
Vincent Neiger XLIM, Univ. Limoges, France

→ LIP6, Sorbonne Univ., France

Clément Pernet LJK, Univ. Grenoble Alpes, France

Deterministic computation of the

characteristic polynomial
in the time of matrix multiplication

Séminaire Aric, LIP, ENS de Lyon
March 9, 2022

1

outline

I context & result

I previous work

I overview of the approach

I obstacles & spin-offs

2

outline

I context & result

I previous work

I overview of the approach

I obstacles & spin-offs

I computing with matrices over K and K[x]
I reductions to matrix multiplication
I framework for complexity bounds

2

matrices: multiplication

M =

28 68 75 70
38 25 75 55
24 1 56 28

 ∈ K3×4 3× 4 matrix over K (here F97)

fundamental operations on m×m matrices:

I addition is “quadratic”: O(m2) operations in K
I naive multiplication is cubic: O(m3)

subcubic matrix multiplication

[Strassen’69]

I complexity exponent ω ≈ 2.81

I used in practice for m > a few 100s
in NTL, FLINT, fflas-ffpack. . .

i.e. O(mω) complexity

I best-known exponent ω ≈ 2.373
[Le Gall’14] [Alman-Williams’20]

I “galactic” algorithms: strongly impractical as such

3

matrices: multiplication

M =

28 68 75 70
38 25 75 55
24 1 56 28

 ∈ K3×4 3× 4 matrix over K (here F97)

fundamental operations on m×m matrices:

I addition is “quadratic”: O(m2) operations in K
I naive multiplication is cubic: O(m3)

subcubic matrix multiplication

[Strassen’69]

I complexity exponent ω ≈ 2.81

I used in practice for m > a few 100s
in NTL, FLINT, fflas-ffpack. . .

i.e. O(mω) complexity

I best-known exponent ω ≈ 2.373
[Le Gall’14] [Alman-Williams’20]

I “galactic” algorithms: strongly impractical as such

3

measuring efficiency: algebraic complexity

efficient algorithms for polynomials, matrices, . . .
with coefficients in some base field K

I low complexity bound
I low execution time

low memory usage, power consumption, . . .

prime field Fp = Z/pZ
field extension Fp[x]/〈f(x)〉
rational numbers Q

algebraic complexity bounds
 count number of operations in K

standard complexity model for algebraic computations

good predictor of practical performance for finite fields K
ignores coefficient growth, e.g. over K = Q

4

measuring efficiency: algebraic complexity

efficient algorithms for polynomials, matrices, . . .
with coefficients in some base field K

I low complexity bound
I low execution time

low memory usage, power consumption, . . .

prime field Fp = Z/pZ
field extension Fp[x]/〈f(x)〉
rational numbers Q

algebraic complexity bounds
 count number of operations in K

standard complexity model for algebraic computations

good predictor of practical performance for finite fields K
ignores coefficient growth, e.g. over K = Q

4

characteristic polynomial of a matrix

given M ∈ Km×m, compute det(xIm −M) ∈ K[x]

K-linear algebra: reductions of most problems to matrix multiplication

LinSys Rank Det

PLUQ CharPoly

MinPoly

TRSM

MatMul

Inverse

× log(m)

LinSys
Det

Rank
PLUQ
TRSM
Inverse


=O(MatMul)

MatMul = O(CharPoly)
[Baur-Strassen 1983]

CharPoly = O(MatMul) ?

5

characteristic polynomial of a matrix

given M ∈ Km×m, compute det(xIm −M) ∈ K[x]

K-linear algebra: reductions of most problems to matrix multiplication

LinSys Rank Det

PLUQ CharPoly

MinPoly

TRSM

MatMul

Inverse

× log(m)

LinSys
Det

Rank
PLUQ
TRSM
Inverse


=O(MatMul)

MatMul = O(CharPoly)
[Baur-Strassen 1983]

CharPoly = O(MatMul) ?

5

characteristic polynomial of a matrix

given M ∈ Km×m, compute det(xIm −M) ∈ K[x]

K-linear algebra: reductions of most problems to matrix multiplication

LinSys Rank Det

PLUQ CharPoly

MinPoly

TRSM

MatMul

Inverse

LinSys
Det

Rank
PLUQ
TRSM
Inverse


=O(MatMul)

MatMul = O(CharPoly)
[Baur-Strassen 1983]

CharPoly = O(MatMul) ?

5

characteristic polynomial in the time of matrix multiplication

[Vincent Neiger & Clément Pernet, 2021]

deterministic algorithm with complexity O(mω)

I polynomial matrices I ternary divide and conquer
I partial triangularization I exploiting degree knowledge

matrix multiplication in Km×m

I choose a MatMul algorithm in O(mω)
I use this one for all MatMul instances

our requirement: 2 < ω 6 3

we gladly accept ω = 2.1, please provide the algorithm

polynomial multiplication in K[x]

I choose a PolMul algorithm in O(M(d))
I use this one for all PolMul instances

our requirement: M(d) is superlinear and
submultiplicative and reasonably good

2M(d) 6 M(2d) M(d1d2) 6 M(d1)M(d2)

M(d) ∈O(dω−1−ε) for some ε > 0

requirement: matrices in K[x]m×m6d
multiplied in O(mωM(d))

6

characteristic polynomial in the time of matrix multiplication

summary of previous results

[Vincent Neiger & Clément Pernet, 2021]

deterministic algorithm with complexity O(mω)

I polynomial matrices I ternary divide and conquer
I partial triangularization I exploiting degree knowledge

I deterministic, general: O(mω log(m)) [Keller-Gehrig 1985]

I deterministic, generic input: O(mω) [Giorgi-Jeannerod-Villard 2003]

I randomized, general: O(mω) [P.-Storjohann 2007]

matrix multiplication in Km×m

I choose a MatMul algorithm in O(mω)
I use this one for all MatMul instances

our requirement: 2 < ω 6 3

we gladly accept ω = 2.1, please provide the algorithm

polynomial multiplication in K[x]

I choose a PolMul algorithm in O(M(d))
I use this one for all PolMul instances

our requirement: M(d) is superlinear and
submultiplicative and reasonably good

2M(d) 6 M(2d) M(d1d2) 6 M(d1)M(d2)

M(d) ∈O(dω−1−ε) for some ε > 0

requirement: matrices in K[x]m×m6d
multiplied in O(mωM(d))

6

characteristic polynomial in the time of matrix multiplication

framework for complexity — clarification is needed!

[Vincent Neiger & Clément Pernet, 2021]

deterministic algorithm with complexity O(mω)

I polynomial matrices I ternary divide and conquer
I partial triangularization I exploiting degree knowledge

For any MatMul exponent ω feasible (as of today),
there is a MatMul algorithm in O(mω−ε) for some ε > 0
⇒ the CharPoly algorithm of [Keller-Gehrig’85] is

I deterministic
I in O(mω−ε log(m)) ⊂ O(mω)

not entirely satisfactory. . .

matrix multiplication in Km×m

I choose a MatMul algorithm in O(mω)
I use this one for all MatMul instances

our requirement: 2 < ω 6 3

we gladly accept ω = 2.1, please provide the algorithm

polynomial multiplication in K[x]

I choose a PolMul algorithm in O(M(d))
I use this one for all PolMul instances

our requirement: M(d) is superlinear and
submultiplicative and reasonably good

2M(d) 6 M(2d) M(d1d2) 6 M(d1)M(d2)

M(d) ∈O(dω−1−ε) for some ε > 0

requirement: matrices in K[x]m×m6d
multiplied in O(mωM(d))

6

characteristic polynomial in the time of matrix multiplication

framework for complexity — classical requirements

[Vincent Neiger & Clément Pernet, 2021]

deterministic algorithm with complexity O(mω)

I polynomial matrices I ternary divide and conquer
I partial triangularization I exploiting degree knowledge

matrix multiplication in Km×m

I choose a MatMul algorithm in O(mω)
I use this one for all MatMul instances

our requirement: 2 < ω 6 3

we gladly accept ω = 2.1, please provide the algorithm

polynomial multiplication in K[x]

I choose a PolMul algorithm in O(M(d))
I use this one for all PolMul instances

our requirement: M(d) is superlinear and
submultiplicative and reasonably good

2M(d) 6 M(2d) M(d1d2) 6 M(d1)M(d2)

M(d) ∈O(dω−1−ε) for some ε > 0

requirement: matrices in K[x]m×m6d
multiplied in O(mωM(d))

6

polynomial matrices

A =

 3x+ 4 x3 + 4x+ 1 4x2 + 3
5 5x2 + 3x+ 1 5x+ 3

3x3 + x2 + 5x+ 3 6x+ 5 2x+ 1

 ∈ K[x]3×3

3 × 3 matrix of degree 3
with entries in K[x] = F7[x]

operations on K[x]m×m<d

I combination of matrix and polynomial computations

I addition in O(m2d), naive multiplication in O(m3d2)

multiplication in O(mωd log(d) + m2d log(d) log log(d))

[Cantor-Kaltofen’91]

∈ O(mωM(d)) ⊂ O (̃mωd)

charpoly: matrix xIm −M is m×m of degree 1

→ during algorithm: smaller size, larger degree

I some problems&techniques shared with matrices over K
I some problems&techniques specific to entries in K[x]

7

polynomial matrices

A =

 3x+ 4 x3 + 4x+ 1 4x2 + 3
5 5x2 + 3x+ 1 5x+ 3

3x3 + x2 + 5x+ 3 6x+ 5 2x+ 1

 ∈ K[x]3×3

3 × 3 matrix of degree 3
with entries in K[x] = F7[x]

operations on K[x]m×m<d

I combination of matrix and polynomial computations

I addition in O(m2d), naive multiplication in O(m3d2)

multiplication in O(mωd log(d) + m2d log(d) log log(d))

[Cantor-Kaltofen’91]

∈ O(mωM(d)) ⊂ O (̃mωd)

charpoly: matrix xIm −M is m×m of degree 1

→ during algorithm: smaller size, larger degree

I some problems&techniques shared with matrices over K
I some problems&techniques specific to entries in K[x]

7

polynomial matrices: main computational problems

reductions of most problems to polynomial matrix multiplication

matrix m×m of degree d
of “average” degree D

m

→ O (̃mωd)
→ O (̃mωD

m
)

classical matrix operations

I multiplication

I inversion O˜(m3d)

I kernel, system solving

I rank, determinant

univariate relations

I Hermite-Padé approximation

I vector rational interpolation

I syzygies, modular equations

transformation to normal forms

I triangularization: Hermite form

I row reduction: Popov form

I diagonalization: Smith form

8

outline

I context & result

I previous work

I overview of the approach

I obstacles & spin-offs

I computing with matrices over K and K[x]
I reductions to matrix multiplication
I framework for complexity bounds

9

outline

I context & result

I previous work

I overview of the approach

I obstacles & spin-offs

I computing with matrices over K and K[x]
I reductions to matrix multiplication
I framework for complexity bounds

I based on matrices over K
I based on matrices over K[x]
I where do log factors come from?

9

charpoly via K-linear algebra

traces of powers O(m4) or O(mω+1)
I [LeVerrier 1840] [Faddeev’49, Souriau’48, ...]

I used by [Csanky’75] to prove CharPoly ∈ NC2

determinant expansion O(m4)
I [Samuelson’42, Berkowitz’84]

I suited to division free algorithms

[Abdlejaoued-Malaschonok’01, Kaltofen-Villard’05]

Krylov methods [Danilevskij’37, Keller-Gehrig’85, P.-Storjohann’07]

I deterministic O(m3) or O(mω log(m))
I generic O(mω)
I Las Vegas randomized, requires large field O(mω)

i.e. card(K) > 2m2

10

charpoly via K-linear algebra

traces of powers O(m4) or O(mω+1)
I [LeVerrier 1840] [Faddeev’49, Souriau’48, ...]

I used by [Csanky’75] to prove CharPoly ∈ NC2

determinant expansion O(m4)
I [Samuelson’42, Berkowitz’84]

I suited to division free algorithms

[Abdlejaoued-Malaschonok’01, Kaltofen-Villard’05]

Krylov methods [Danilevskij’37, Keller-Gehrig’85, P.-Storjohann’07]

I deterministic O(m3) or O(mω log(m))
I generic O(mω)
I Las Vegas randomized, requires large field O(mω)

i.e. card(K) > 2m2

10

charpoly via K-linear algebra

traces of powers O(m4) or O(mω+1)
I [LeVerrier 1840] [Faddeev’49, Souriau’48, ...]

I used by [Csanky’75] to prove CharPoly ∈ NC2

determinant expansion O(m4)
I [Samuelson’42, Berkowitz’84]

I suited to division free algorithms

[Abdlejaoued-Malaschonok’01, Kaltofen-Villard’05]

Krylov methods [Danilevskij’37, Keller-Gehrig’85, P.-Storjohann’07]

I deterministic O(m3) or O(mω log(m))
I generic O(mω)
I Las Vegas randomized, requires large field O(mω)

i.e. card(K) > 2m2

10

charpoly via K-linear algebra

traces of powers O(m4) or O(mω+1)
I [LeVerrier 1840] [Faddeev’49, Souriau’48, ...]

I used by [Csanky’75] to prove CharPoly ∈ NC2

determinant expansion O(m4)
I [Samuelson’42, Berkowitz’84]

I suited to division free algorithms

[Abdlejaoued-Malaschonok’01, Kaltofen-Villard’05]

Krylov methods [Danilevskij’37, Keller-Gehrig’85, P.-Storjohann’07]

I deterministic O(m3) or O(mω log(m))
I generic O(mω)
I Las Vegas randomized, requires large field O(mω)

i.e. card(K) > 2m2

10

charpoly via polynomial matrices

determinant of matrix A ∈ K[x]m×m

evaluation-interpolation [folklore] O(mω+1)
at ∼md points, requires large field

costs: for A of degree d = 1

diagonalization [Storjohann 2003] O(mω log(m)2)
Smith form: Las Vegas randomized, requires large field

partial triangularization

I iterative [Mulders-Storjohann 2003] O(m3)
via weak Popov form computations

I divide and conquer, generic [Giorgi-Jeannerod-Villard 2003] O(mω)
diagonal of Hermite form must be 1, . . . , 1, det(A)

I divide and conquer [Neiger-Labahn-Zhou 2017] O (̃mω)
logarithmic factors in m and d

11

charpoly via polynomial matrices

determinant of matrix A ∈ K[x]m×m

evaluation-interpolation [folklore] O(mω+1)
at ∼md points, requires large field

costs: for A of degree d = 1

diagonalization [Storjohann 2003] O(mω log(m)2)
Smith form: Las Vegas randomized, requires large field

partial triangularization

I iterative [Mulders-Storjohann 2003] O(m3)
via weak Popov form computations

I divide and conquer, generic [Giorgi-Jeannerod-Villard 2003] O(mω)
diagonal of Hermite form must be 1, . . . , 1, det(A)

I divide and conquer [Neiger-Labahn-Zhou 2017] O (̃mω)
logarithmic factors in m and d

11

charpoly via polynomial matrices

determinant of matrix A ∈ K[x]m×m

evaluation-interpolation [folklore] O(mω+1)
at ∼md points, requires large field

costs: for A of degree d = 1

diagonalization [Storjohann 2003] O(mω log(m)2)
Smith form: Las Vegas randomized, requires large field

partial triangularization

I iterative [Mulders-Storjohann 2003] O(m3)
via weak Popov form computations

I divide and conquer, generic [Giorgi-Jeannerod-Villard 2003] O(mω)
diagonal of Hermite form must be 1, . . . , 1, det(A)

I divide and conquer [Neiger-Labahn-Zhou 2017] O (̃mω)
logarithmic factors in m and d

11

charpoly via polynomial matrices

determinant of matrix A ∈ K[x]m×m

evaluation-interpolation [folklore] O(mω+1)
at ∼md points, requires large field

costs: for A of degree d = 1

diagonalization [Storjohann 2003] O(mω log(m)2)
Smith form: Las Vegas randomized, requires large field

partial triangularization

I iterative [Mulders-Storjohann 2003] O(m3)
via weak Popov form computations

I divide and conquer, generic [Giorgi-Jeannerod-Villard 2003] O(mω)
diagonal of Hermite form must be 1, . . . , 1, det(A)

I divide and conquer [Neiger-Labahn-Zhou 2017] O (̃mω)
logarithmic factors in m and d

11

sources of log factors

in K-linear algebra

for polynomial matrices

I divide and conquer with half-dimension blocks → no log(m)

I iterative approaches in m steps → sometimes no log(m) [P.-Storjohann’07]

I explicit Krylov iteration: compute
(
v Mv · · · Mmv

)
→ log(m)

I divide and conquer with half-dimension blocks → no log(m)
provided degrees are controlled, e.g. kernel basis [Zhou-Labahn-Storjohann’12]

I divide and conquer on degree → log(d) but no log(m)
e.g. K[x]-MatMul and approximant basis [Giorgi-Jeannerod-Villard’03]

I explicit Krylov iterations on constant matrices e.g. [Jeannerod-Neiger-Schost-

Villard’17]

since base cases of recursions on degree = matrices over K
typically adds O(mωd log(m)) to the cost, non-negligible when d =O(1)

I looking for a matrix with unpredictable, unbalanced degrees
log(m) steps in dimension m×m, to uncover the degree profile [Zhou-Labahn’13]

reminiscent of obstacles in the derandomization of [P.-Storjohann’07]

12

sources of log factors

in K-linear algebra

for polynomial matrices

I divide and conquer with half-dimension blocks → no log(m)

I iterative approaches in m steps → sometimes no log(m) [P.-Storjohann’07]

I explicit Krylov iteration: compute
(
v Mv · · · Mmv

)
→ log(m)

I divide and conquer with half-dimension blocks → no log(m)
provided degrees are controlled, e.g. kernel basis [Zhou-Labahn-Storjohann’12]

I divide and conquer on degree → log(d) but no log(m)
e.g. K[x]-MatMul and approximant basis [Giorgi-Jeannerod-Villard’03]

I explicit Krylov iterations on constant matrices e.g. [Jeannerod-Neiger-Schost-

Villard’17]

since base cases of recursions on degree = matrices over K
typically adds O(mωd log(m)) to the cost, non-negligible when d =O(1)

I looking for a matrix with unpredictable, unbalanced degrees
log(m) steps in dimension m×m, to uncover the degree profile [Zhou-Labahn’13]

reminiscent of obstacles in the derandomization of [P.-Storjohann’07]

12

outline

I context & result

I previous work

I overview of the approach

I obstacles & spin-offs

I computing with matrices over K and K[x]
I reductions to matrix multiplication
I framework for complexity bounds

I based on matrices over K
I based on matrices over K[x]
I where do log factors come from?

13

outline

I context & result

I previous work

I overview of the approach

I obstacles & spin-offs

I computing with matrices over K and K[x]
I reductions to matrix multiplication
I framework for complexity bounds

I based on matrices over K
I based on matrices over K[x]
I where do log factors come from?

I determinant via partial triangularization
I overview of the new recursive approach
I complexity of this ternary recursion

13

partial block triangularization

[Mulders-Storjohann 2003, Giorgi-Jeannerod-Villard 2003, Zhou 2012, Neiger-Labahn-Zhou

2017]

triangularization of m×m matrix A using m
2 ×

m
2 blocks[

∗ ∗
K1 K2

] [
A1 A2

A3 A4

]
=

[
R ∗
0 B

]

K1A2 +K2A4 row basis of [A1
A3

]kernel basis of [A1
A3

]

not computed

property: det(A) = det(R) det(B)

14

partial block triangularization

[Mulders-Storjohann 2003, Giorgi-Jeannerod-Villard 2003, Zhou 2012, Neiger-Labahn-Zhou

2017]

triangularization of m×m matrix A using m
2 ×

m
2 blocks[

∗ ∗
K1 K2

] [
A1 A2

A3 A4

]
=

[
R ∗
0 B

]

K1A2 +K2A4 row basis of [A1
A3

]kernel basis of [A1
A3

]

not computed

property: det(A) = det(R) det(B)
generic input ⇒ det(A) without log(m) [Giorgi-Jeannerod-Villard’03]

A1 and A3 are coprime ⇒ R = Im/2 ⇒ det(A) = det(B)

I compute kernel [K1 K2]; deduce B by MatMul O(mωM(d) log(d))
I recursively, compute det(B), return it

A and [K1 K2] have degree d ⇒ B has degree 2d: controlled total degree

complexity C(m,d) = C(m2 , 2d) +O(mωM(d) log(d))

14

partial block triangularization

[Mulders-Storjohann 2003, Giorgi-Jeannerod-Villard 2003, Zhou 2012, Neiger-Labahn-Zhou

2017]

triangularization of m×m matrix A using m
2 ×

m
2 blocks[

∗ ∗
K1 K2

] [
A1 A2

A3 A4

]
=

[
R ∗
0 B

]

K1A2 +K2A4 row basis of [A1
A3

]kernel basis of [A1
A3

]

not computed

property: det(A) = det(R) det(B)
general input ⇒ det(A) with log(m) [Labahn-Neiger-Zhou’17]

matrix degree not controlled: degree of B up to D =
∑

rdeg(A) 6 md

but controlled average row degree: at most D
m

I compute kernel [K1 K2]; deduce B by MatMul O (̃mωD
m
)

I compute row basis R O (̃mωD
m
) with log(m)

I recursively, compute det(R) and det(B), return det(R) det(B)

14

partial block triangularization

[Mulders-Storjohann 2003, Giorgi-Jeannerod-Villard 2003, Zhou 2012, Neiger-Labahn-Zhou

2017]

triangularization of m×m matrix A using m
2 ×

m
2 blocks[

∗ ∗
K1 K2

] [
A1 A2

A3 A4

]
=

[
R ∗
0 B

]

K1A2 +K2A4 row basis of [A1
A3

]kernel basis of [A1
A3

]

not computed

property: det(A) = det(R) det(B)
be lazy: if hard to compute, don’t compute [Neiger-P.’21]

obstacle = removing log factors in row basis computation
⇒ solution: remove row basis computation[

Im/2 0
K1 K2

] [
A1 A2

A3 A4

]
=

[
A1 A2

0 B

]
property: det(A) = det(A1) det(B)/ det(K2)

14

further obstacles (consequences of laziness)[
Im/2 0
K1 K2

] [
A1 A2

A3 A4

]
=

[
A1 A2

0 B

]
property: det(A) = det(A1) det(B)/ det(K2)

no log(m) in the computation of A1, B, K2

requires nonsingular A1, otherwise det(K2) = 0

3 recursive calls in matrix size m/2 is , but requires
∑

rdeg(A1) 6 D/2

otherwise degree control is too weak. (this implies
∑

rdeg(K2) 6D/2)

solution: require A in weak Popov form
(the characteristic matrix A = xIm −M is in Popov form)

implies A1 nonsingular and
∑

rdeg(A1) 6 D/2 up to easy transformations

both A1 and B are also in weak Popov form ⇒ suitable for recursive calls

K2 is in “shifted reduced” form. . . find weak Popov P with same determinant

solution: exploit degree knowledge to accelerate transformations
s-reduced ⇒ s-weak Popov ⇒ s-Popov

15

further obstacles (consequences of laziness)[
Im/2 0
K1 K2

] [
A1 A2

A3 A4

]
=

[
A1 A2

0 B

]
property: det(A) = det(A1) det(B)/ det(K2)

no log(m) in the computation of A1, B, K2

requires nonsingular A1, otherwise det(K2) = 0

3 recursive calls in matrix size m/2 is , but requires
∑

rdeg(A1) 6 D/2

otherwise degree control is too weak. (this implies
∑

rdeg(K2) 6D/2)

solution: require A in weak Popov form
(the characteristic matrix A = xIm −M is in Popov form)

implies A1 nonsingular and
∑

rdeg(A1) 6 D/2 up to easy transformations

both A1 and B are also in weak Popov form ⇒ suitable for recursive calls

K2 is in “shifted reduced” form. . . find weak Popov P with same determinant

solution: exploit degree knowledge to accelerate transformations
s-reduced ⇒ s-weak Popov ⇒ s-Popov

15

further obstacles (consequences of laziness)[
Im/2 0
K1 K2

] [
A1 A2

A3 A4

]
=

[
A1 A2

0 B

]
property: det(A) = det(A1) det(B)/ det(K2)

no log(m) in the computation of A1, B, K2

requires nonsingular A1, otherwise det(K2) = 0

3 recursive calls in matrix size m/2 is , but requires
∑

rdeg(A1) 6 D/2

otherwise degree control is too weak. (this implies
∑

rdeg(K2) 6D/2)

solution: require A in weak Popov form
(the characteristic matrix A = xIm −M is in Popov form)

implies A1 nonsingular and
∑

rdeg(A1) 6 D/2 up to easy transformations

both A1 and B are also in weak Popov form ⇒ suitable for recursive calls

K2 is in “shifted reduced” form. . . find weak Popov P with same determinant

solution: exploit degree knowledge to accelerate transformations
s-reduced ⇒ s-weak Popov ⇒ s-Popov

15

further obstacles (consequences of laziness)[
Im/2 0
K1 K2

] [
A1 A2

A3 A4

]
=

[
A1 A2

0 B

]
property: det(A) = det(A1) det(B)/ det(K2)

no log(m) in the computation of A1, B, K2

requires nonsingular A1, otherwise det(K2) = 0

3 recursive calls in matrix size m/2 is , but requires
∑

rdeg(A1) 6 D/2

otherwise degree control is too weak. (this implies
∑

rdeg(K2) 6D/2)

solution: require A in weak Popov form
(the characteristic matrix A = xIm −M is in Popov form)

implies A1 nonsingular and
∑

rdeg(A1) 6 D/2 up to easy transformations

both A1 and B are also in weak Popov form ⇒ suitable for recursive calls

K2 is in “shifted reduced” form. . . find weak Popov P with same determinant

solution: exploit degree knowledge to accelerate transformations
s-reduced ⇒ s-weak Popov ⇒ s-Popov

15

ternary recursion & complexity analysis

determinant of A ∈ K[x]m×m of average row degree D
m

= degdet
m

C(m,D) 6 2C(m2 , D2) + C(m2 ,D) +O(mωM ′(D
m
))

m,D

m
2 ,D m

2 , D2

m
4 ,D m

4 , D2
m
4 , D4

m
8 ,D m

8 , D2
m
8 , D4

m
8 , D8

1,D . . . 1, D2j
. . . 1, D2µ

µ = log2(m)

1 2

1 2 2 4

1 2 4 8 4 8

1

1 2

1 4 4

1 6 12 8

1
2j
(
µ
j

)
2µ

O(mlog2 3)

O(mωM ′(Dm)2−3ε)

O(mωM ′(Dm)2−2ε)

O(mωM ′(Dm)2−ε)

O(mωM ′(Dm))

16

ternary recursion & complexity analysis

determinant of A ∈ K[x]m×m of average row degree D
m

= degdet
m

C(m,D) 6 2C(m2 , D2) + C(m2 ,D) +O(mωM ′(D
m
))

m,D

m
2 ,D m

2 , D2

m
4 ,D m

4 , D2
m
4 , D4

m
8 ,D m

8 , D2
m
8 , D4

m
8 , D8

1,D . . . 1, D2j
. . . 1, D2µ

µ = log2(m)

1 2

1 2 2 4

1 2 4 8 4 8

1

1 2

1 4 4

1 6 12 8

1
2j
(
µ
j

)
2µ

O(mlog2 3)

O(mωM ′(Dm)2−3ε)

O(mωM ′(Dm)2−2ε)

O(mωM ′(Dm)2−ε)

O(mωM ′(Dm))

16

ternary recursion & complexity analysis

determinant of A ∈ K[x]m×m of average row degree D
m

= degdet
m

C(m,D) 6 2C(m2 , D2) + C(m2 ,D) +O(mωM ′(D
m
))

m,D

m
2 ,D m

2 , D2

m
4 ,D m

4 , D2
m
4 , D4

m
8 ,D m

8 , D2
m
8 , D4

m
8 , D8

1,D . . . 1, D2j
. . . 1, D2µ

µ = log2(m)

1 2

1 2 2 4

1 2 4 8 4 8

1

1 2

1 4 4

1 6 12 8

1
2j
(
µ
j

)
2µ

O(mlog2 3)

O(mωM ′(Dm)2−3ε)

O(mωM ′(Dm)2−2ε)

O(mωM ′(Dm)2−ε)

O(mωM ′(Dm))

16

ternary recursion & complexity analysis

determinant of A ∈ K[x]m×m of average row degree D
m

= degdet
m

C(m,D) 6 2C(m2 , D2) + C(m2 ,D) +O(mωM ′(D
m
))

m,D

m
2 ,D m

2 , D2

m
4 ,D m

4 , D2
m
4 , D4

m
8 ,D m

8 , D2
m
8 , D4

m
8 , D8

1,D . . . 1, D2j
. . . 1, D2µ

µ = log2(m)

1 2

1 2 2 4

1 2 4 8 4 8

1

1 2

1 4 4

1 6 12 8

1
2j
(
µ
j

)
2µ

O(mlog2 3)

O(mωM ′(Dm)2−3ε)

O(mωM ′(Dm)2−2ε)

O(mωM ′(Dm)2−ε)

O(mωM ′(Dm))

16

ternary recursion & complexity analysis

determinant of A ∈ K[x]m×m of average row degree D
m

= degdet
m

C(m,D) 6 2C(m2 , D2) + C(m2 ,D) +O(mωM ′(D
m
))

m,D

m
2 ,D m

2 , D2

m
4 ,D m

4 , D2
m
4 , D4

m
8 ,D m

8 , D2
m
8 , D4

m
8 , D8

1,D . . . 1, D2j
. . . 1, D2µ

µ = log2(m)

1 2

1 2 2 4

1 2 4 8 4 8

1

1 2

1 4 4

1 6 12 8

1
2j
(
µ
j

)
2µ

O(mlog2 3)

O(mωM ′(Dm)2−3ε)

O(mωM ′(Dm)2−2ε)

O(mωM ′(Dm)2−ε)

O(mωM ′(Dm))

Since:
∑µ
j=0 2j

(
µ
j

)
= (2 + 1)µ

16

ternary recursion & complexity analysis

determinant of A ∈ K[x]m×m of average row degree D
m

= degdet
m

C(m,D) 6 2C(m2 , D2) + C(m2 ,D) +O(mωM ′(D
m
))

m,D

m
2 ,D m

2 , D2

m
4 ,D m

4 , D2
m
4 , D4

m
8 ,D m

8 , D2
m
8 , D4

m
8 , D8

1,D . . . 1, D2j
. . . 1, D2µ

µ = log2(m)

1 2

1 2 2 4

1 2 4 8 4 8

1

1 2

1 4 4

1 6 12 8

1
2j
(
µ
j

)
2µ

O(mlog2 3)

O(mωM ′(Dm)2−3ε)

O(mωM ′(Dm)2−2ε)

O(mωM ′(Dm)2−ε)

O(mωM ′(Dm))

Since:
∑µ
j=0 2j

(
µ
j

)
= (2 + 1)µ

for ε > 0 s.t. M(d) ∈ O(dω−1−ε)

M ′(d) = M(d) logd

16

ternary recursion & complexity analysis

determinant of A ∈ K[x]m×m of average row degree D
m

= degdet
m

C(m,D) 6 2C(m2 , D2) + C(m2 ,D) +O(mωM ′(D
m
)) ∈ O(mωM ′(D

m
))

m,D

m
2 ,D m

2 , D2

m
4 ,D m

4 , D2
m
4 , D4

m
8 ,D m

8 , D2
m
8 , D4

m
8 , D8

1,D . . . 1, D2j
. . . 1, D2µ

µ = log2(m)

1 2

1 2 2 4

1 2 4 8 4 8

1

1 2

1 4 4

1 6 12 8

1
2j
(
µ
j

)
2µ

O(mlog2 3)

O(mωM ′(Dm)2−3ε)

O(mωM ′(Dm)2−2ε)

O(mωM ′(Dm)2−ε)

O(mωM ′(Dm))

Since:
∑µ
j=0 2j

(
µ
j

)
= (2 + 1)µ

for ε > 0 s.t. M(d) ∈ O(dω−1−ε)

M ′(d) = M(d) logd

16

outline

I context & result

I previous work

I overview of the approach

I obstacles & spin-offs

I computing with matrices over K and K[x]
I reductions to matrix multiplication
I framework for complexity bounds

I based on matrices over K
I based on matrices over K[x]
I where do log factors come from?

I determinant via partial triangularization
I overview of the new recursive approach
I complexity of this ternary recursion

17

outline

I context & result

I previous work

I overview of the approach

I obstacles & spin-offs

I computing with matrices over K and K[x]
I reductions to matrix multiplication
I framework for complexity bounds

I based on matrices over K
I based on matrices over K[x]
I where do log factors come from?

I determinant via partial triangularization
I overview of the new recursive approach
I complexity of this ternary recursion

I main obstacles and solutions
I spin-off results on shifted forms
I summary and perspectives

17

Hermite and Popov forms

working over K = Z/7Z

A =

 3x+ 4 x3 + 4x+ 1 4x2 + 3
5 5x2 + 3x+ 1 5x+ 3

3x3 + x2 + 5x+ 3 6x+ 5 2x+ 1


using elementary row operations, transform A into. . .

Hermite form H =

 x6 + 6x4 + x3 + x+ 4 0 0
5x5 + 5x4 + 6x3 + 2x2 + 6x+ 3 x 0

3x4 + 5x3 + 4x2 + 6x+ 1 5 1



Popov form P =

x3 + 5x2 + 4x+ 1 2x+ 4 3x+ 5
1 x2 + 2x+ 3 x+ 2

3x+ 2 4x x2



18

Hermite and Popov forms

nonsingular A ∈ K[x]m×m

Hermite form [Hermite, 1851]

I triangular
I column normalized


16
15 0
15 0
15 0



4
3 7
1 5 3
3 6 1 2



elementary row transformations

Popov form [Popov, 1972]

I row reduced/distinct pivots
I column normalized


4 3 3 3
3 4 3 3
3 3 4 3
3 3 3 4



7 0 1 5
0 1 0

2
6 0 1 6



K[x]-module M ⊂ K[x]1×m of rank m

4pot 4topreduced Gröbner basisinvariant: D = deg(det(A)) = 4 + 7 + 3 + 2 = 7 + 1 + 2 + 6

I average column degree is D
m

I size of object is mD+m2 =m2(D
m

+ 1)

[Beckermann-Labahn-Villard, 1999; Mulders-Storjohann, 2003]

weak Popov form = not column normalized

= minimal, non-reduced, t.o.p. Gröbner basis

18

Hermite and Popov forms

nonsingular A ∈ K[x]m×m

Hermite form [Hermite, 1851]

I triangular
I column normalized


16
15 0
15 0
15 0



4
3 7
1 5 3
3 6 1 2



elementary row transformations

Popov form [Popov, 1972]

I row reduced/distinct pivots
I column normalized


4 3 3 3
3 4 3 3
3 3 4 3
3 3 3 4



7 0 1 5
0 1 0

2
6 0 1 6



K[x]-module M ⊂ K[x]1×m of rank m

4pot 4topreduced Gröbner basisinvariant: D = deg(det(A)) = 4 + 7 + 3 + 2 = 7 + 1 + 2 + 6

I average column degree is D
m

I size of object is mD+m2 =m2(D
m

+ 1)

[Beckermann-Labahn-Villard, 1999; Mulders-Storjohann, 2003]

weak Popov form = not column normalized

= minimal, non-reduced, t.o.p. Gröbner basis

18

Hermite and Popov forms

nonsingular A ∈ K[x]m×m

Hermite form [Hermite, 1851]

I triangular
I column normalized


16
15 0
15 0
15 0



4
3 7
1 5 3
3 6 1 2



elementary row transformations

Popov form [Popov, 1972]

I row reduced/distinct pivots
I column normalized


4 3 3 3
3 4 3 3
3 3 4 3
3 3 3 4



7 0 1 5
0 1 0

2
6 0 1 6



K[x]-module M ⊂ K[x]1×m of rank m

4pot 4topreduced Gröbner basis

invariant: D = deg(det(A)) = 4 + 7 + 3 + 2 = 7 + 1 + 2 + 6

I average column degree is D
m

I size of object is mD+m2 =m2(D
m

+ 1)

[Beckermann-Labahn-Villard, 1999; Mulders-Storjohann, 2003]

weak Popov form = not column normalized

= minimal, non-reduced, t.o.p. Gröbner basis

18

Hermite and Popov forms

nonsingular A ∈ K[x]m×m

Hermite form [Hermite, 1851]

I triangular
I column normalized


16
15 0
15 0
15 0



4
3 7
1 5 3
3 6 1 2



elementary row transformations

Popov form [Popov, 1972]

I row reduced/distinct pivots
I column normalized


4 3 3 3
3 4 3 3
3 3 4 3
3 3 3 4



7 0 1 5
0 1 0

2
6 0 1 6



K[x]-module M ⊂ K[x]1×m of rank m

4pot 4topreduced Gröbner basis

invariant: D = deg(det(A)) = 4 + 7 + 3 + 2 = 7 + 1 + 2 + 6

I average column degree is D
m

I size of object is mD+m2 =m2(D
m

+ 1)

[Beckermann-Labahn-Villard, 1999; Mulders-Storjohann, 2003]

weak Popov form = not column normalized

= minimal, non-reduced, t.o.p. Gröbner basis

18

Hermite and Popov forms

nonsingular A ∈ K[x]m×m

Hermite form [Hermite, 1851]

I triangular
I column normalized


16
15 0
15 0
15 0



4
3 7
1 5 3
3 6 1 2



elementary row transformations

Popov form [Popov, 1972]

I row reduced/distinct pivots
I column normalized


4 3 3 3
3 4 3 3
3 3 4 3
3 3 3 4



7 0 1 5
0 1 0

2
6 0 1 6



K[x]-module M ⊂ K[x]1×m of rank m

4pot 4topreduced Gröbner basisinvariant: D = deg(det(A)) = 4 + 7 + 3 + 2 = 7 + 1 + 2 + 6

I average column degree is D
m

I size of object is mD+m2 =m2(D
m

+ 1)

[Beckermann-Labahn-Villard, 1999; Mulders-Storjohann, 2003]

weak Popov form = not column normalized

= minimal, non-reduced, t.o.p. Gröbner basis

18

shifted forms

shift: integer tuple s = (s1, . . . , sm) acting as column weights

→ connects Popov and Hermite forms

s = (0, 0, 0, 0)
Popov


4 3 3 3
3 4 3 3
3 3 4 3
3 3 3 4



7 0 1 5
0 1 0

2
6 0 1 6



s = (0, 2, 4, 6)
s-Popov


7 4 2 0
6 5 2 0
6 4 3 0
6 4 2 1



8 5 1
7 6 1

2
0 1 0



s = (0,D, 2D, 3D)
Hermite


16
15 0
15 0
15 0



4
3 7
1 5 3
3 6 1 2


I normal form, average column degree D/m

I shifts arise naturally in algorithms (approximants, kernel, . . .)
I they allow one to specify non-uniform degree constraints

19

back to obstacles: easy ones

recall: A =
[
A1 A2
A3 A4

]
in weak Popov form, we want:

IA1 nonsingular: ok by definition
(principal submatrices of A are weak Popov ⇒ are nonsingular)

I

∑
rdeg(A1) 6 D/2: either ok for A, or ok for

[
A4 A3
A2 A1

]
(almost weak Popov. . . easily transformed into it, with same determinant)

shifts in kernel basis computation [Zhou-Labahn-Storjohann’12]

[K1 K2] kernel basis of
[
A1
A3

]
computed in rdeg(A)-weak Popov form:

cost O(mωM ′(D
m
)),

∑
rdeg(K2) 6 D/2, K2 in s-weak Popov form

D =
∑

rdeg(A) = deg det(A) s = rdeg(A4) = last m/2 entries of rdeg(A)

using the shift rdeg(A) (and s) has crucial advantages:
I towards correctness: B = [K1 K2]

[
A2
A4

]
is in 0-weak Popov form

I towards efficiency: implies small degrees in K2

and best speed both for kernel and product B

. . . but we cannot call the algorithm recursively on K2

20

back to obstacles: easy ones

recall: A =
[
A1 A2
A3 A4

]
in weak Popov form, we want:

IA1 nonsingular: ok by definition
(principal submatrices of A are weak Popov ⇒ are nonsingular)

I

∑
rdeg(A1) 6 D/2: either ok for A, or ok for

[
A4 A3
A2 A1

]
(almost weak Popov. . . easily transformed into it, with same determinant)

shifts in kernel basis computation [Zhou-Labahn-Storjohann’12]

[K1 K2] kernel basis of
[
A1
A3

]
computed in rdeg(A)-weak Popov form:

cost O(mωM ′(D
m
)),

∑
rdeg(K2) 6 D/2, K2 in s-weak Popov form

D =
∑

rdeg(A) = deg det(A) s = rdeg(A4) = last m/2 entries of rdeg(A)

using the shift rdeg(A) (and s) has crucial advantages:
I towards correctness: B = [K1 K2]

[
A2
A4

]
is in 0-weak Popov form

I towards efficiency: implies small degrees in K2

and best speed both for kernel and product B

. . . but we cannot call the algorithm recursively on K2

20

back to obstacles: easy ones

recall: A =
[
A1 A2
A3 A4

]
in weak Popov form, we want:

IA1 nonsingular: ok by definition
(principal submatrices of A are weak Popov ⇒ are nonsingular)

I

∑
rdeg(A1) 6 D/2: either ok for A, or ok for

[
A4 A3
A2 A1

]
(almost weak Popov. . . easily transformed into it, with same determinant)

shifts in kernel basis computation [Zhou-Labahn-Storjohann’12]

[K1 K2] kernel basis of
[
A1
A3

]
computed in rdeg(A)-weak Popov form:

cost O(mωM ′(D
m
)),

∑
rdeg(K2) 6 D/2, K2 in s-weak Popov form

D =
∑

rdeg(A) = deg det(A) s = rdeg(A4) = last m/2 entries of rdeg(A)

using the shift rdeg(A) (and s) has crucial advantages:
I towards correctness: B = [K1 K2]

[
A2
A4

]
is in 0-weak Popov form

I towards efficiency: implies small degrees in K2

and best speed both for kernel and product B

. . . but we cannot call the algorithm recursively on K2

20

approaching the main obstacle

input: K2 in s-weak Popov form, with s > 0
output: P in 0-weak Popov form, with det(P) = det(K2)

Idea 1.a: change of shift from s to 0, i.e. P = WeakPopov(K2)
known methods are only efficient for increasing s to a larger shift

[Jeannerod-Neiger-Schost-Villard’17]

Idea 1.b: normalization of K2 into its s-Popov form P
 PT is 0-weak Popov by construction, and det(PT) = det(P)

amounts to a change of shift from s to −δ 6 0 [Neiger’16] ⇒ same issue

Fact: KT
2 is −t-weak Popov, for some −t 6 0

It = rdegs(K2) = s+ δ > 0

I ignoring some row/column permutations for simplicity

Idea 2.a: change of shift from −t to 0, i.e. P = WeakPopov(KT
2)

increasing shift, but KT
2 has large average rdeg (we control cdeg(KT

2) = rdeg(K2))

Idea 2.b: normalization of KT
2 into its −t-Popov form P

21

approaching the main obstacle

input: K2 in s-weak Popov form, with s > 0
output: P in 0-weak Popov form, with det(P) = det(K2)

Idea 1.a: change of shift from s to 0, i.e. P = WeakPopov(K2)
known methods are only efficient for increasing s to a larger shift

[Jeannerod-Neiger-Schost-Villard’17]

Idea 1.b: normalization of K2 into its s-Popov form P
 PT is 0-weak Popov by construction, and det(PT) = det(P)

amounts to a change of shift from s to −δ 6 0 [Neiger’16] ⇒ same issue

Fact: KT
2 is −t-weak Popov, for some −t 6 0

It = rdegs(K2) = s+ δ > 0

I ignoring some row/column permutations for simplicity

Idea 2.a: change of shift from −t to 0, i.e. P = WeakPopov(KT
2)

increasing shift, but KT
2 has large average rdeg (we control cdeg(KT

2) = rdeg(K2))

Idea 2.b: normalization of KT
2 into its −t-Popov form P

21

approaching the main obstacle

input: K2 in s-weak Popov form, with s > 0
output: P in 0-weak Popov form, with det(P) = det(K2)

Idea 1.a: change of shift from s to 0, i.e. P = WeakPopov(K2)
known methods are only efficient for increasing s to a larger shift

[Jeannerod-Neiger-Schost-Villard’17]

Idea 1.b: normalization of K2 into its s-Popov form P
 PT is 0-weak Popov by construction, and det(PT) = det(P)

amounts to a change of shift from s to −δ 6 0 [Neiger’16] ⇒ same issue

Fact: KT
2 is −t-weak Popov, for some −t 6 0

It = rdegs(K2) = s+ δ > 0

I ignoring some row/column permutations for simplicity

Idea 2.a: change of shift from −t to 0, i.e. P = WeakPopov(KT
2)

increasing shift, but KT
2 has large average rdeg (we control cdeg(KT

2) = rdeg(K2))

Idea 2.b: normalization of KT
2 into its −t-Popov form P

21

approaching the main obstacle

input: K2 in s-weak Popov form, with s > 0
output: P in 0-weak Popov form, with det(P) = det(K2)

Idea 1.a: change of shift from s to 0, i.e. P = WeakPopov(K2)
known methods are only efficient for increasing s to a larger shift

[Jeannerod-Neiger-Schost-Villard’17]

Idea 1.b: normalization of K2 into its s-Popov form P
 PT is 0-weak Popov by construction, and det(PT) = det(P)

amounts to a change of shift from s to −δ 6 0 [Neiger’16] ⇒ same issue

Fact: KT
2 is −t-weak Popov, for some −t 6 0

It = rdegs(K2) = s+ δ > 0

I ignoring some row/column permutations for simplicity

Idea 2.a: change of shift from −t to 0, i.e. P = WeakPopov(KT
2)

increasing shift, but KT
2 has large average rdeg (we control cdeg(KT

2) = rdeg(K2))

Idea 2.b: normalization of KT
2 into its −t-Popov form P

21

approaching the main obstacle

input: K2 in s-weak Popov form, with s > 0
output: P in 0-weak Popov form, with det(P) = det(K2)

Idea 1.a: change of shift from s to 0, i.e. P = WeakPopov(K2)
known methods are only efficient for increasing s to a larger shift

[Jeannerod-Neiger-Schost-Villard’17]

Idea 1.b: normalization of K2 into its s-Popov form P
 PT is 0-weak Popov by construction, and det(PT) = det(P)

amounts to a change of shift from s to −δ 6 0 [Neiger’16] ⇒ same issue

Fact: KT
2 is −t-weak Popov, for some −t 6 0

It = rdegs(K2) = s+ δ > 0

I ignoring some row/column permutations for simplicity

Idea 2.a: change of shift from −t to 0, i.e. P = WeakPopov(KT
2)

increasing shift, but KT
2 has large average rdeg (we control cdeg(KT

2) = rdeg(K2))

Idea 2.b: normalization of KT
2 into its −t-Popov form P

21

spin-offs: faster transformations of shifted forms

weak Popov → Popov

Input: s ∈ Zm, a shift,
A ∈ K[x]m×m, a matrix in s-weak Popov form

Output: the s-Popov form of A
Requirement: −s > DiagonalDegrees(A)
Complexity: O(mωM(D

m
) log(D

m
)) , where D =

∑
s

improvement and generalization of [Sarkar-Storjohann 2011, Section 4]

 support nonzero shifts and involve average degree D
m

I problem viewed as a change of shift with known output degrees
I introduction of partial linearization techniques for kernel bases

reduced → weak Popov

Input: s ∈ Zn, a shift
A ∈ K[x]m×n, a matrix in s-reduced form

Output: an s-weak Popov form of A
Complexity: O(mω−1n(D

m
+ 1)), where D =

∑
rdegs(A) −mmin(s)

easy extension of [Sarkar-Storjohann 2011, Section 3] to shifted forms

22

spin-offs: faster transformations of shifted forms

weak Popov → Popov

Input: s ∈ Zm, a shift,
A ∈ K[x]m×m, a matrix in s-weak Popov form

Output: the s-Popov form of A
Requirement: −s > DiagonalDegrees(A)
Complexity: O(mωM(D

m
) log(D

m
)) , where D =

∑
s

improvement and generalization of [Sarkar-Storjohann 2011, Section 4]

 support nonzero shifts and involve average degree D
m

I problem viewed as a change of shift with known output degrees
I introduction of partial linearization techniques for kernel bases

reduced → weak Popov

Input: s ∈ Zn, a shift
A ∈ K[x]m×n, a matrix in s-reduced form

Output: an s-weak Popov form of A
Complexity: O(mω−1n(D

m
+ 1)), where D =

∑
rdegs(A) −mmin(s)

easy extension of [Sarkar-Storjohann 2011, Section 3] to shifted forms

22

open questions: Frobenius and Smith forms

deterministic, log-free Frobenius form Cs1
Cs2

. . .

Csm

[
M

]

si+1 divides si

I complexity O(mω) [P.-Storjohann’07]

I Las Vegas, requires large field

I exploit the new CharPoly techniques?

deterministic algo in O(mω)?

deterministic Smith form

[s1
s2

. . .

sm

][
A

]
si+1 divides si

I complexity O (̃mωD
m
) [Storjohann’03]

I Las Vegas, requires large field

I exploit progress on K[x]-matrices?

deterministic algo in O (̃mωD
m
)?

23

open questions: Frobenius and Smith forms

deterministic, log-free Frobenius form Cs1
Cs2

. . .

Csm

[
M

]

si+1 divides si

I complexity O(mω) [P.-Storjohann’07]

I Las Vegas, requires large field

I exploit the new CharPoly techniques?

deterministic algo in O(mω)?

deterministic Smith form

[s1
s2

. . .

sm

][
A

]
si+1 divides si

I complexity O (̃mωD
m
) [Storjohann’03]

I Las Vegas, requires large field

I exploit progress on K[x]-matrices?

deterministic algo in O (̃mωD
m
)?

23

conclusion

summary

perspectives

I CharPoly = O(MatMul)

I determinant of reduced polynomial matrices in O(mωM(D
m
) log(D

m
))

I fast transformations between shifted forms of polynomial matrices

I efficient implementation and study of practical performance
small fields, degenerate instances, . . .

I alternative approach by exploiting a quasiseparable structure
closer to the linear algebra approach in [P.-Storjohann 2007]

I Frobenius normal form & Smith normal form

24

