Vincent Neiger

Clément Pernet

XLIM, Univ. Limoges, France \rightarrow LIP6, Sorbonne Univ., France

LJK, Univ. Grenoble Alpes, France

Deterministic computation of the characteristic polynomial in the time of matrix multiplication

Séminaire Aric, LIP, ENS de Lyon March 9, 2022

outline

context & result

previous work

overview of the approach

obstacles & spin-offs

outline

context & result

- ${\scriptstyle \blacktriangleright}$ computing with matrices over ${\mathbb K}$ and ${\mathbb K}[x]$
- ▶ reductions to matrix multiplication
- framework for complexity bounds

previous work

overview of the approach

obstacles & spin-offs

matrices: multiplication

$$\mathbf{M} = \begin{bmatrix} 28 & 68 & 75 & 70 \\ 38 & 25 & 75 & 55 \\ 24 & 1 & 56 & 28 \end{bmatrix} \in \mathbb{K}^{3 \times 4} \longrightarrow 3 \times 4 \text{ matrix over } \mathbb{K} \text{ (here } \mathbb{F}_{97}\text{)}$$

fundamental operations on $m\times m$ matrices:

- ${\scriptstyle \bullet} \, \text{addition} \text{ is "quadratic": } O(m^2) \text{ operations in } \mathbb{K}$
- naive multiplication is cubic: $O(m^3)$

[Strassen'69]

subcubic matrix multiplication

matrices: multiplication

$$\mathbf{M} = \begin{bmatrix} 28 & 68 & 75 & 70 \\ 38 & 25 & 75 & 55 \\ 24 & 1 & 56 & 28 \end{bmatrix} \in \mathbb{K}^{3 \times 4} \longrightarrow 3 \times 4 \text{ matrix over } \mathbb{K} \text{ (here } \mathbb{F}_{97}\text{)}$$

fundamental operations on $m\times m$ matrices:

- \blacktriangleright addition is "quadratic": $O(m^2)$ operations in $\mathbb K$
- naive multiplication is cubic: $O(m^3)$

[Strassen'69] subcubic matrix multiplication

measuring efficiency: algebraic complexity

efficient algorithms for polynomials, matrices, \dots with coefficients in some base field $\mathbb K$

low complexity boundlow execution time

low memory usage, power consumption, ...

prime field $\mathbb{F}_p=\mathbb{Z}/p\mathbb{Z}$ field extension $\mathbb{F}_p[x]/\langle f(x)\rangle$ rational numbers \mathbb{Q}

measuring efficiency: algebraic complexity

efficient algorithms for polynomials, matrices, \ldots / with coefficients in some base field $\mathbb K$

low complexity boundlow execution time

low memory usage, power consumption, ...

prime field $\mathbb{F}_p=\mathbb{Z}/p\mathbb{Z}$ field extension $\mathbb{F}_p[x]/\langle f(x)\rangle$ rational numbers \mathbb{Q}

algebraic complexity bounds \rightsquigarrow count number of operations in \mathbb{K}

- standard complexity model for algebraic computations
- ullet good predictor of practical performance for finite fields $\mathbb K$
- **?** ignores coefficient growth, e.g. over $\mathbb{K} = \mathbb{Q}$

characteristic polynomial of a matrix

given $\mathbf{M} \in \mathbb{K}^{m imes m}$, compute $\mathsf{det}(x\mathbf{I}_m - \mathbf{M}) \in \mathbb{K}[x]$

 $\mathbbm{K}\mbox{-linear}$ algebra: reductions of most problems to matrix multiplication

characteristic polynomial of a matrix

given $M \in \mathbb{K}^{m \times m}$, compute $\mathsf{det}(xI_m - M) \in \mathbb{K}[x]$

 $\mathbbm{K}\mbox{-linear}$ algebra: reductions of most problems to matrix multiplication

characteristic polynomial of a matrix

given $M \in \mathbb{K}^{m \times m}$, compute $\mathsf{det}(xI_m - M) \in \mathbb{K}[x]$

 $\mathbbm{K}\mbox{-linear}$ algebra: reductions of most problems to matrix multiplication

characteristic polynomial in the time of matrix multiplication

characteristic polynomial in the time of matrix multiplication

summary of previous results

- deterministic, general: $O(m^{\omega} \log(m))$ [Keller-Gehrig 1985]
- deterministic, generic input: $O(m^{\omega})$
- randomized, general: $O(\mathfrak{m}^{\omega})$

[Giorgi-Jeannerod-Villard 2003]

[P.-Storjohann 2007]

characteristic polynomial in the time of matrix multiplication

framework for complexity - clarification is needed!

For any MatMul exponent ω feasible (as of today), there is a MatMul algorithm in $O(m^{\omega-\epsilon})$ for some $\epsilon > 0$ \Rightarrow the CharPoly algorithm of [Keller-Gehrig'85] is \bullet deterministic

• in $O(\mathfrak{m}^{\omega-\varepsilon} \log(\mathfrak{m})) \subset O(\mathfrak{m}^{\omega})$

not entirely satisfactory...

Journal of COMPLEXITY [Vincent Neiger & Clément Pernet, 2021] deterministic algorithm with complexity O(m^ω) • polynomial matrices • partial triangularization • ternary divide and conquer • exploiting degree knowledge

characteristic polynomial in the time of matrix multiplication

framework for complexity - classical requirements

matrix multiplication in $\mathbb{K}^{m \times m}$

► choose a MatMul algorithm in $O(m^{\omega})$ ► use this one for all MatMul instances our requirement: $2 < \omega \leq 3$

we gladly accept $\omega=$ 2.1, please provide the algorithm

requirement: matrices in $\mathbb{K}[x]_{\leqslant d}^{m \times m}$ multiplied in $O(m^{\omega}M(d))$ polynomial multiplication in $\mathbb{K}[x]$

choose a PolMul algorithm in O(M(d))
 use this one for all PolMul instances

our requirement: $\mathsf{M}(d)$ is superlinear and submultiplicative and reasonably good

 $\begin{aligned} &2\mathsf{M}(d) \leqslant \mathsf{M}(2d) \qquad \mathsf{M}(d_1d_2) \leqslant \mathsf{M}(d_1)\mathsf{M}(d_2) \\ &\mathsf{M}(d) \in O\left(d^{\,\varpi\,-1-\epsilon\,}\right) \text{ for some } \epsilon > 0 \end{aligned}$

polynomial matrices

polynomial matrices

 \blacktriangleright some problems&techniques shared with matrices over $\mathbb K$

• some problems&techniques specific to entries in $\mathbb{K}[x]$

polynomial matrices: main computational problems

reductions of most problems to polynomial matrix multiplication

matrix $m \times m$ of degree d of "average" degree $\frac{D}{m}$

classical matrix operations

- multiplication
- inversion $O^{-}(m^3d)$
- kernel, system solving
- rank, determinant

univariate relations

Hermite-Padé approximation

 $\begin{array}{rcl} \to & O^{\sim}(\mathfrak{m}^{\omega} d) \\ \to & O^{\sim}(\mathfrak{m}^{\omega} \frac{\mathsf{D}}{\mathfrak{m}}) \end{array} \end{array}$

- vector rational interpolation
- syzygies, modular equations

transformation to normal forms

- triangularization: Hermite form
- row reduction: Popov form
- diagonalization: Smith form

outline

context & result

- ${\scriptstyle \blacktriangleright}$ computing with matrices over ${\mathbb K}$ and ${\mathbb K}[x]$
- ▶ reductions to matrix multiplication
- framework for complexity bounds

previous work

overview of the approach

obstacles & spin-offs

outline

context & result

previous work

- ${\scriptstyle \blacktriangleright}$ computing with matrices over ${\mathbb K}$ and ${\mathbb K}[x]$
- reductions to matrix multiplication
- framework for complexity bounds
- ${\scriptstyle \bullet}$ based on matrices over ${\mathbb K}$
- ${\scriptstyle \blacktriangleright}$ based on matrices over $\mathbb{K}[x]$
- ▶ where do log factors come from?

overview of the approach

obstacles & spin-offs

charpoly via **K**-linear algebra

charpoly via **K**-linear algebra

traces of powers $O(m^4)$ or $O(m^{\omega+1})$

- ► [LeVerrier 1840] [Faddeev'49, Souriau'48, ...]
- used by [Csanky'75] to prove CharPoly $\in \mathcal{NC}^2$

charpoly via \mathbb{K} -linear algebra

traces of powers $O(m^4)$ or $O(m^{\omega+1})$

► [LeVerrier 1840] [Faddeev'49, Souriau'48, ...]

 \blacktriangleright used by [Csanky'75] to prove CharPoly $\in \mathcal{NC}^2$

determinant expansion

 $O(\mathfrak{m}^4)$

- ▶ [Samuelson'42, Berkowitz'84]
- suited to division free algorithms

[Abdlejaoued-Malaschonok'01, Kaltofen-Villard'05]

charpoly via **K**-linear algebra

traces of powers $O(m^4)$ or $O(m^{\omega+1})$

- ► [LeVerrier 1840] [Faddeev'49, Souriau'48, ...]
- \blacktriangleright used by [Csanky'75] to prove CharPoly $\in \mathcal{NC}^2$

determinant expansion

$$O(m^4)$$

- ▶ [Samuelson'42, Berkowitz'84]
- suited to division free algorithms

[Abdlejaoued-Malaschonok'01, Kaltofen-Villard'05]

 Krylov methods
 [Danilevskij'37, Keller-Gehrig'85, P.-Storjohann'07]

 • deterministic
 $O(m^3)$ or $O(m^{\omega} \log(m))$

 • generic
 $O(m^{\omega})$

 • Las Vegas randomized, requires large field
 $O(m^{\omega})$

i.e. card(\mathbb{K}) $\geq 2m^2$

determinant of matrix $\mathbf{A} \in \mathbb{K}[x]^{m \times m}$

determinant of matrix $\mathbf{A} \in \mathbb{K}[x]^{m \times m}$

evaluation-interpolation [folklore]

 $O(\mathfrak{m}^{\omega+1})$

at $\sim md$ points, requires large field

costs: for ${\bf A}$ of degree d=1

determinant of matrix $\mathbf{A} \in \mathbb{K}[x]^{m \times m}$

 $O(m^{\omega+1})$

evaluation-interpolation [folklore]

at $\sim md$ points, requires large field

costs: for A of degree d = 1

 $\begin{array}{l} \mbox{diagonalization} \ [Storjohann \ 2003] & O(\mathfrak{m}^{\omega} \log(\mathfrak{m})^2) \\ \mbox{Smith form: Las Vegas randomized, requires large field} \end{array}$

determinant of matrix $\mathbf{A} \in \mathbb{K}[x]^{m \times m}$

 $O(m^{\omega+1})$

evaluation-interpolation [folklore]

at $\sim md$ points, requires large field

costs: for ${\bf A}$ of degree d=1

 $\begin{array}{ll} \mbox{diagonalization} \ [Storjohann \ 2003] & O(\mathfrak{m}^\omega \log(\mathfrak{m})^2) \\ \mbox{Smith form: Las Vegas randomized, requires large field} \end{array}$

partial triangularization

- iterative [Mulders-Storjohann 2003]
 via weak Popov form computations
- ► divide and conquer, generic [Giorgi-Jeannerod-Villard 2003] $O(m^{\omega})$ diagonal of Hermite form must be 1,..., 1, det(A)
- ► divide and conquer [Neiger-Labahn-Zhou 2017] $O^{\sim}(m^{\omega})$ logarithmic factors in m and d

 $O(m^3)$

- \blacktriangleright divide and conquer with half-dimension blocks \rightarrow no $\mathsf{log}(m)$
- \blacktriangleright iterative approaches in m steps \rightarrow sometimes no log(m) $_{\mbox{\scriptsize [P-Storjohann'07]}}$
- $\textbf{ } \textbf{ explicit Krylov iteration: compute } \begin{pmatrix} \nu & M\nu & \cdots & M^m\nu \end{pmatrix} \rightarrow \mathsf{log}(m)$

in \mathbb{K} -linear algebra

sources of log factors

for polynomial matrices

- divide and conquer with half-dimension blocks \rightarrow no log(m)
- \blacktriangleright iterative approaches in m steps \rightarrow sometimes no log(m) $_{\mbox{\scriptsize [P-Storjohann'07]}}$
- $\textbf{ explicit Krylov iteration: compute } \left(\nu \quad M\nu \quad \cdots \quad M^m\nu \right) \rightarrow \mathsf{log}(m)$

in **K**-linear algebra

sources of log factors

for polynomial matrices

- \blacktriangleright divide and conquer with half-dimension blocks \rightarrow no log(m) provided degrees are controlled, e.g. kernel basis [Zhou-Labahn-Storjohann'12]
- \blacktriangleright divide and conquer on degree \rightarrow log(d) but no log(m)
- e.g. $\mathbb{K}[x]\text{-}\mathsf{Mat}\mathsf{Mul}$ and approximant basis [Giorgi-Jeannerod-Villard'03]

• explicit Krylov iterations on constant matrices e.g. [Jeannerod-Neiger-Schost-Villard'17]

since base cases of recursions on degree = matrices over $\mathbb K$ typically adds $O(\mathfrak m^{\varpi}\,d\log(\mathfrak m))$ to the cost, non-negligible when d=O(1)

• looking for a matrix with unpredictable, unbalanced degrees log(m) steps in dimension $m \times m$, to uncover the degree profile [Zhou-Labahn'13] reminiscent of obstacles in the derandomization of [P.-Storjohann'07]

outline

context & result

previous work

- ${\scriptstyle \blacktriangleright}$ computing with matrices over ${\mathbb K}$ and ${\mathbb K}[x]$
- reductions to matrix multiplication
- framework for complexity bounds
- ${\scriptstyle \bullet}$ based on matrices over ${\mathbb K}$
- ${\scriptstyle \blacktriangleright}$ based on matrices over $\mathbb{K}[x]$
- ▶ where do log factors come from?

overview of the approach

obstacles & spin-offs

outline

context & result

previous work

overview of the approach

 ${\scriptstyle \blacktriangleright}$ computing with matrices over ${\mathbb K}$ and ${\mathbb K}[x]$

- reductions to matrix multiplication
- framework for complexity bounds
- ${\scriptstyle \bullet}$ based on matrices over ${\mathbb K}$
- based on matrices over $\mathbb{K}[x]$
- ▶ where do log factors come from?
- determinant via partial triangularization
- overview of the new recursive approach
- complexity of this ternary recursion

obstacles & spin-offs

[Mulders-Storjohann 2003, Giorgi-Jeannerod-Villard 2003, Zhou 2012, Neiger-Labahn-Zhou 2017]

triangularization of $m\times m$ matrix ${\bf A}$ using $\frac{m}{2}\times \frac{m}{2}$ blocks

not computed
$$\begin{bmatrix} * & * \\ K_1 & K_2 \end{bmatrix} \begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix} = \begin{bmatrix} R & * \\ 0 & B \end{bmatrix}$$

kernel basis of $\begin{bmatrix} A_1 \\ A_3 \end{bmatrix}$ $K_1A_2 + K_2A_4$ row basis of $\begin{bmatrix} A_1 \\ A_3 \end{bmatrix}$

property: $det(\mathbf{A}) = det(\mathbf{R}) det(\mathbf{B})$

[Mulders-Storjohann 2003, Giorgi-Jeannerod-Villard 2003, Zhou 2012, Neiger-Labahn-Zhou 2017]

triangularization of $m \times m$ matrix A using $\frac{m}{2} \times \frac{m}{2}$ blocks

not computed
$$\begin{bmatrix} * & * \\ K_1 & K_2 \end{bmatrix} \begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix} = \begin{bmatrix} R & * \\ 0 & B \end{bmatrix}$$

kernel basis of $\begin{bmatrix} A_1 \\ A_3 \end{bmatrix}$
$$K_1 A_2 + K_2 A_4$$
 row basis of $\begin{bmatrix} A_1 \\ A_3 \end{bmatrix}$

 $A_1 \text{ and } A_3 \text{ are coprime} \Rightarrow R = I_{\mathfrak{m}/2} \Rightarrow \mathsf{det}(A) = \mathsf{det}(B)$

- ▶ compute kernel $[K_1 \ K_2]$; deduce B by MatMul $O(m^{\omega}M(d)\log(d))$
- ${\scriptstyle \blacktriangleright}$ recursively, compute det(B), return it

A and $[K_1 \ K_2]$ have degree $d \Rightarrow B$ has degree 2d: controlled total degree

complexity $\mathcal{C}(\mathfrak{m}, \mathfrak{d}) = \mathcal{C}(\frac{\mathfrak{m}}{2}, 2\mathfrak{d}) + O(\mathfrak{m}^{\omega} \mathsf{M}(\mathfrak{d}) \log(\mathfrak{d}))$

[Mulders-Storjohann 2003, Giorgi-Jeannerod-Villard 2003, Zhou 2012, Neiger-Labahn-Zhou 2017]

triangularization of $m \times m$ matrix A using $\frac{m}{2} \times \frac{m}{2}$ blocks

not computed

$$\begin{bmatrix} \mathbf{K} & \mathbf{K} \\ \mathbf{K}_{1} & \mathbf{K}_{2} \end{bmatrix} \begin{bmatrix} \mathbf{A}_{1} & \mathbf{A}_{2} \\ \mathbf{A}_{3} & \mathbf{A}_{4} \end{bmatrix} = \begin{bmatrix} \mathbf{R} & \mathbf{*} \\ \mathbf{0} & \mathbf{B} \end{bmatrix}$$
kernel basis of $\begin{bmatrix} \mathbf{A}_{1} \\ \mathbf{A}_{3} \end{bmatrix}$

$$\begin{bmatrix} \mathbf{K}_{1} & \mathbf{K}_{2} \end{bmatrix} \begin{bmatrix} \mathbf{K} & \mathbf{K}_{1} \\ \mathbf{K}_{1} & \mathbf{K}_{2} \end{bmatrix} \begin{bmatrix} \mathbf{K} & \mathbf{K}_{1} \\ \mathbf{K}_{1} & \mathbf{K}_{2} \end{bmatrix}$$
row basis of $\begin{bmatrix} \mathbf{A}_{1} \\ \mathbf{A}_{3} \end{bmatrix}$
property: det(\mathbf{A}) = det(\mathbf{R}) det(\mathbf{B})
general input \Rightarrow det(\mathbf{A}) with log(11) [Labahn-Neiger-Zhou'17]

matrix degree not controlled: degree of B up to $D=\sum \mathsf{rdeg}(\mathbf{A})\leqslant \mathfrak{md}$ but controlled average row degree: at most $\frac{D}{\mathfrak{m}}$

- ► compute kernel $[\mathbf{K}_1 \ \mathbf{K}_2]$; deduce **B** by MatMul $O^{\sim}(\mathfrak{m}^{\omega} \frac{D}{\mathfrak{m}})$
- compute row basis **R** $O^{\sim}(m^{\omega}\frac{D}{m})$ with log(m)
- ${\scriptstyle \bullet}$ recursively, compute ${\sf det}({\bf R})$ and ${\sf det}({\bf B}),$ return ${\sf det}({\bf R})\,{\sf det}({\bf B})$

[Mulders-Storjohann 2003, Giorgi-Jeannerod-Villard 2003, Zhou 2012, Neiger-Labahn-Zhou 2017]

triangularization of $m \times m$ matrix A using $\frac{m}{2} \times \frac{m}{2}$ blocks

not computed
$$\begin{bmatrix} * & * \\ \mathbf{K}_1 & \mathbf{K}_2 \end{bmatrix} \begin{bmatrix} \mathbf{A}_1 & \mathbf{A}_2 \\ \mathbf{A}_3 & \mathbf{A}_4 \end{bmatrix} = \begin{bmatrix} \mathbf{R} & * \\ \mathbf{0} & \mathbf{B} \end{bmatrix}$$

kernel basis of $\begin{bmatrix} \mathbf{A}_1 \\ \mathbf{A}_3 \end{bmatrix}$ $\mathbf{K}_1 \mathbf{A}_2 + \mathbf{K}_2 \mathbf{A}_4$ row basis of $\begin{bmatrix} \mathbf{A}_1 \\ \mathbf{A}_3 \end{bmatrix}$
property: det $(\mathbf{A}) = \det(\mathbf{R}) \det(\mathbf{B})$

be lazy: if hard to compute, don t compute

[Neiger-P.'21]

obstacle = removing log factors in row basis computation ⇒ solution: remove row basis computation

$$\begin{bmatrix} \mathbf{I}_{m/2} & \mathbf{0} \\ \mathbf{K}_1 & \mathbf{K}_2 \end{bmatrix} \begin{bmatrix} \mathbf{A}_1 & \mathbf{A}_2 \\ \mathbf{A}_3 & \mathbf{A}_4 \end{bmatrix} = \begin{bmatrix} \mathbf{A}_1 & \mathbf{A}_2 \\ \mathbf{0} & \mathbf{B} \end{bmatrix}$$

property: $\mathsf{det}(A) = \mathsf{det}(A_1) \, \mathsf{det}(B) / \, \mathsf{det}(K_2)$

$$\begin{bmatrix} I_{m/2} & \mathbf{0} \\ K_1 & K_2 \end{bmatrix} \begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix} \quad = \quad \begin{bmatrix} A_1 & A_2 \\ \mathbf{0} & B \end{bmatrix}$$

property: $\mathsf{det}(A) = \mathsf{det}(A_1) \, \mathsf{det}(B) / \, \mathsf{det}(K_2)$

$$\begin{bmatrix} \mathbf{I}_{\mathfrak{m}/2} & \mathbf{0} \\ \mathbf{K}_1 & \mathbf{K}_2 \end{bmatrix} \begin{bmatrix} \mathbf{A}_1 & \mathbf{A}_2 \\ \mathbf{A}_3 & \mathbf{A}_4 \end{bmatrix} \quad = \quad \begin{bmatrix} \mathbf{A}_1 & \mathbf{A}_2 \\ \mathbf{0} & \mathbf{B} \end{bmatrix}$$

property: $\mathsf{det}(\mathbf{A}) = \mathsf{det}(\mathbf{A}_1) \, \mathsf{det}(\mathbf{B}) / \, \mathsf{det}(\mathbf{K}_2)$

 \bigstar no log(m) in the computation of $A_1,$ B, K_2

\mathbf{P} requires nonsingular \mathbf{A}_1 , otherwise det $(\mathbf{K}_2) = \mathbf{0}$

$$\begin{bmatrix} \mathbf{I}_{\mathfrak{m}/2} & \mathbf{0} \\ \mathbf{K}_1 & \mathbf{K}_2 \end{bmatrix} \begin{bmatrix} \mathbf{A}_1 & \mathbf{A}_2 \\ \mathbf{A}_3 & \mathbf{A}_4 \end{bmatrix} \quad = \quad \begin{bmatrix} \mathbf{A}_1 & \mathbf{A}_2 \\ \mathbf{0} & \mathbf{B} \end{bmatrix}$$

property: $\mathsf{det}(\mathbf{A}) = \mathsf{det}(\mathbf{A}_1) \, \mathsf{det}(\mathbf{B}) / \, \mathsf{det}(\mathbf{K}_2)$

 \bigstar no log(m) in the computation of $A_1,\,B,\,K_2$

\mathbf{P} requires nonsingular \mathbf{A}_1 , otherwise det $(\mathbf{K}_2) = \mathbf{0}$

earrow 3 recursive calls in matrix size m/2 is \bullet , but requires $\sum \text{rdeg}(\mathbf{A}_1) \leq D/2$ otherwise degree control is too weak. (this implies $\sum \text{rdeg}(\mathbf{K}_2) \leq D/2$)

solution: require A in weak Popov form

(the characteristic matrix $\mathbf{A} = \mathbf{x} \mathbf{I}_m - \mathbf{M}$ is in Popov form)

 \bigstar implies A_1 nonsingular and $\sum \mathsf{rdeg}(A_1) \leqslant D/2$ up to easy transformations

igstarrow both \mathbf{A}_1 and \mathbf{B} are also in weak Popov form \Rightarrow suitable for recursive calls

 \mathbf{P} K₂ is in "shifted reduced" form... find weak Popov P with same determinant

$$\begin{bmatrix} \mathbf{I}_{\mathrm{m}/2} & \mathbf{0} \\ \mathbf{K}_1 & \mathbf{K}_2 \end{bmatrix} \begin{bmatrix} \mathbf{A}_1 & \mathbf{A}_2 \\ \mathbf{A}_3 & \mathbf{A}_4 \end{bmatrix} \quad = \quad \begin{bmatrix} \mathbf{A}_1 & \mathbf{A}_2 \\ \mathbf{0} & \mathbf{B} \end{bmatrix}$$

property: $\mathsf{det}(A) = \mathsf{det}(A_1) \, \mathsf{det}(B) / \, \mathsf{det}(K_2)$

 \bigstar no log(m) in the computation of $A_1,\,B,\,K_2$

\mathbf{P} requires nonsingular \mathbf{A}_1 , otherwise det $(\mathbf{K}_2) = \mathbf{0}$

earrow 3 recursive calls in matrix size m/2 is \bullet , but requires $\sum \text{rdeg}(\mathbf{A}_1) \leq D/2$ otherwise degree control is too weak. (this implies $\sum \text{rdeg}(\mathbf{K}_2) \leq D/2$)

solution: require A in weak Popov form

(the characteristic matrix $\mathbf{A} = \mathbf{x} \mathbf{I}_m - \mathbf{M}$ is in Popov form)

i implies A_1 nonsingular and $\sum \mathsf{rdeg}(A_1) \leqslant D/2$ up to easy transformations

- igstarrow both \mathbf{A}_1 and \mathbf{B} are also in weak Popov form \Rightarrow suitable for recursive calls
- \mathbf{P} \mathbf{K}_2 is in "shifted reduced" form... find weak Popov P with same determinant

solution: exploit degree knowledge to accelerate transformations s-reduced \Rightarrow s-weak Popov \Rightarrow s-Popov

 $\begin{array}{l} \mbox{determinant of } \mathbf{A} \in \mathbb{K}[x]^{m \times m} \mbox{ of average row degree } \frac{D}{m} = \frac{degdet}{m} \\ \\ \mathcal{C}(m,D) \leqslant 2 \mathcal{C}(\frac{m}{2},\frac{D}{2}) + \mathcal{C}(\frac{m}{2},D) + O(m^{\omega}\mathsf{M}'(\frac{D}{m})) \end{array}$

outline

context & result

previous work

overview of the approach

 ${\scriptstyle \blacktriangleright}$ computing with matrices over ${\mathbb K}$ and ${\mathbb K}[x]$

- reductions to matrix multiplication
- framework for complexity bounds
- ${\scriptstyle \bullet}$ based on matrices over ${\mathbb K}$
- based on matrices over $\mathbb{K}[x]$
- ▶ where do log factors come from?
- determinant via partial triangularization
- overview of the new recursive approach
- complexity of this ternary recursion

obstacles & spin-offs

outline

context & result

previous work

overview of the approach

obstacles & spin-offs

- ${\scriptstyle \blacktriangleright}$ computing with matrices over ${\mathbb K}$ and ${\mathbb K}[x]$
- reductions to matrix multiplication
- framework for complexity bounds
- ${\scriptstyle \bullet}$ based on matrices over ${\mathbb K}$
- ${\scriptstyle \blacktriangleright}$ based on matrices over $\mathbb{K}[x]$
- ▶ where do log factors come from?
- determinant via partial triangularization
- overview of the new recursive approach
- ▶ complexity of this ternary recursion
- main obstacles and solutions
- ▶ spin-off results on shifted forms
- summary and perspectives

working over $\mathbb{K}=\mathbb{Z}/7\mathbb{Z}$

$$\mathbf{A} = \begin{bmatrix} 3x+4 & x^3+4x+1 & 4x^2+3\\ 5 & 5x^2+3x+1 & 5x+3\\ 3x^3+x^2+5x+3 & 6x+5 & 2x+1 \end{bmatrix}$$

using elementary row operations, transform ${\bf A}$ into...

$$\begin{bmatrix} x^6 + 6x^4 + x^3 + x + 4 & 0 & 0 \end{bmatrix}$$

Hermite form
$$\mathbf{H} = \begin{bmatrix} 5x^5 + 5x^4 + 6x^3 + 2x^2 + 6x + 3 & x & 0 \\ 3x^4 + 5x^3 + 4x^2 + 6x + 1 & 5 & 1 \end{bmatrix}$$

Popov form
$$\mathbf{P} = \begin{bmatrix} x^3 + 5x^2 + 4x + 1 & 2x + 4 & 3x + 5 \\ 1 & x^2 + 2x + 3 & x + 2 \\ 3x + 2 & 4x & x^2 \end{bmatrix}$$

invariant: D = deg(det(A)) = 4 + 7 + 3 + 2 = 7 + 1 + 2 + 6

- average column degree is $\frac{D}{m}$
- size of object is $mD + m^2 = m^2(\frac{D}{m} + 1)$

[Beckermann-Labahn-Villard, 1999; Mulders-Storjohann, 2003]

weak Popov form = not column normalized

= minimal, non-reduced, t.o.p. Gröbner basis

shifted forms

shift: integer tuple $s = (s_1, \dots, s_m)$ acting as column weights \rightarrow connects Popov and Hermite forms

s = (0, 0, 0, 0) Popov	4 3 3 3	3 4 3 3	3 3 4 3	3 3 3 4	[7 0 6	0 1 0	1 2 1	5 0 6
s = (0, 2, 4, 6) s-Popov	7 6 6 6	4 5 4 4	2 2 3 2	0 0 0 1	8 7 0	5 6 1	1 1 2	0
$\mathbf{s} = (0, D, 2D, 3D)$ Hermite	16 15 15 15	0	0	0	4 3 1 3	7 5 6	3 1	2

- normal form, average column degree D/m
- ▶ shifts arise naturally in algorithms (approximants, kernel, ...)
- ▶ they allow one to specify non-uniform degree constraints

back to obstacles: easy ones

recall: $\mathbf{A} = \begin{bmatrix} \mathbf{A}_1 & \mathbf{A}_2 \\ \mathbf{A}_3 & \mathbf{A}_4 \end{bmatrix}$ in weak Popov form, we want:

• A_1 nonsingular: ok by definition

(principal submatrices of A are weak Popov \Rightarrow are nonsingular)

• $\sum \text{rdeg}(\mathbf{A}_1) \leqslant D/2$: either ok for \mathbf{A} , or ok for $\begin{bmatrix} \mathbf{A}_4 & \mathbf{A}_3 \\ \mathbf{A}_2 & \mathbf{A}_1 \end{bmatrix}$

(almost weak Popov... easily transformed into it, with same determinant)

back to obstacles: easy ones

recall: $\mathbf{A} = \begin{bmatrix} \mathbf{A}_1 & \mathbf{A}_2 \\ \mathbf{A}_3 & \mathbf{A}_4 \end{bmatrix}$ in weak Popov form, we want:

• A_1 nonsingular: ok by definition

(principal submatrices of A are weak Popov \Rightarrow are nonsingular)

• $\sum \text{rdeg}(\mathbf{A}_1) \leqslant D/2$: either ok for \mathbf{A} , or ok for $\begin{bmatrix} A_4 & A_3 \\ A_2 & A_1 \end{bmatrix}$ (almost weak Popov... easily transformed into it, with same determinant)

 $\begin{array}{ll} \mbox{shifts in kernel basis computation} & [Zhou-Labahn-Storjohann'12] \\ [K_1 \ K_2] \ \mbox{kernel basis of } \begin{bmatrix} A_1 \\ A_3 \end{bmatrix} \ \mbox{computed in } \mbox{rdeg}(\mathbf{A}) \mbox{-weak Popov form:} \\ \mbox{cost } O(\mathfrak{m}^{\varpi}\mathsf{M}'(\frac{\mathsf{D}}{\mathfrak{m}})), \quad \sum \mbox{rdeg}(\mathbf{K}_2) \leqslant D/2, \quad \mathbf{K}_2 \ \mbox{in s-weak Popov form} \\ D = \sum \mbox{rdeg}(\mathbf{A}) \mbox{-degdet}(\mathbf{A}) \qquad \mbox{s} = \mbox{rdeg}(\mathbf{A}_4) \mbox{= last } \mbox{m}/2 \mbox{ entries of } \mbox{rdeg}(\mathbf{A}) \\ \end{array}$

using the shift rdeg(A) (and s) has crucial advantages:

- ▶ towards correctness: $\mathbf{B} = [\mathbf{K}_1 \ \mathbf{K}_2] \begin{bmatrix} \mathbf{A}_2 \\ \mathbf{A}_4 \end{bmatrix}$ is in **0**-weak Popov form
- ► towards efficiency: implies small degrees in K₂

and best speed both for kernel and product ${\bf B}$

back to obstacles: easy ones

recall: $\mathbf{A} = \begin{bmatrix} \mathbf{A}_1 & \mathbf{A}_2 \\ \mathbf{A}_3 & \mathbf{A}_4 \end{bmatrix}$ in weak Popov form, we want:

• A_1 nonsingular: ok by definition

(principal submatrices of A are weak Popov \Rightarrow are nonsingular)

• $\sum \text{rdeg}(\mathbf{A}_1) \leqslant D/2$: either ok for \mathbf{A} , or ok for $\begin{bmatrix} A_4 & A_3 \\ A_2 & A_1 \end{bmatrix}$ (almost weak Popov... easily transformed into it, with same determinant)

using the shift rdeg(A) (and s) has crucial advantages:

- towards correctness: $\mathbf{B} = [\mathbf{K}_1 \ \mathbf{K}_2] \begin{bmatrix} \mathbf{A}_2 \\ \mathbf{A}_4 \end{bmatrix}$ is in 0-weak Popov form
- ► towards efficiency: implies small degrees in K₂

and best speed both for kernel and product ${\bf B}$

\ldots but we cannot call the algorithm recursively on ${f K}_2$

input: K_2 in s-weak Popov form, with $s \geqslant 0$ output: P in 0-weak Popov form, with $\mathsf{det}(P) = \mathsf{det}(K_2)$

input: K_2 in s-weak Popov form, with $s \ge 0$ output: P in 0-weak Popov form, with $det(P) = det(K_2)$.

Idea 1.a: change of shift from s to 0, i.e. $P = WeakPopov(K_2)$ p known methods are only efficient for increasing s to a larger shift [Jeannerod-Neiger-Schost-Villard'17]

Idea 1.b: normalization of K_2 into its s-Popov form $P \\ \rightsquigarrow P^T$ is 0-weak Popov by construction, and $det(P^T) = det(P)$ \blacksquare amounts to a change of shift from s to $-\delta \leq 0$ [Neiger'16] \Rightarrow same issue

input: K_2 in s-weak Popov form, with $s \ge 0$ output: P in 0-weak Popov form, with $det(P) = det(K_2)$

Idea 1.a: change of shift from s to 0, i.e. $P = WeakPopov(K_2)$ where the known methods are only efficient for increasing s to a larger shift [Jeannerod-Neiger-Schost-Villard'17]

Fact:
$$\mathbf{K}_2^{\mathsf{T}}$$
 is $-\mathbf{t}$ -weak Popov, for some $-\mathbf{t} \leq \mathbf{0}$

•
$$\mathbf{t} = \mathsf{rdeg}_{\mathbf{s}}(\mathbf{K}_2) = \mathbf{s} + \mathbf{\delta} \ge \mathbf{0}$$

▶ ignoring some row/column permutations for simplicity

input: K_2 in s-weak Popov form, with $s \ge 0$ output: P in 0-weak Popov form, with $det(P) = det(K_2)$

Idea 1.a: change of shift from s to 0, i.e. $P = WeakPopov(K_2)$ where the known methods are only efficient for increasing s to a larger shift [Jeannerod-Neiger-Schost-Villard'17]

Fact:
$$\mathbf{K}_2^{\mathsf{T}}$$
 is $-\mathbf{t}$ -weak Popov, for some $-\mathbf{t} \leq \mathbf{0}$

•
$$\mathbf{t} = \mathsf{rdeg}_{\mathbf{s}}(\mathbf{K}_2) = \mathbf{s} + \mathbf{\delta} \ge \mathbf{0}$$

▶ ignoring some row/column permutations for simplicity

Idea 2.a: change of shift from -t to 0, i.e. $P = WeakPopov(K_2^T)$ \blacksquare increasing shift, but K_2^T has large average rdeg (we control $cdeg(K_2^T) = rdeg(K_2)$)

input: K_2 in s-weak Popov form, with $s \ge 0$ output: P in 0-weak Popov form, with $det(P) = det(K_2)$

Idea 1.a: change of shift from s to 0, i.e. $P = WeakPopov(K_2)$ where the known methods are only efficient for increasing s to a larger shift [Jeannerod-Neiger-Schost-Villard'17]

Fact: $\mathbf{K}_2^{\mathsf{T}}$ is $-\mathbf{t}$ -weak Popov, for some $-\mathbf{t} \leq \mathbf{0}$

 $\blacktriangleright t = \mathsf{rdeg}_s(K_2) = s + \delta \geqslant 0$

▶ ignoring some row/column permutations for simplicity

Idea 2.a: change of shift from -t to 0, i.e. $P = WeakPopov(K_2^T)$ p increasing shift, but K_2^T has large average rdeg (we control $cdeg(K_2^T) = rdeg(K_2)$)

Idea 2.b: **(b)** normalization of $\mathbf{K}_2^{\mathsf{T}}$ into its -t-Popov form P

spin-offs: faster transformations of shifted forms

weak Popov \rightarrow Popov

Input:	$\mathbf{s}\in\mathbb{Z}^{\mathrm{m}}$, a shift,
	$\mathbf{A} \in \mathbb{K}[x]^{m imes m}$, a matrix in s -weak Popov form
Output:	the s -Popov form of A
Requirement:	$-\mathbf{s} \geqslant DiagonalDegrees(\mathbf{A})$
Complexity:	$O(\mathfrak{m}^{\omega}M(rac{D}{\mathfrak{m}}) \operatorname{log}(rac{D}{\mathfrak{m}}))$, where $D = \sum s$

improvement and generalization of [Sarkar-Storjohann 2011, Section 4] \rightsquigarrow support nonzero shifts and involve average degree $\frac{D}{m}$

- ▶ problem viewed as a change of shift with known output degrees
- introduction of partial linearization techniques for kernel bases

spin-offs: faster transformations of shifted forms

weak Popov ightarrow Popov

Input:	$\mathbf{s}\in\mathbb{Z}^{\mathrm{m}}$, a shift,
	$\mathbf{A} \in \mathbb{K}[x]^{m imes m}$, a matrix in s -weak Popov form
Output:	the s -Popov form of A
Requirement:	$-\mathbf{s} \geqslant DiagonalDegrees(\mathbf{A})$
Complexity:	$O(\mathfrak{m}^{\omega}M(rac{D}{\mathfrak{m}}) \operatorname{log}(rac{D}{\mathfrak{m}}))$, where $D = \sum s$

improvement and generalization of [Sarkar-Storjohann 2011, Section 4] \rightsquigarrow support nonzero shifts and involve average degree $\frac{D}{m}$

- ▶ problem viewed as a change of shift with known output degrees
- introduction of partial linearization techniques for kernel bases

reduced \rightarrow weak Popov

Input:	$s\in\mathbb{Z}^n$, a shift
	$\mathbf{A} \in \mathbb{K}[x]^{m imes n}$, a matrix in s-reduced form
Output:	an s -weak Popov form of A
Complexity:	$O(\mathfrak{m}^{\omega-1}\mathfrak{n}(\frac{D}{\mathfrak{m}}+1))\text{, where }D=\sum rdeg_s(A)-\mathfrak{m}min(s)$

easy extension of [Sarkar-Storjohann 2011, Section 3] to shifted forms

open questions: Frobenius and Smith forms

deterministic, log-free Frobenius form

- complexity $O(m^{\omega})$ [P.-Storjohann'07]

deterministic algo in $O(m^{\omega})$?

open questions: Frobenius and Smith forms

deterministic, log-free Frobenius form

deterministic Smith form

- complexity $O^{(m^{\omega} \frac{D}{m})}$ [Storjohann'03]
- exploit progress on $\mathbb{K}[x]$ -matrices?

deterministic algo in $O^{\sim}(m^{\omega}\frac{D}{m})$?

- $\bullet CharPoly = O(MatMul)$
- determinant of reduced polynomial matrices in $O(m^{\omega}M(\frac{D}{m})\log(\frac{D}{m}))$
- ▶ fast transformations between shifted forms of polynomial matrices

