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matrices: multiplication

M =

28 68 75 70
38 25 75 55
24 1 56 28

 ∈ K3×4 3× 4 matrix over K (here F97)

fundamental operations on m×m matrices:

I addition is “quadratic”: O(m2) operations in K
I naive multiplication is cubic: O(m3)

subcubic matrix multiplication

[Strassen’69]

I complexity exponent ω ≈ 2.81

I used in practice for m > a few 100s
in NTL, FLINT, fflas-ffpack. . .

i.e. O(mω) complexity

I best-known exponent ω ≈ 2.373
[Le Gall’14] [Alman-Williams’20]

I “galactic” algorithms: strongly impractical as such
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measuring efficiency: algebraic complexity

efficient algorithms for polynomials, matrices, . . .
with coefficients in some base field K

I low complexity bound
I low execution time

low memory usage, power consumption, . . .

prime field Fp = Z/pZ
field extension Fp[x]/〈f(x)〉
rational numbers Q

algebraic complexity bounds
 count number of operations in K

standard complexity model for algebraic computations

good predictor of practical performance for finite fields K
ignores coefficient growth, e.g. over K = Q
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characteristic polynomial of a matrix

given M ∈ Km×m, compute det(xIm −M) ∈ K[x]

K-linear algebra: reductions of most problems to matrix multiplication

LinSys Rank Det

PLUQ CharPoly

MinPoly

TRSM

MatMul

Inverse

× log(m)

LinSys
Det

Rank
PLUQ
TRSM
Inverse


=O(MatMul)

MatMul = O(CharPoly)
[Baur-Strassen 1983]

CharPoly = O(MatMul) ?
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characteristic polynomial in the time of matrix multiplication

[Vincent Neiger & Clément Pernet, 2021]

deterministic algorithm with complexity O(mω)

I polynomial matrices I ternary divide and conquer
I partial triangularization I exploiting degree knowledge

matrix multiplication in Km×m

I choose a MatMul algorithm in O(mω)
I use this one for all MatMul instances

our requirement: 2 < ω 6 3

we gladly accept ω = 2.1, please provide the algorithm

polynomial multiplication in K[x]

I choose a PolMul algorithm in O(M(d))
I use this one for all PolMul instances

our requirement: M(d) is superlinear and
submultiplicative and reasonably good

2M(d) 6 M(2d) M(d1d2) 6 M(d1)M(d2)

M(d) ∈O(dω−1−ε) for some ε > 0

requirement: matrices in K[x]m×m6d
multiplied in O(mωM(d))
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characteristic polynomial in the time of matrix multiplication

summary of previous results

[Vincent Neiger & Clément Pernet, 2021]

deterministic algorithm with complexity O(mω)

I polynomial matrices I ternary divide and conquer
I partial triangularization I exploiting degree knowledge

I deterministic, general: O(mω log(m)) [Keller-Gehrig 1985]

I deterministic, generic input: O(mω) [Giorgi-Jeannerod-Villard 2003]

I randomized, general: O(mω) [P.-Storjohann 2007]
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characteristic polynomial in the time of matrix multiplication

framework for complexity — clarification is needed!

[Vincent Neiger & Clément Pernet, 2021]

deterministic algorithm with complexity O(mω)

I polynomial matrices I ternary divide and conquer
I partial triangularization I exploiting degree knowledge

For any MatMul exponent ω feasible (as of today),
there is a MatMul algorithm in O(mω−ε) for some ε > 0
⇒ the CharPoly algorithm of [Keller-Gehrig’85] is

I deterministic
I in O(mω−ε log(m)) ⊂ O(mω)

not entirely satisfactory. . .
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characteristic polynomial in the time of matrix multiplication

framework for complexity — classical requirements

[Vincent Neiger & Clément Pernet, 2021]

deterministic algorithm with complexity O(mω)
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I partial triangularization I exploiting degree knowledge
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polynomial matrices

A =

 3x+ 4 x3 + 4x+ 1 4x2 + 3
5 5x2 + 3x+ 1 5x+ 3

3x3 + x2 + 5x+ 3 6x+ 5 2x+ 1

 ∈ K[x]3×3

3 × 3 matrix of degree 3
with entries in K[x] = F7[x]

operations on K[x]m×m<d

I combination of matrix and polynomial computations

I addition in O(m2d), naive multiplication in O(m3d2)

multiplication in O(mωd log(d) + m2d log(d) log log(d))

[Cantor-Kaltofen’91]

∈ O(mωM(d)) ⊂ O (̃mωd)

charpoly: matrix xIm −M is m×m of degree 1

→ during algorithm: smaller size, larger degree

I some problems&techniques shared with matrices over K
I some problems&techniques specific to entries in K[x]
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polynomial matrices: main computational problems

reductions of most problems to polynomial matrix multiplication

matrix m×m of degree d
of “average” degree D

m

→ O (̃mωd)
→ O (̃mωD

m
)

classical matrix operations

I multiplication

I inversion O˜(m3d)

I kernel, system solving

I rank, determinant

univariate relations

I Hermite-Padé approximation

I vector rational interpolation

I syzygies, modular equations

transformation to normal forms

I triangularization: Hermite form

I row reduction: Popov form

I diagonalization: Smith form
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charpoly via K-linear algebra

traces of powers O(m4) or O(mω+1)
I [LeVerrier 1840] [Faddeev’49, Souriau’48, ...]

I used by [Csanky’75] to prove CharPoly ∈ NC2

determinant expansion O(m4)
I [Samuelson’42, Berkowitz’84]

I suited to division free algorithms

[Abdlejaoued-Malaschonok’01, Kaltofen-Villard’05]

Krylov methods [Danilevskij’37, Keller-Gehrig’85, P.-Storjohann’07]

I deterministic O(m3) or O(mω log(m))
I generic O(mω)
I Las Vegas randomized, requires large field O(mω)

i.e. card(K) > 2m2
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charpoly via polynomial matrices

determinant of matrix A ∈ K[x]m×m

evaluation-interpolation [folklore] O(mω+1)
at ∼md points, requires large field

costs: for A of degree d = 1

diagonalization [Storjohann 2003] O(mω log(m)2)
Smith form: Las Vegas randomized, requires large field

partial triangularization

I iterative [Mulders-Storjohann 2003] O(m3)
via weak Popov form computations

I divide and conquer, generic [Giorgi-Jeannerod-Villard 2003] O(mω)
diagonal of Hermite form must be 1, . . . , 1, det(A)

I divide and conquer [Neiger-Labahn-Zhou 2017] O (̃mω)
logarithmic factors in m and d
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sources of log factors

in K-linear algebra

for polynomial matrices

I divide and conquer with half-dimension blocks → no log(m)

I iterative approaches in m steps → sometimes no log(m) [P.-Storjohann’07]

I explicit Krylov iteration: compute
(
v Mv · · · Mmv

)
→ log(m)

I divide and conquer with half-dimension blocks → no log(m)
provided degrees are controlled, e.g. kernel basis [Zhou-Labahn-Storjohann’12]

I divide and conquer on degree → log(d) but no log(m)
e.g. K[x]-MatMul and approximant basis [Giorgi-Jeannerod-Villard’03]

I explicit Krylov iterations on constant matrices e.g. [Jeannerod-Neiger-Schost-

Villard’17]

since base cases of recursions on degree = matrices over K
typically adds O(mωd log(m)) to the cost, non-negligible when d =O(1)

I looking for a matrix with unpredictable, unbalanced degrees
log(m) steps in dimension m×m, to uncover the degree profile [Zhou-Labahn’13]

reminiscent of obstacles in the derandomization of [P.-Storjohann’07]
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partial block triangularization

[Mulders-Storjohann 2003, Giorgi-Jeannerod-Villard 2003, Zhou 2012, Neiger-Labahn-Zhou

2017]

triangularization of m×m matrix A using m
2 ×

m
2 blocks[

∗ ∗
K1 K2

] [
A1 A2

A3 A4

]
=

[
R ∗
0 B

]

K1A2 +K2A4 row basis of [ A1
A3

]kernel basis of [ A1
A3

]

not computed

property: det(A) = det(R) det(B)
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2017]

triangularization of m×m matrix A using m
2 ×

m
2 blocks[

∗ ∗
K1 K2

] [
A1 A2

A3 A4

]
=

[
R ∗
0 B

]

K1A2 +K2A4 row basis of [ A1
A3

]kernel basis of [ A1
A3

]

not computed

property: det(A) = det(R) det(B)
generic input ⇒ det(A) without log(m) [Giorgi-Jeannerod-Villard’03]

A1 and A3 are coprime ⇒ R = Im/2 ⇒ det(A) = det(B)

I compute kernel [K1 K2]; deduce B by MatMul O(mωM(d) log(d))
I recursively, compute det(B), return it

A and [K1 K2] have degree d ⇒ B has degree 2d: controlled total degree

complexity C(m,d) = C(m2 , 2d) +O(mωM(d) log(d))
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partial block triangularization

[Mulders-Storjohann 2003, Giorgi-Jeannerod-Villard 2003, Zhou 2012, Neiger-Labahn-Zhou

2017]

triangularization of m×m matrix A using m
2 ×

m
2 blocks[

∗ ∗
K1 K2

] [
A1 A2

A3 A4

]
=

[
R ∗
0 B

]

K1A2 +K2A4 row basis of [ A1
A3

]kernel basis of [ A1
A3

]

not computed

property: det(A) = det(R) det(B)
general input ⇒ det(A) with log(m) [Labahn-Neiger-Zhou’17]

matrix degree not controlled: degree of B up to D =
∑

rdeg(A) 6 md

but controlled average row degree: at most D
m

I compute kernel [K1 K2]; deduce B by MatMul O (̃mωD
m
)

I compute row basis R O (̃mωD
m
) with log(m)

I recursively, compute det(R) and det(B), return det(R) det(B)
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partial block triangularization

[Mulders-Storjohann 2003, Giorgi-Jeannerod-Villard 2003, Zhou 2012, Neiger-Labahn-Zhou

2017]

triangularization of m×m matrix A using m
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2 blocks[
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] [
A1 A2

A3 A4

]
=

[
R ∗
0 B

]

K1A2 +K2A4 row basis of [ A1
A3

]kernel basis of [ A1
A3

]

not computed

property: det(A) = det(R) det(B)
be lazy: if hard to compute, don’t compute [Neiger-P.’21]

obstacle = removing log factors in row basis computation
⇒ solution: remove row basis computation[

Im/2 0
K1 K2

] [
A1 A2

A3 A4

]
=

[
A1 A2

0 B

]
property: det(A) = det(A1) det(B)/ det(K2)
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further obstacles (consequences of laziness)[
Im/2 0
K1 K2

] [
A1 A2

A3 A4

]
=

[
A1 A2

0 B

]
property: det(A) = det(A1) det(B)/ det(K2)

no log(m) in the computation of A1, B, K2

requires nonsingular A1, otherwise det(K2) = 0

3 recursive calls in matrix size m/2 is , but requires
∑

rdeg(A1) 6 D/2

otherwise degree control is too weak. (this implies
∑

rdeg(K2) 6D/2)

solution: require A in weak Popov form
(the characteristic matrix A = xIm −M is in Popov form)

implies A1 nonsingular and
∑

rdeg(A1) 6 D/2 up to easy transformations

both A1 and B are also in weak Popov form ⇒ suitable for recursive calls

K2 is in “shifted reduced” form. . . find weak Popov P with same determinant

solution: exploit degree knowledge to accelerate transformations
s-reduced ⇒ s-weak Popov ⇒ s-Popov

15



further obstacles (consequences of laziness)[
Im/2 0
K1 K2

] [
A1 A2

A3 A4

]
=

[
A1 A2

0 B

]
property: det(A) = det(A1) det(B)/ det(K2)

no log(m) in the computation of A1, B, K2

requires nonsingular A1, otherwise det(K2) = 0

3 recursive calls in matrix size m/2 is , but requires
∑

rdeg(A1) 6 D/2

otherwise degree control is too weak. (this implies
∑

rdeg(K2) 6D/2)

solution: require A in weak Popov form
(the characteristic matrix A = xIm −M is in Popov form)

implies A1 nonsingular and
∑

rdeg(A1) 6 D/2 up to easy transformations

both A1 and B are also in weak Popov form ⇒ suitable for recursive calls

K2 is in “shifted reduced” form. . . find weak Popov P with same determinant

solution: exploit degree knowledge to accelerate transformations
s-reduced ⇒ s-weak Popov ⇒ s-Popov

15



further obstacles (consequences of laziness)[
Im/2 0
K1 K2

] [
A1 A2

A3 A4

]
=

[
A1 A2

0 B

]
property: det(A) = det(A1) det(B)/ det(K2)

no log(m) in the computation of A1, B, K2

requires nonsingular A1, otherwise det(K2) = 0

3 recursive calls in matrix size m/2 is , but requires
∑

rdeg(A1) 6 D/2

otherwise degree control is too weak. (this implies
∑

rdeg(K2) 6D/2)

solution: require A in weak Popov form
(the characteristic matrix A = xIm −M is in Popov form)

implies A1 nonsingular and
∑

rdeg(A1) 6 D/2 up to easy transformations

both A1 and B are also in weak Popov form ⇒ suitable for recursive calls

K2 is in “shifted reduced” form. . . find weak Popov P with same determinant

solution: exploit degree knowledge to accelerate transformations
s-reduced ⇒ s-weak Popov ⇒ s-Popov

15



further obstacles (consequences of laziness)[
Im/2 0
K1 K2

] [
A1 A2

A3 A4

]
=

[
A1 A2

0 B

]
property: det(A) = det(A1) det(B)/ det(K2)

no log(m) in the computation of A1, B, K2

requires nonsingular A1, otherwise det(K2) = 0

3 recursive calls in matrix size m/2 is , but requires
∑

rdeg(A1) 6 D/2

otherwise degree control is too weak. (this implies
∑

rdeg(K2) 6D/2)

solution: require A in weak Popov form
(the characteristic matrix A = xIm −M is in Popov form)

implies A1 nonsingular and
∑

rdeg(A1) 6 D/2 up to easy transformations

both A1 and B are also in weak Popov form ⇒ suitable for recursive calls

K2 is in “shifted reduced” form. . . find weak Popov P with same determinant

solution: exploit degree knowledge to accelerate transformations
s-reduced ⇒ s-weak Popov ⇒ s-Popov
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ternary recursion & complexity analysis

determinant of A ∈ K[x]m×m of average row degree D
m

= degdet
m

C(m,D) 6 2C(m2 , D2 ) + C(m2 ,D) +O(mωM ′(D
m
))

m,D

m
2 ,D m

2 , D2

m
4 ,D m

4 , D2
m
4 , D4

m
8 ,D m

8 , D2
m
8 , D4

m
8 , D8

1,D . . . 1, D2j
. . . 1, D2µ

µ = log2(m)

1 2

1 2 2 4

1 2 4 8 4 8

1

1 2

1 4 4

1 6 12 8

1
2j
(
µ
j

)
2µ

O(mlog2 3)

O(mωM ′(Dm )2−3ε)

O(mωM ′(Dm )2−2ε)

O(mωM ′(Dm )2−ε)

O(mωM ′(Dm ))
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Hermite and Popov forms

working over K = Z/7Z

A =

 3x+ 4 x3 + 4x+ 1 4x2 + 3
5 5x2 + 3x+ 1 5x+ 3

3x3 + x2 + 5x+ 3 6x+ 5 2x+ 1


using elementary row operations, transform A into. . .

Hermite form H =

 x6 + 6x4 + x3 + x+ 4 0 0
5x5 + 5x4 + 6x3 + 2x2 + 6x+ 3 x 0

3x4 + 5x3 + 4x2 + 6x+ 1 5 1



Popov form P =

x3 + 5x2 + 4x+ 1 2x+ 4 3x+ 5
1 x2 + 2x+ 3 x+ 2

3x+ 2 4x x2



18



Hermite and Popov forms

nonsingular A ∈ K[x]m×m

Hermite form [Hermite, 1851]

I triangular
I column normalized


16
15 0
15 0
15 0



4
3 7
1 5 3
3 6 1 2



elementary row transformations

Popov form [Popov, 1972]

I row reduced/distinct pivots
I column normalized


4 3 3 3
3 4 3 3
3 3 4 3
3 3 3 4



7 0 1 5
0 1 0

2
6 0 1 6



K[x]-module M ⊂ K[x]1×m of rank m

4pot 4topreduced Gröbner basisinvariant: D = deg(det(A)) = 4 + 7 + 3 + 2 = 7 + 1 + 2 + 6

I average column degree is D
m

I size of object is mD+m2 =m2(D
m

+ 1)

[Beckermann-Labahn-Villard, 1999; Mulders-Storjohann, 2003]

weak Popov form = not column normalized

= minimal, non-reduced, t.o.p. Gröbner basis

18
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4pot 4topreduced Gröbner basisinvariant: D = deg(det(A)) = 4 + 7 + 3 + 2 = 7 + 1 + 2 + 6

I average column degree is D
m

I size of object is mD+m2 =m2(D
m

+ 1)

[Beckermann-Labahn-Villard, 1999; Mulders-Storjohann, 2003]

weak Popov form = not column normalized

= minimal, non-reduced, t.o.p. Gröbner basis
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shifted forms

shift: integer tuple s = (s1, . . . , sm) acting as column weights

→ connects Popov and Hermite forms

s = (0, 0, 0, 0)
Popov


4 3 3 3
3 4 3 3
3 3 4 3
3 3 3 4



7 0 1 5
0 1 0

2
6 0 1 6



s = (0, 2, 4, 6)
s-Popov


7 4 2 0
6 5 2 0
6 4 3 0
6 4 2 1



8 5 1
7 6 1

2
0 1 0



s = (0,D, 2D, 3D)
Hermite


16
15 0
15 0
15 0



4
3 7
1 5 3
3 6 1 2


I normal form, average column degree D/m

I shifts arise naturally in algorithms (approximants, kernel, . . . )
I they allow one to specify non-uniform degree constraints
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back to obstacles: easy ones

recall: A =
[
A1 A2
A3 A4

]
in weak Popov form, we want:

IA1 nonsingular: ok by definition
(principal submatrices of A are weak Popov ⇒ are nonsingular)

I

∑
rdeg(A1) 6 D/2: either ok for A, or ok for

[
A4 A3
A2 A1

]
(almost weak Popov. . . easily transformed into it, with same determinant)

shifts in kernel basis computation [Zhou-Labahn-Storjohann’12]

[K1 K2] kernel basis of
[
A1
A3

]
computed in rdeg(A)-weak Popov form:

cost O(mωM ′(D
m
)),

∑
rdeg(K2) 6 D/2, K2 in s-weak Popov form

D =
∑

rdeg(A) = deg det(A) s = rdeg(A4) = last m/2 entries of rdeg(A)

using the shift rdeg(A) (and s) has crucial advantages:
I towards correctness: B = [K1 K2]

[
A2
A4

]
is in 0-weak Popov form

I towards efficiency: implies small degrees in K2

and best speed both for kernel and product B

. . . but we cannot call the algorithm recursively on K2
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approaching the main obstacle

input: K2 in s-weak Popov form, with s > 0
output: P in 0-weak Popov form, with det(P) = det(K2)

Idea 1.a: change of shift from s to 0, i.e. P = WeakPopov(K2)
known methods are only efficient for increasing s to a larger shift

[Jeannerod-Neiger-Schost-Villard’17]

Idea 1.b: normalization of K2 into its s-Popov form P
 PT is 0-weak Popov by construction, and det(PT) = det(P)

amounts to a change of shift from s to −δ 6 0 [Neiger’16] ⇒ same issue

Fact: KT
2 is −t-weak Popov, for some −t 6 0

It = rdegs(K2) = s+ δ > 0

I ignoring some row/column permutations for simplicity

Idea 2.a: change of shift from −t to 0, i.e. P = WeakPopov(KT
2 )

increasing shift, but KT
2 has large average rdeg (we control cdeg(KT

2 ) = rdeg(K2))

Idea 2.b: normalization of KT
2 into its −t-Popov form P
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spin-offs: faster transformations of shifted forms

weak Popov → Popov

Input: s ∈ Zm, a shift,
A ∈ K[x]m×m, a matrix in s-weak Popov form

Output: the s-Popov form of A
Requirement: −s > DiagonalDegrees(A)
Complexity: O(mωM(D

m
) log(D

m
)) , where D =

∑
s

improvement and generalization of [Sarkar-Storjohann 2011, Section 4]

 support nonzero shifts and involve average degree D
m

I problem viewed as a change of shift with known output degrees
I introduction of partial linearization techniques for kernel bases

reduced → weak Popov

Input: s ∈ Zn, a shift
A ∈ K[x]m×n, a matrix in s-reduced form

Output: an s-weak Popov form of A
Complexity: O(mω−1n(D

m
+ 1)), where D =

∑
rdegs(A) −mmin(s)

easy extension of [Sarkar-Storjohann 2011, Section 3] to shifted forms
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Complexity: O(mω−1n(D

m
+ 1)), where D =

∑
rdegs(A) −mmin(s)

easy extension of [Sarkar-Storjohann 2011, Section 3] to shifted forms
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open questions: Frobenius and Smith forms

deterministic, log-free Frobenius form Cs1
Cs2

. . .

Csm

[
M

]

si+1 divides si

I complexity O(mω) [P.-Storjohann’07]

I Las Vegas, requires large field

I exploit the new CharPoly techniques?

deterministic algo in O(mω)?

deterministic Smith form

[ s1
s2

. . .

sm

][
A

]
si+1 divides si

I complexity O (̃mωD
m
) [Storjohann’03]

I Las Vegas, requires large field

I exploit progress on K[x]-matrices?

deterministic algo in O (̃mωD
m
)?
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conclusion

summary

perspectives

I CharPoly = O(MatMul)

I determinant of reduced polynomial matrices in O(mωM(D
m
) log(D

m
))

I fast transformations between shifted forms of polynomial matrices

I efficient implementation and study of practical performance
small fields, degenerate instances, . . .

I alternative approach by exploiting a quasiseparable structure
closer to the linear algebra approach in [P.-Storjohann 2007]

I Frobenius normal form & Smith normal form
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