
\begin{aligned}
& {\left[\begin{array}{llll}
\mathbf{A}
\end{array}\right] \longrightarrow\left[\begin{array}{lllll}
\mathrm{s}_{1} & & & \\
& s_{2} & & \\
& & \ddots & \\
& & & \\
& & & s_{m}
\end{array}\right]} \\
& \text { - complexity } \mathrm{O}^{\sim}\left(\mathrm{m}^{\omega} \frac{\mathrm{D}}{\mathrm{~m}}\right) \text { [Storjohann'03] } \\
& \text { - Las Vegas, requires large field } \\
& \text { - exploit progress on } \mathbb{K}[x] \text {-matrices? } \\
& s_{i+1} \text { divides } s_{i}
\end{aligned}
$$

- CharPoly $=\mathrm{O}($ MatMul $)$
- determinant of reduced polynomial matrices in $O\left(m^{\omega} M\left(\frac{D}{m}\right) \log \left(\frac{D}{m}\right)\right)$
- fast transformations between shifted forms of polynomial matrices

summary

conclusion

perspectives

- efficient implementation and study of practical performance small fields, degenerate instances, ...
- alternative approach by exploiting a quasiseparable structure closer to the linear algebra approach in [P.-Storjohann 2007]
- Frobenius normal form \& Smith normal form

