Adaptive decoding for dense and sparse evaluation/interpolation codes

Clément PERNET

INRIA/LIG-MOAIS, Grenoble Université

joint work with

M. Comer, E. Kaltofen, J-L. Roch, T. Roche

Séminaire Calcul formel et Codes, IRMAR, Rennes

23 Novembre, 2012
Outline

Introduction
- High performance exact computations
- Chinese remaindering
- Motivation

Sparse Interpolation with errors
- Berlekamp/Massey algorithm with errors
- Sparse Polynomial Interpolation with errors
- Relations to Reed-Solomon decoding

Dense Interpolation with errors
- Decoding CRT codes: Mandelbaum algorithm
- Amplitude codes
- Adaptive decoding
- Experiments
Outline

Introduction

High performance exact computations
Chinese remaindering
Motivation

Sparse Interpolation with errors
Berlekamp/Massey algorithm with errors
Sparse Polynomial Interpolation with errors
Relations to Reed-Solomon decoding

Dense interpolation with errors
Decoding CRT codes: Mandelbaum algorithm
Amplitude codes
Adaptive decoding
Experiments
High Performance Algebraic Computations (HPAC)

Domain of Computation

- $\mathbb{Z}, \mathbb{Q} \Rightarrow$ variable size
- $\mathbb{Z}_p, \text{GF}(p^k) \Rightarrow$ specific arithmetic
- $K[X]$ for $K = \mathbb{Z}_p, \ldots$
High Performance Algebraic Computations (HPAC)

Domain of Computation

- \mathbb{Z}, \mathbb{Q} ⇒ variable size
- $\mathbb{Z}_p, \text{GF}(p^k)$ ⇒ specific arithmetic
- $K[X]$ for $K = \mathbb{Z}_p, \ldots$

Application domains:

Computational number theory:

- computing tables of elliptic curves, modular forms,
- testing conjectures

Crypto: Algebraic attacks (Quadratic sieves, Groebner bases, index calculus, ...)

Graph theory: testing conjectures (graph isomorphism, ...)

Representation theory

...
HPAC: rules of thumb

Deal with size of arithmetic

Evaluation/interpolation schemes:

- **over \(\mathbb{Z} \):** Chinese Remainder Algorithm:
 \[
 \mathbb{Z} \rightarrow \mathbb{Z}/m\mathbb{Z} \rightarrow \mathbb{Z}/m_1\mathbb{Z} \times \cdots \times \mathbb{Z}/m_k\mathbb{Z}
 \]

- **over \(K[X] \):** Evaluation/interpolation: \(K[X] \rightarrow K \)
 - Embarassingly parallel

Lifting schemes \(\mathbb{Z} \rightarrow \mathbb{Z}/p^k\mathbb{Z} \rightarrow \mathbb{Z}/p\mathbb{Z} \)
 - Best sequential complexities

Deal with complexity/efficiency: reduce to Linear algebra

- Matrix product over \(\mathbb{Z}_p, K \)
- Eliminations: Gauss, Gram-Schmidt (LLL), ...
- Krylov iteration
HPAC: rules of thumb

Deal with size of arithmetic

Evaluation/interpolation schemes:

- **over \(\mathbb{Z} \):** Chinese Remainder Algorithm:
 \[\mathbb{Z} \rightarrow \mathbb{Z}/m\mathbb{Z} \rightarrow \mathbb{Z}/m_1\mathbb{Z} \times \cdots \times \mathbb{Z}/m_k\mathbb{Z} \]

- **over \(K[X] \):** Evaluation/interpolation:
 \[K[X] \rightarrow K \]

 ➤ Embarassingly parallel

Lifting schemes

\[\mathbb{Z} \rightarrow \mathbb{Z}/p^k\mathbb{Z} \rightarrow \mathbb{Z}/p\mathbb{Z} \]

➤ Best sequential complexities

Deal with complexity/efficiency: reduce to Linear algebra

➤ Matrix product over \(\mathbb{Z}_p, K \)

➤ Eliminations: Gauss, Gram-Schmidt (LLL), ...

➤ Krylov iteration
Chinese remainder algorithm

If \(m_1, \ldots, m_k \) pariwise relatively prime:

\[
\mathbb{Z}/(m_1 \ldots m_k)\mathbb{Z} \equiv \mathbb{Z}/m_1\mathbb{Z} \times \cdots \times \mathbb{Z}/m_k\mathbb{Z}
\]

Computation of \(y = f(x) \) for \(f \in \mathbb{Z}[X], x \in \mathbb{Z}^m \)

begin
 Compute an upper bound \(\beta \) on \(|f(x)| \);
 Pick \(m_1, \ldots m_k \), pairwise prime, s.t. \(m_1 \ldots m_k > \beta \);
 for \(i = 1 \ldots k \) do
 Compute \(y_i = f(x \mod m_i) \mod m_i \)
 end
 Compute \(y = \text{CRT}(y_1, \ldots, y_k) \)
end

\text{CRT} : \quad \mathbb{Z}/m_1\mathbb{Z} \times \cdots \times \mathbb{Z}/m_k\mathbb{Z} \rightarrow \mathbb{Z}/(m_1 \ldots m_k)\mathbb{Z} \\
\quad (x_1, \ldots, x_k) \mapsto \sum_{i=1}^k x_i \Pi_i Y_i \mod \Pi

where \[
\begin{align*}
\Pi &= \prod_{i=1}^k m_i \\
\Pi_i &= \Pi/m_i \\
Y_i &= \Pi_i^{-1} \mod m_i
\end{align*}
\]
Chinese remainder algorithm

If \(m_1, \ldots, m_k \) pariwise relatively prime:

\[
\mathbb{Z}/(m_1 \ldots m_k)\mathbb{Z} \equiv \mathbb{Z}/m_1\mathbb{Z} \times \cdots \times \mathbb{Z}/m_k\mathbb{Z}
\]

Computation of \(y = f(x) \) **for** \(f \in \mathbb{Z}[X], x \in \mathbb{Z}^m \)

begin

- Compute an upper bound \(\beta \) on \(|f(x)| \);
- Pick \(m_1, \ldots m_k \), pairwise prime, s.t. \(m_1 \ldots m_k > \beta \);
- **for** \(i = 1 \ldots k \) **do**
 - Compute \(y_i = f(x \mod m_i) \mod m_i \); /* Evaluation */
- Compute \(y = \text{CRT}(y_1, \ldots, y_k) \); /* Interpolation */

CRT: \(\mathbb{Z}/m_1\mathbb{Z} \times \cdots \times \mathbb{Z}/m_k\mathbb{Z} \rightarrow \mathbb{Z}/(m_1 \ldots m_k)\mathbb{Z} \)

\[
(x_1, \ldots, x_k) \mapsto \sum_{i=1}^k x_i\Pi_iY_i \mod \Pi
\]

where \[
\begin{align*}
\Pi &= \prod_{i=1}^k m_i \\
\Pi_i &= \Pi / m_i \\
Y_i &= \Pi_i^{-1} \mod m_i
\end{align*}
\]
Chinese remaindering and evaluation/interpolation

Evaluate P in a \leftrightarrow Reduce P modulo $X - a$
Chinese remaindering and evaluation/interpolation

<table>
<thead>
<tr>
<th>Evaluate P in a</th>
<th>\leftrightarrow</th>
<th>Reduce P modulo $X - a$</th>
</tr>
</thead>
</table>

Polynomials

Evaluation:

- $P \mod X - a$
- Evaluate P in a

Interpolation:

$$P = \sum_{i=1}^{k} y_i \prod_{j \neq i} (X - a_j) \prod_{j \neq i} (a_i - a_j)$$
Chinese remaindering and evaluation/interpolation

<table>
<thead>
<tr>
<th>Evaluate P in a</th>
<th>\leftrightarrow</th>
<th>Reduce P modulo $X - a$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polynomials</td>
<td>Integers</td>
<td></td>
</tr>
<tr>
<td>Evaluation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P \mod X - a$</td>
<td>$N \mod m$</td>
<td>“Evaluate” N in m</td>
</tr>
<tr>
<td>Evaluate P in a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interpolation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P = \sum_{i=1}^{k} y_i \frac{\prod_{j \neq i} (X - a_j)}{\prod_{j \neq i} (a_i - a_j)}$</td>
<td>$N = \sum_{i=1}^{k} y_i \prod_{j \neq i} m_j (\prod_{j \neq i} m_j)^{-1}[m_i]$</td>
<td></td>
</tr>
</tbody>
</table>
Early termination

<table>
<thead>
<tr>
<th>Classic Chinese remaindering</th>
<th>Deterministic</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ bound β on the result</td>
<td></td>
</tr>
<tr>
<td>▶ Choice of the m_i: such that $m_1 \ldots m_k > \beta$</td>
<td></td>
</tr>
</tbody>
</table>
Early termination

<table>
<thead>
<tr>
<th>Classic Chinese remaindering</th>
<th>Deterministic</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ bound β on the result</td>
<td></td>
</tr>
<tr>
<td>▶ Choice of the m_i: such that $m_1 \ldots m_k > \beta$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Early termination</th>
<th>Probabilistic Monte Carlo</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ For each new modulo m_i:</td>
<td></td>
</tr>
<tr>
<td>▶ reconstruct $y_i = f(x) \mod m_1 \times \cdots \times m_i$</td>
<td></td>
</tr>
<tr>
<td>▶ If $y_i == y_{i-1}$ \Rightarrow terminated</td>
<td></td>
</tr>
</tbody>
</table>

Advantage:

▶ Adaptive number of moduli depending on the output value
▶ Interesting when
 ▶ pessimistic bound: sparse/structured matrices, ...
 ▶ no bound available
Motivation

ABFT: Algorithm Based Fault Tolerance

HPC: clusters, grid, P2P, cloud computing

- Parallelization based on Evaluation/Interpolation scheme

Need to tolerate:

- soft errors (cosmic rays,...)
- malicious corruption

Signal processing

- Sparse polynomial interpolation

Distinction between **noise** and **outliers**

- Symbolic-numeric methods
Dense/Sparse interpolation with errors

Problem 1: Dense interpolation with errors over \(\mathbb{Z} \)

Given \((y_i, m_i)\) for \(i = 1 \ldots n\),
Find \(Y \in \mathbb{Z}\) such that \(Y = y_i \mod m_i\) except on \(\leq e\) values.

Problem 2: Sparse interpolation with errors over \(K[X] \)

Given \((y_i, x_i)\) for \(i = 1 \ldots n\),
Find a \(t\)-sparse poly. \(f\) such that \(f(x_i) = y_i\) except on \(\leq e\) values.
State of the art

Dense interpolation

<table>
<thead>
<tr>
<th></th>
<th>Interpolation</th>
<th>Interpolation with errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>over $K[X]$</td>
<td>Lagrange CRT</td>
<td>Generalized Reed-Solomon codes CRT codes</td>
</tr>
<tr>
<td>over \mathbb{Z}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sparse Interpolation

<table>
<thead>
<tr>
<th></th>
<th>Interpolation</th>
<th>Interpolation with errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>over $K[X]$</td>
<td>Ben-Or & Tiwari</td>
<td>?</td>
</tr>
<tr>
<td>over \mathbb{Z}</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
State of the art

Dense interpolation

<table>
<thead>
<tr>
<th></th>
<th>Interpolation</th>
<th>Interpolation with errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>over $K[X]$</td>
<td>Lagrange</td>
<td>Generalized Reed-Solomon codes</td>
</tr>
<tr>
<td>over \mathbb{Z}</td>
<td>CRT</td>
<td>CRT codes</td>
</tr>
</tbody>
</table>

Sparse Interpolation

<table>
<thead>
<tr>
<th></th>
<th>Interpolation</th>
<th>Interpolation with errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>over $K[X]$</td>
<td>Ben-Or & Tiwari</td>
<td>?</td>
</tr>
<tr>
<td>over \mathbb{Z}</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
Contribution

Sparse interpolation code over $K[X]$
- lower bound on the necessary number of evaluations
- optimal unique decoding algorithm
- list decoding variant

Dense interpolation code over \mathbb{Z}
- finer bounds on the correction capacity
- adaptive decoding using the best effective redundancy
Outline

Introduction
 High performance exact computations
 Chinese remaindering
 Motivation

Sparse Interpolation with errors
 Berlekamp/Massey algorithm with errors
 Sparse Polynomial Interpolation with errors
 Relations to Reed-Solomon decoding

Dense interpolation with errors
 Decoding CRT codes: Mandelbaum algorithm
 Amplitude codes
 Adaptive decoding
 Experiments
Preliminaries

Linear recurring sequences

Sequence \((a_0, a_1, \ldots, a_n, \ldots)\) such that

\[\forall j \geq 0 \ a_{j+t} = \sum_{i=0}^{t-1} \lambda_i a_{i+j} \]

generating polynomial: \(\Lambda(z) = z^t - \sum_{i=0}^{t-1} \lambda_i z^i\)

minimal generating polynomial: \(\Lambda(z)\) of minimal degree

linear complexity of \((a_i)_i\): the minimal degree of \(\Lambda\)

Hamming weight: \(\text{weight}(x) = \#\{i \mid x_i \neq 0\}\)

Hamming distance: \(d_H(x, y) = \text{weight}(x - y)\)
Berlekamp/Massey algorithm

Input: \((a_0, \ldots, a_{n-1})\) a sequence of field elements.
Output: \(\Lambda(z) = \sum_{i=0}^{L_n} \lambda_i z^i\) a monic polynomial of minimal degree \(L_n \leq n\) such that \(\sum_{i=0}^{L_n} \lambda_i a_{i+j} = 0\) for \(j = 0, \ldots, n - L_n - 1\).

▶ Guarantee : BMA finds \(\Lambda\) of degree \(t\) from \(\leq 2t\) entries.
Problem Statement

Berlekamp/Massey with errors

Suppose \((a_0, a_1, \ldots)\) is linearly generated by \(\Lambda(z)\) of degree \(t\) where \(\Lambda(0) \neq 0\).

Given \((b_0, b_1, \ldots) = (a_0, a_1, \ldots) + \varepsilon\), where weight(\(\varepsilon\)) \(\leq E\):

1. How to recover \(\Lambda(z)\) and \((a_0, a_1, \ldots)\)?

2. How many entries required for
 - a unique solution?
 - a list of solution including \((a_0, a_1, \ldots)\)?
Problem Statement

Berlkamp/Massey with errors

Suppose \((a_0, a_1, \ldots)\) is linearly generated by \(\Lambda(z)\) of degree \(t\) where \(\Lambda(0) \neq 0\).

Given \((b_0, b_1, \ldots) = (a_0, a_1, \ldots) + \varepsilon\), where weight\((\varepsilon) \leq E:\)

1. How to recover \(\Lambda(z)\) and \((a_0, a_1, \ldots)\) ?
2. How many entries required for
 - a unique solution ?
 - a list of solutionse including \((a_0, a_1, \ldots)\) ?

Coding Theory formulation

Let \(C\) be the set of all sequences of linear complexity \(t\).

1. How to decode \(C\) ?
2. What are the best correction capacities ?
 - for unique decoding
 - list decoding
How many entries to guarantee uniqueness?

Case $E = 1, t = 2$

$$(0, 1, 0, 1, 0, 1, 0, -1, 0, 1, 0) \Lambda(z) = 2 - 2z^2 + z^4 + z^6$$

Where is the error?
How many entries to guarantee uniqueness?

Case $E = 1, t = 2$

\[
\begin{array}{ccccccccccc}
(0, & 1, & 0, & 1, & 0, & 1, & 0, & -1, & 0, & 1, & 0) & \Lambda(z) \\
& (0, & 1, & 0, & 1, & 0, & 1, & 0, & 1, & 0, & 0) & 2 - 2z^2 + z^4 + z^6 \\
& & & & & & & & & -1 + z^2
\end{array}
\]

Where is the error?
How many entries to guarantee uniqueness?

Case $E = 1, t = 2$

<table>
<thead>
<tr>
<th>(a_i)</th>
<th>$\Lambda(z)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(0, 1, 0, 1, 0, 1, 0, -1, 0, 1, 0)$</td>
<td>$2 - 2z^2 + z^4 + z^6$</td>
</tr>
<tr>
<td>$(0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0)$</td>
<td>$-1 + z^2$</td>
</tr>
<tr>
<td>$(0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0)$</td>
<td>$1 + z^2$</td>
</tr>
</tbody>
</table>

Where is the error?
How many entries to guarantee uniqueness?

Case $E = 1, t = 2$

\[
\begin{array}{ccccccccccc}
(0, & 1, & 0, & 1, & 0, & 1, & 0, & -1, & 0, & 1, & 0) & \\
(0, & 1, & 0, & 1, & 0, & 1, & 0, & 1, & 0, & 1, & 0) & \\
(0, & 1, & 0, & -1, & 0, & 1, & 0, & -1, & 0, & 1, & 0) & \\
\end{array}
\]

\[
\begin{array}{ccccccccccc}
\Lambda(z) & 2 - 2z^2 + z^4 + z^6 & \\
-1 + z^2 & \\
1 + z^2 & \\
\end{array}
\]

Where is the error?
A unique solution is not guaranteed with $t = 2, E = 1$ and $n = 11$
Generalization to any $E \geq 1$

Let $\bar{0} = (0, \ldots , 0)$. Then

$$s = (\bar{0}, 1, \bar{0}, 1, \bar{0}, 1, \bar{0}, -1)$$

is generated by $z^t - 1$ or $z^t + 1$ up to $E = 1$ error.

Then

$$E \text{ times } (s, s, \ldots , s, \bar{0}, 1, \bar{0})$$

is generated by $z^t - 1$ or $z^t + 1$ up to E errors.

\Rightarrow ambiguity with $n = 2t(2E + 1) - 1$ values.
Generalization to any $E \geq 1$

Let $\overline{0} = (0, \ldots, 0)$. Then

$$s = (\overline{0}, 1, \overline{0}, 1, \overline{0}, 1, \overline{0}, -1)$$

is generated by $z^t - 1$ or $z^t + 1$ up to $E = 1$ error. Then

$$\underbrace{(s, s, \ldots, s, \overline{0}, 1, \overline{0})}_{E \text{ times}}$$

is generated by $z^t - 1$ or $z^t + 1$ up to E errors.

\Rightarrow ambiguity with $n = 2t(2E + 1) - 1$ values.

Theorem

Necessary condition for unique decoding:

$$n \geq 2t(2E + 1)$$
The Majority Rule Berlekamp/Massey algorithm

\[2t \quad E=2 \quad n=2t(2E+1) \]

\[\Lambda_1 \quad \Lambda_2 \quad \Lambda_3 \quad \Lambda_4 \quad \Lambda_5 \]

Input: \((a_0, \ldots, a_{n-1}) + \epsilon\), where \(n = 2t(2E+1)\), weight \(\epsilon \leq E\), and \((a_0, \ldots, a_{n-1})\) minimally generated by \(\Lambda\) of degree \(t\), where \(\Lambda(0) \neq 0\).

Output: \(\Lambda(z)\) and \((a_0, a_1, \ldots)\).

\begin{verbatim}
begin
 Run BMA on \(2E+1\) segments of \(2t\) entries and record \(\Lambda_i(z)\) on each segment;
 Perform majority vote to find \(\Lambda(z)\);
 Use a clean segment to clean-up the sequence;
 return \(\Lambda(z)\) and \((a_0, a_1, \ldots)\);
end
\end{verbatim}
Input: \((a_0, \ldots, a_{n-1}) + \varepsilon\), where \(n = 2t(2E + 1)\), \(\text{weight}(\varepsilon) \leq E\), and \((a_0, \ldots, a_{n-1})\) minimally generated by \(\Lambda\) of degree \(t\), where \(\Lambda(0) \neq 0\).

Output: \(\Lambda(z)\) and \((a_0, \ldots, a_{n-1})\).

begin

\[
\begin{align*}
2t & \quad E=2 & n=2t(2E+1) \\
\Lambda_1 & \quad \Lambda_2 & \quad \Lambda_3 & \quad \Lambda_4 & \quad \Lambda_5
\end{align*}
\]

Run BMA on \(2E + 1\) segments of \(2t\) entries and record \(\Lambda_i(z)\) on each segment;
Perform majority vote to find \(\Lambda(z)\);
The Majority Rule Berlekamp/Massey algorithm

\[2t \quad E = 2 \quad n = 2t(2E + 1) \]

\[\Lambda_1 \quad \Lambda_2 \quad \Lambda_3 \quad \Lambda_4 \quad \Lambda_5 \]

Input: \((a_0, \ldots, a_{n-1}) + \varepsilon, \) where \(n = 2t(2E + 1), \) weight(\(\varepsilon \)) \(\leq E, \) and \((a_0, \ldots, a_{n-1})\) minimally generated by \(\Lambda \) of degree \(t, \) where \(\Lambda(0) \neq 0. \)

Output: \(\Lambda(z) \) and \((a_0, \ldots, a_{n-1})\).

begin

- Run BMA on \(2E + 1 \) segments of \(2t \) entries and record \(\Lambda_i(z) \) on each segment;
- Perform **majority vote** to find \(\Lambda(z) \);
- Use a **clean** segment to **clean-up** the sequence;
- **return** \(\Lambda(z) \) and \((a_0, a_1, \ldots)\);
Algorithm SequenceCleanUp

Input: $\Lambda(z) = z^t + \sum_{i=0}^{t-1} \lambda_i x^i$ where $\Lambda(0) \neq 0$
Input: (a_0, \ldots, a_{n-1}), where $n \geq t + 1$
Input: E, the maximum number of corrections to make
Input: k, such that (a_k, a_{k+2t-1}) is clean
Output: (b_0, \ldots, b_{n-1}) generated by Λ at distance $\leq E$ to (a_0, \ldots, a_{n-1})
Algorithm SequenceCleanUp

Input: $\Lambda(z) = z^t + \sum_{i=0}^{t-1} \lambda_i x^i$ where $\Lambda(0) \neq 0$

Input: (a_0, \ldots, a_{n-1}), where $n \geq t + 1$

Input: E, the maximum number of corrections to make

Input: k, such that (a_k, a_{k+2t-1}) is clean

Output: (b_0, \ldots, b_{n-1}) generated by Λ at distance $\leq E$ to (a_0, \ldots, a_{n-1})

begin

$(b_0, \ldots, b_{n-1}) \leftarrow (a_0, \ldots, a_{n-1}); e, j \leftarrow 0$

$i \leftarrow k + 2t$

while $i \leq n - 1$ and $e \leq E$ do

if Λ does not satisfy $(b_{i-t+1}, \ldots, b_{i})$ then

Fix b_i using $\Lambda(z)$ as a LFSR; $e \leftarrow e + 1$;

return $(b_0, \ldots, b_{n-1}), e$
Algorithm SequenceCleanUp

Input: $\Lambda(z) = z^t + \sum_{i=0}^{t-1} \lambda_i x^i$ where $\Lambda(0) \neq 0$
Input: (a_0, \ldots, a_{n-1}), where $n \geq t + 1$
Input: E, the maximum number of corrections to make
Input: k, such that (a_k, a_{k+2t-1}) is clean
Output: (b_0, \ldots, b_{n-1}) generated by Λ at distance $\leq E$ to
(a_0, \ldots, a_{n-1})

begin

$(b_0, \ldots, b_{n-1}) \leftarrow (a_0, \ldots, a_{n-1}); e, j \leftarrow 0$;
i $\leftarrow k + 2t$;
while $i \leq n - 1$ and $e \leq E$ do

- if Λ does not satisfy (b_{i-t+1}, \ldots, b_i) then

 Fix b_i using $\Lambda(z)$ as a LFSR; $e \leftarrow e + 1$;

i $\leftarrow k - 1$;
while $i \geq 0$ and $e \leq E$ do

- if Λ does not satisfy (b_i, \ldots, b_{i+t-1}) then

 Fix b_i using $z^t \Lambda(1/z)$ as a LFSR; $e \leftarrow e + 1$;

return $(b_0, \ldots, b_{n-1}), e$
Algorithm SequenceCleanUp

Input: $\Lambda(z) = z^t + \sum_{i=0}^{t-1} \lambda_i x^i$ where $\Lambda(0) \neq 0$

Input: (a_0, \ldots, a_{n-1}), where $n \geq t + 1$

Input: E, the maximum number of corrections to make

Input: k, such that (a_k, a_{k+2t-1}) is clean

Output: (b_0, \ldots, b_{n-1}) generated by Λ at distance $\leq E$ to (a_0, \ldots, a_{n-1})

begin

$(b_0, \ldots, b_{n-1}) \leftarrow (a_0, \ldots, a_{n-1}); e, j \leftarrow 0; i \leftarrow k + 2t;$

while $i \leq n - 1$ and $e \leq E$ do

if Λ does not satisfy (b_{i-t+1}, \ldots, b_i) then

Fix b_i using $\Lambda(z)$ as a LFSR; $e \leftarrow e + 1;$

$i \leftarrow k - 1;$

while $i \geq 0$ and $e \leq E$ do

if Λ does not satisfy (b_i, \ldots, b_{i+t-1}) then

Fix b_i using $z^t \Lambda(1/z)$ as a LFSR; $e \leftarrow e + 1;$

return $(b_0, \ldots, b_{n-1}), e$
Finding a clean segment: case $E = 1$

⇒ only one error

$$(a_0, \ldots, a_{k-2}, b_{k-1} \neq a_{k-1}, a_k, a_{k+1}, a_{2t-1})$$

will be identified by the majority vote (2-to-1 majority).
Finding a clean segment: case $E \geq 2$

Multiple errors on one segment can still be generated by $\Lambda(z)$
⇒ **deceptive segments**: not good for SequenceCleanUp

Example

$E = 3$: $(0, 1, 0, 2, 0, 4, 0, 8, \ldots)$ $\Rightarrow \Lambda(z) = z^2 - 2$
Finding a clean segment: case $E \geq 2$

Multiple errors on one segment can still be generated by $\Lambda(z)$
⇒ deceptive segments: not good for SequenceCleanUp

Example

$E = 3$: $(0, 1, 0, 2, 0, 4, 0, 8, \ldots)$ ⇒ $\Lambda(z) = z^2 - 2$

$(1, 1, 2, 2, 4, 4, 0, 8, 0, 16, 0, 32, \ldots)$
Finding a clean segment: case $E \geq 2$

Multiple errors on one segment can still be generated by $\Lambda(z)$ ⇒ deceptive segments: not good for SequenceCleanUp

Example

$E = 3$: $(0, 1, 0, 2, 0, 4, 0, 8, \ldots) \Rightarrow \Lambda(z) = z^2 - 2$

\[
\begin{align*}
(1, 1, 2, 2, 4, 4, 0, 8, 0, 16, 0, 32, \ldots) \\
\text{\underbrace{z^2-2}} \quad \text{\underbrace{z^2+2z-2}} \quad \text{\underbrace{z^2-2}}
\end{align*}
\]
Finding a clean segment: case $E \geq 2$

Multiple errors on one segment can still be generated by $\Lambda(z) \Rightarrow$ deceptive segments: not good for SequenceCleanUp

Example

$E = 3$: $(0, 1, 0, 2, 0, 4, 0, 8, \ldots)$ $\Rightarrow \Lambda(z) = z^2 - 2$

$(1, 1, 2, 2, 4, 4, 0, 8, 0, 16, 0, 32, \ldots)$

$(1, 1, 2, 2)$ is deceptive. Applying SequenceCleanUp with this clean segment produces

$(1, 1, 2, 2, 4, 4, 8, 8, 16, 16, 32, 32, 64, \ldots)$
Finding a clean segment: case $E \geq 2$

Multiple errors on one segment can still be generated by $\Lambda(z)$ ⇒ **deceptive segments**: not good for SequenceCleanUp

Example

$E = 3$: $(0, 1, 0, 2, 0, 4, 0, 8, \ldots)$ $\Rightarrow \Lambda(z) = z^2 - 2$

\[
\begin{align*}
(1, 1, 2, 2, 4, 4, 0, 8, 0, 16, 0, 32, \ldots) & \\
\underline{z^2 - 2} & \underline{z^2 + 2z - 2} & \underline{z^2 - 2}
\end{align*}
\]

$(1, 1, 2, 2)$ is deceptive. Applying **SequenceCleanUp** with this clean segment produces

$(1, 1, 2, 2, 4, 4, 8, 8, 16, 16, 32, 32, 64, \ldots)$

$E > 3$? contradiction. Try $(0, 16, 0, 32)$ as a clean segment instead.
Success of the sequence clean-up

Theorem

If \(n \geq t(2E + 1) \), then a deceptive segment will necessarily be exposed by a failure of the condition \(e \leq E \) in algorithm `SequenceCleanUp`.

Corollary

\(n \geq 2t(2E + 1) \) is a necessary and sufficient condition for unique decoding of \(\Lambda \) and the corresponding sequence.

Remark

Also works with an upper bound \(t \leq T \) on \(\text{deg} \Lambda \).
Success of the sequence clean-up

Theorem

If \(n \geq t(2E + 1) \), then a deceptive segment will necessarily be exposed by a failure of the condition \(e \leq E \) in algorithm \texttt{SequenceCleanUp}.

Corollary

\(n \geq 2t(2E + 1) \) is a necessary and sufficient condition for unique decoding of \(\Lambda \) and the corresponding sequence.

Remark

Also works with an upper bound \(t \leq T \) on \(\deg \Lambda \).
List decoding for $n \geq 2t(E + 1)$

Input: $(a_0, \ldots, a_{n-1}) + \varepsilon$, where $n = 2t(E + 1)$, weight $(\varepsilon) \leq E$, and (a_0, \ldots, a_{n-1}) minimally generated by Λ of degree t, where $\Lambda(0) \neq 0$.

Output: $(\Lambda_i(z), s_i = (a_i(0), \ldots, a_i(n-1)))$ for a list of $\leq E$ candidates.

\begin{algorithm}
begin
Run BMA on $E+1$ segments of $2t$ entries and record $\Lambda_i(z)$ on each segment;
foreach $\Lambda_i(z)$ do
Use a clean segment to clean-up the sequence;
Withdraw Λ_i if no clean segment can be found.
return the list $(\Lambda_i(z), (a_i(0), \ldots, a_i(n-1)))$.
\end{algorithm}
List decoding for $n \geq 2t(E + 1)$

Input: $(a_0, \ldots, a_{n-1}) + \varepsilon$, where $n = 2t(E + 1)$, \text{weight}(\varepsilon) \leq E$, and (a_0, \ldots, a_{n-1}) minimally generated by Λ of degree t, where $\Lambda(0) \neq 0$.

Output: $(\Lambda_i(z), s_i = (a_0^{(i)}, \ldots, a_{n-1}^{(i)}))_i$ a list of $\leq E$ candidates

begin

Run BMA on $E + 1$ segments of $2t$ entries and record $\Lambda_i(z)$ on each segment;

foreach $\Lambda_i(z)$ do

Use a clean segment to clean-up the sequence;

Withdraw Λ_i if no clean segment can be found.

return the list $(\Lambda_i(z), s_i = (a_0^{(i)}, \ldots, a_{n-1}^{(i)}))_i$;
List decoding for $n \geq 2t(E + 1)$

Input: $(a_0, \ldots, a_{n-1}) + \varepsilon$, where $n = 2t(E + 1)$, weight(ε) $\leq E$, and (a_0, \ldots, a_{n-1}) minimally generated by Λ of degree t, where $\Lambda(0) \neq 0$.

Output: $(\Lambda_i(z), s_i = (a_0^{(i)}, \ldots, a_{n-1}^{(i)}))_i$ a list of $\leq E$ candidates

begin
 Run BMA on $E + 1$ segments of $2t$ entries and record $\Lambda_i(z)$ on each segment;
 foreach $\Lambda_i(z)$ do
 Use a clean segment to clean-up the sequence;
 Withdraw Λ_i if no clean segment can be found.
 return the list $(\Lambda_i(z), (a_0^{(i)}, \ldots, a_{n-1}^{(i)}))_i$;
Properties

▶ The list contains the right solution \((\Lambda, (a_0, \ldots, a_{n-1}))\)
Properties

- The list contains the right solution \((\Lambda, (a_0, \ldots, a_{n-1}))\)
- \(n \geq 2t(E + 1)\) is the tightest bound to ensure to enable syndrome decoding (BMA on a clean sequence of length \(2t\)).

Example

\[n = 2t(E + 1) - 1 \text{ and } \varepsilon = (0, \ldots, 0, 1, 0, \ldots, 0, 1 \ldots, 1, 0, \ldots, 0). \]

Then \((a_0, \ldots, a_{n-1}) + \varepsilon\) has no length \(2t\) clean segment.
Sparse Polynomial Interpolation

\[x \in F \quad \rightarrow \quad f(x) \]

\[f = \sum_{i=1}^{t} c_i x^e_i \]

Problem

Recover a \(t \)-sparse polynomial \(f \) given a black-box computing evaluations of it.
Sparse Polynomial Interpolation

\[x \in F \rightarrow f(x) \]

\[f = \sum_{i=1}^{t} c_i x^{e_i} \]

Problem

Recover a \(t \)-sparse polynomial \(f \) given a black-box computing evaluations of it.

Ben-Or/Tiwari 1988:

- Let \(a_i = f(p^i) \) for \(p \) a primitive element,
- and let \(\Lambda(z) = \prod_{i=1}^{t} (z - p^{e_i}) \).
- Then \(\Lambda(z) \) is the minimal generator of \((a_0, a_1, \ldots)\).

\[\Rightarrow \text{only need } 2t \text{ entries to find } \Lambda(z) \text{ (using BMA)} \]
Sparse Polynomial Interpolation

\[x \in F \rightarrow f(x) + \varepsilon \]

\[f = \sum_{i=1}^{t} c_i x^{e_i} \]

Problem

Recover a \(t \)-sparse polynomial \(f \) given a black-box computing evaluations of it.

Ben-Or/Tiwari 1988:

- Let \(a_i = f(p^i) \) for \(p \) a primitive element,
- and let \(\Lambda(z) = \prod_{i=1}^{t} (z - p^{e_i}) \).
- Then \(\Lambda(z) \) is the minimal generator of \((a_0, a_1, \ldots)\).

\[\Rightarrow \text{only need } 2t \text{ entries to find } \Lambda(z) \text{ (using BMA)} \]
\[\Rightarrow \text{only need } 2T(2E + 1) \text{ with } e \leq E \text{ errors and } t \leq T. \]
Ben-Or & Tiwari’s Algorithm

Input:
\((a_0, \ldots, a_{2t-1})\) where \(a_i = f(p^i)\)

Input: \(t\), the number of (non-zero) terms of
\[f(x) = \sum_{j=1}^{t} c_j x^{e_j} \]

Output: \(f(x)\)

begin

Run BMA on \((a_0, \ldots, a_{2t-1})\) to find \(\Lambda(z)\)

Find roots of \(\Lambda(z)\) (polynomial factorization)

Recover \(e_j\) by repeated division (by \(p\))

Recover \(c_j\) by solving the transposed Vandermonde system

\[
\begin{bmatrix}
(p^0)^{e_1} & (p^0)^{e_2} & \cdots & (p^0)^{e_t} \\
(p^1)^{e_1} & (p^1)^{e_2} & \cdots & (p^1)^{e_t} \\
\vdots & \vdots & \ddots & \vdots \\
(p^t)^{e_1} & (p^t)^{e_2} & \cdots & (p^t)^{e_t}
\end{bmatrix}
\begin{bmatrix}
c_1 \\
c_2 \\
\vdots \\
c_t
\end{bmatrix}
=
\begin{bmatrix}
a_0 \\
a_1 \\
\vdots \\
a_{t-1}
\end{bmatrix}
\]
Blahut’s theorem

Theorem (Blahut)

The D.F.T of a vector of weight t has linear complexity at most t

$\text{DFT}_\omega(v) = \text{Vandemonde}(\omega^0, \omega^1, \omega^2, \ldots)v = \text{Eval}_{\omega^0, \omega^1, \omega^2, \ldots}(v)$
Theorem (Blahut)

The D.F.T of a vector of weight t has linear complexity at most t

$$\text{DFT}_\omega(v) = \text{Vandemonde}(\omega^0, \omega^1, \omega^2, \ldots)v = \text{Eval}_{\omega^0, \omega^1, \omega^2, \ldots}(v)$$

- Univariate Ben-Or & Tiwari as a corollary
Theorem (Blahut)

The D.F.T of a vector of weight t has linear complexity at most t

$$\text{DFT}_\omega (v) = \text{Vandemonde} (\omega^0, \omega^1, \omega^2, \ldots) v = \text{Eval}_{\omega^0, \omega^1, \omega^2, \ldots} (v)$$

- Univariate Ben-Or & Tiwari as a corollary
- Reed-Solomon codes: evaluation of a sparse error
 \Rightarrow BMA
Reed-Solomon codes as Evaluation codes

\[C = \{(f(\omega^1), \ldots, f(\omega^n)) \mid \deg f < k\} \]
Reed-Solomon codes as Evaluation codes

\[C = \{(f(\omega^1), \ldots, f(\omega^n)) | \deg f < k\} \]
Sparse interpolation with errors

Find f from $(f(w^1), \ldots, f(w^n)) + \varepsilon$

Interpolation

ε 0
error ε

g = Eval (f) + \varepsilon
sparse polynomial f

c = Interp (\varepsilon)

Evaluation

y = c + f
Sparse interpolation with errors

Find f from $(f(w^1), \ldots, f(w^n)) + \varepsilon$

Interpolation

$\varepsilon \quad 0$
error ε

$c = \text{Interp}(\varepsilon)$

sparse polynomial f

Evaluation

$g = \text{Eval}(f) + \varepsilon$

$y = c + f$

BMA

f
Same problems?

Interchanging Evaluation and Interpolation

Let $V_\omega = \text{Vandermonde}(\omega, \omega^2, \ldots, \omega^n)$. Then $(V_\omega)^{-1} = \frac{1}{n} V_{\omega^{-1}}$

Given g, find f, t-sparse and an error ε such that

$$g = V_\omega f + \varepsilon$$

$$V_{\omega^{-1}} g = nf + V_{\omega^{-1}} \varepsilon$$
Interchanging Evaluation and Interpolation

Let \(V_\omega = \text{Vandermonde}(\omega, \omega^2, \ldots, \omega^n) \). Then \((V_\omega)^{-1} = \frac{1}{n} V_{\omega^{-1}}\)

Given \(g \), find \(f \), \(t \)-sparse and an error \(\varepsilon \) such that

\[
g = V_\omega f + \varepsilon
\]

\[
V_{\omega^{-1}} g = \underbrace{nf}_{\text{weight } t \text{ error}} + \underbrace{V_{\omega^{-1}} \varepsilon}_{\text{RS code word}}
\]

Reed-Solomon decoding: unique solution provided \(\varepsilon \) has \(2t \) consecutive trailing 0’s

\[\Leftrightarrow\] clean segment of length \(2t \)

\[\Leftrightarrow n \geq 2t(E + 1)\]
Same problems?

Interchanging Evaluation and Interpolation

Let $V_\omega = \text{Vandermonde}(\omega, \omega^2, \ldots, \omega^n)$. Then $(V_\omega)^{-1} = \frac{1}{n}V_{\omega^{-1}}$

Given g, find f, t-sparse and an error ε such that

$$g = V_\omega f + \varepsilon$$

$$V_{\omega^{-1}} g = nf + \underbrace{V_{\omega^{-1}} \varepsilon}_{\text{RS code word}}$$

Reed-Solomon decoding: unique solution provided ε has $2t$

- consecutive trailing 0’s
- clean segment of length $2t$
- $n \geq 2t(E + 1)$

BUT: location of the syndrome, is a priori unknown

\Rightarrow no uniqueness
Numeric Sparse Interpolation

- numerical evaluations (with noise) of a sparse polynomial
- and outliers

Symbolic numeric approach [Giesbrecht, Labahn & Lee’06] [Kaltofen, Lee, Yang’11]:

- Interpolation/correction using Berlekamp-Massey
- Termination (zero-discrepancy) is ill-conditioned
Numeric Sparse Interpolation

- numerical evaluations (with noise) of a sparse polynomial
- and outliers

Symbolic numeric approach [Giesbrecht, Labahn & Lee’06] [Kaltofen, Lee, Yang’11]:

- Interpolation/correction using Berlekamp-Massey
- Termination (zero-discrepancy) is ill-conditioned
- But the conditioning is the termination criteria
Numeric Sparse Interpolation

- numerical evaluations (with noise) of a sparse polynomial
- and *outliers*

Symbolic numeric approach [Giesbrecht, Labahn & Lee’06] [Kaltofen, Lee, Yang’11]:

- Interpolation/correction using Berlekamp-Massey
- Termination (zero-discrepancy) is ill-conditioned
- But the conditioning is the termination criteria
- Better: track two perturbed executions
 \(\Rightarrow\) divergence = termination
Outline

Introduction
- High performance exact computations
- Chinese remaindering
- Motivation

Sparse Interpolation with errors
- Berlekamp/Massey algorithm with errors
- Sparse Polynomial Interpolation with errors
- Relations to Reed-Solomon decoding

Dense interpolation with errors
- Decoding CRT codes: Mandelbaum algorithm
- Amplitude codes
- Adaptive decoding
- Experiments
CRT codes: Mandelbaum algorithm over \mathbb{Z}

Chinese Remainder Theorem

$x \in \mathbb{Z} \quad x_1 \quad x_2 \quad \ldots \quad x_k$

where $m_1 \times \cdots \times m_k > x$ and $x_i = x \mod m_i \forall i$
CRT codes: Mandelbaum algorithm over \mathbb{Z}

Chinese Remainder Theorem

$x \in \mathbb{Z}$ \[x_1 \; x_2 \; \ldots \; x_k \; x_{k+1} \; \ldots \; x_n \]

where $m_1 \times \cdots \times m_n > x$ and $x_i = x \mod m_i \; \forall i$
CRT codes: Mandelbaum algorithm over \mathbb{Z}

Chinese Remainder Theorem

$x \in \mathbb{Z}$ \quad \leftrightarrow \quad x_1 \ x_2 \ \ldots \ x_k \ x_{k+1} \ \ldots \ x_n$

where $m_1 \times \cdots \times m_n > x$ and $x_i = x \mod m_i \ \forall i$

Definition

(n, k)-code: $C = \left\{ (x_1, \ldots, x_n) \in \mathbb{Z}_{m_1} \times \cdots \times \mathbb{Z}_{m_n} \text{ s.t. } \exists x, \left\{ \begin{array}{l} x < m_1 \ldots m_k \\ x_i = x \mod m_i \ \forall i \end{array} \right. \right\}$
Principle

Property

\[X \in C \iff X < \Pi_k. \]

\[\Pi_n = p_1 \times \cdots \times p_n \]

\[\Pi_k = p_1 \times \cdots \times p_k \]

Redundancy: \(r = n - k \)
ABFT with Chinese remainder algorithm

Input A

$x' < \Pi_n$

Solution $x < \Pi_k$

Encoding

$A = (A_1, \ldots, A_n)$

$A = (r_1, \ldots, r_n)$

Correction

$x = (x_1, \ldots, x_n)$

Decoding
Properties of the code

Error model:

- **Error:** $E = X' - X$
- **Error support:** $I = \{ i \in 1 \ldots n, E \neq 0 \mod m_i \}$
- **Impact of the error:** $\Pi_F = \prod_{i \in I} m_i$

Detects up to r errors: If $X' = X + E$ with $X \in C$, $\#I \leq r$, then $X' > \Pi_k$.

Redundancy $r = n - k$, distance: $r + 1$.

\Rightarrow can correct up to $\lfloor \frac{r}{2} \rfloor$ errors in theory.

More complicated in practice...
Properties of the code

Error model:

- Error: \(E = X' - X \)
- Error support: \(I = \{ i \in 1 \ldots n, E \neq 0 \mod m_i \} \)
- Impact of the error: \(\Pi_F = \prod_{i \in I} m_i \)

Detects up to \(r \) errors:

If \(X' = X + E \) with \(X \in C, \#I \leq r \),

then \(X' > \Pi_k \).

- Redundancy \(r = n - k \), distance: \(r + 1 \)
- can correct up to \(\left\lfloor \frac{r}{2} \right\rfloor \) errors in theory
- More complicated in practice...
Correction

- $\forall i \notin I : E \mod m_i = 0$
- E is a multiple of Π_V: $E = Z\Pi_V = Z \prod_{i \notin I} m_i$
- $\gcd(E, \Pi) = \Pi_V$

Property

The Extended Euclidean Algorithm, applied to (Π, E) and to $(X' = X + E, \Pi)$, performs the same first iterations until $r_i < \Pi_V$.

\[
\begin{align*}
\Pi & \quad X' \quad \Pi \\
\hline
X & + \\
E & \\
\hline
\end{align*}
\]

\[
\begin{align*}
u_0\Pi + v_0E &= \Pi \\
\vdots \\
u_{i-1}\Pi + v_{i-1}E &= \Pi_v \\
u_i\Pi + v_iE &= 0 \\
\Rightarrow v_iX &= r_i \\
u_0\Pi + v_0X' &= X' \\
\vdots \\
u_{i-1}\Pi + v_{i-1}X' &= r_{i-1} \\
u_i\Pi + v_iX' &= r_i
\end{align*}
\]
Correction capacity

Mandelbaum 78:

- 1 symbol = 1 residue
- Polynomial time algorithm if $e \leq (n - k) \frac{\log m_{\text{min}} - \log 2}{\log m_{\text{max}} + \log m_{\text{min}}}$
- worst case: exponential (random perturbation)

Goldreich Ron Sudan 99 weighted residues \Rightarrow equivalent
Guruswami Sahai Sudan 00 invariably polynomial time
Correction capacity

Mandelbaum 78:

- 1 symbol = 1 residue
- Polynomial time algorithm if \(e \leq (n - k) \frac{\log m_{\min} - \log 2}{\log m_{\max} + \log m_{\min}} \)
- worst case: exponential (random perturbation)

Goldreich Ron Sudan 99 weighted residues \(\Rightarrow \) equivalent
Guruswami Sahai Sudan 00 invariably polynomial time

Interpretation:

Errors have variable weights depending on their impact \(\prod_{i \in I} m_i \)

Example: \(m_1 = 3, m_2 = 5, m_3 = 3001 \)

- Mandelbaum: only corrects 1 error provided \(X < 3 \)
- Adaptive: also corrects
 - 1 error mod 3 if \(X < 333 \)
 - 1 error mod 5 if \(X < 120 \)
 - 2 errors mod 2 and 3 if \(X < 13 \)
Generalized point of view: amplitude code

Over a Euclidean ring \mathcal{A} with a Euclidean function ν, multiplicative and sub-additive, ie such that

\[
\nu(ab) = \nu(a)\nu(b)
\]
\[
\nu(a + b) \leq \nu(a) + \nu(b)
\]

eg.
- over \mathbb{Z}: $\nu(x) = |x|
- over $K[X]$: $\nu(P) = 2^{\deg(P)}$

Definition

Error impact between x and y: $\Pi_F = \prod_{i|x \neq y} m_i$
Error amplitude: $\nu(\Pi_F)$
Distance

\[\Delta : \mathcal{A} \times \mathcal{A} \to \mathbb{R}_+ \]
\[(x, y) \mapsto \sum_{i \mid x \neq y} \log_2 \nu(m_i) \]

\[\Delta(x, y) = \log_2 \nu(\Pi_F) \]
Definition \(((n,k)\text{-amplitude code})\)

Given \(\{m_i\}_{i \leq m}\) pairwise rel. prime, and \(\kappa \in \mathbb{R}_+\) The set

\[
C = \{x \in A : \nu(x) < \kappa\},
\]

\[n = \log_2 \prod_{i \leq m} m_i, \quad k = \log_2 \kappa. \text{ is a } (n,k)\text{-amplitude code.}\]
Definition \((n, k)\)-amplitude code

Given \(\{m_i\}_{i \leq m}\) pairwise rel. prime, and \(\kappa \in \mathbb{R}_+\) \ The set

\[
C = \{x \in A : \nu(x) < \kappa\},
\]

\[
n = \log_2 \prod_{i \leq m} m_i, \quad k = \log_2 \kappa. \quad \text{is a } (n, k)\text{-amplitude code.}
\]

Property (Quasi MDS)

\(\forall (x, y) \in C\)

\[
\Delta(x, y) > n - k - 1
\]

\(\Rightarrow\) correction capacity = maximal amplitude of an error that can be corrected
Definition \(((n, k)\)-amplitude code)

Given \(\{m_i\}_{i \leq m}\) pairwise rel. prime, and \(\kappa \in \mathbb{R}_+\) The set

\[
C = \{x \in \mathcal{A} : \nu(x) < \kappa\},
\]

\(n = \log_2 \prod_{i \leq m} m_i, k = \log_2 \kappa.\) is a \((n, k)\)-amplitude code.

Property (Quasi MDS)

\(\forall (x, y) \in C,\ \mathcal{A} = K[X]\)

\[
\Delta(x, y) \geq n - k + 1
\]

\(~ \text{Singleton bound}\)

\(\Rightarrow\) correction capacity = maximal amplitude of an error that can be corrected
Advantages

- Generalization over any Euclidean ring
- Natural representation of the amount of information
- No need to sort moduli
- Finer correction capacities

- Adaptive decoding: taking advantage of all the available redundancy
- Early termination: with no a priori knowledge of a bound on the result
Advantages

▶ Generalization over any Euclidean ring
▶ Natural representation of the amount of information
▶ No need to sort moduli
▶ Finer correction capacities
▶ **Adaptive decoding:** taking advantage of all the available redundancy
▶ **Early termination:** with no a priori knowledge of a bound on the result
Amplitude decoding, with static correction capacity

Amplitude based decoder over R

Input: Π, X'

Input: $\tau \in \mathbb{R}_+ \mid \tau < \frac{\nu(\Pi)}{2}$: bound on the maximal error amplitude

Output: $X \in R$: corrected message s.t. $\nu(X)4\tau^2 \leq \nu(\Pi)$

begin

$u_0 = 1, v_0 = 0, r_0 = \Pi$;

$u_1 = 0, v_1 = 1, r_1 = X'$;

$i = 1$;

while $(\nu(r_i) > \nu(\Pi)/2\tau)$ do

Let $r_{i-1} = q_ir_i + r_{i+1}$ be the Euclidean division of r_{i-1} by r_i;

$u_{i+1} = u_{i-1} - q_iu_i$;

$v_{i+1} = v_{i-1} - q_iv_i$;

$i = i + 1$;

return $X = \frac{r_i}{v_i}$

▶ reaches the quasi-maximal correction capacity
Amplitude decoding, with static correction capacity

Amplitude based decoder over \mathbb{R}

Input: Π, X'

Input: $\tau \in \mathbb{R}_+ \mid \tau < \frac{\nu(\Pi)}{2}$: bound on the maximal error amplitude

Output: $X \in \mathbb{R}$: corrected message s.t. $\nu(X)4\tau^2 \leq \nu(\Pi)$

begin

$u_0 = 1, v_0 = 0, r_0 = \Pi$;

$u_1 = 0, v_1 = 1, r_1 = X'$;

$i = 1$;

while ($\nu(r_i) > \nu(\Pi)/2\tau$) do

Let $r_{i-1} = q_ir_i + r_{i+1}$ be the Euclidean division of r_{i-1} by r_i;

$u_{i+1} = u_{i-1} - q_iu_i$;

$v_{i+1} = v_{i-1} - q_iv_i$;

$i = i + 1$;

end

return $X = \frac{r_i}{v_i}$

- reaches the quasi-maximal correction capacity
- requires an *a priori* knowledge of τ
 - How to make the correction capacity adaptive?
Adaptive approach

Multiple goals:

➤ With a fixed n, the correction capacity depends on a bound on $\nu(X)$
 ⇒ pessimistic estimate
 ⇒ how to take advantage of all the available redundancy?

redundancy effectively available

bound on $\nu(X)$ redundancy being used
A first adaptive approach: divisibility check

Termination criterion in the Extended Euclidean alg.:

- \(u_{i+1} \Pi + v_{i+1}E = 0 \)
 \[E = -\frac{u_{i+1} \Pi}{v_{i+1}} \]
 \[\Rightarrow \text{test if } v_j \text{ divides } \Pi \]

- check if \(X \) satisfies: \(\nu(X) \leq \frac{\nu(\Pi)}{4\nu(v_j)^2} \)

- But several candidates are possible
 \[\Rightarrow \text{discrimination by a post-condition on the result} \]
A first adaptive approach: divisibility check

Termination criterion in the Extended Euclidean alg.:

- $u_{i+1}\Pi + v_{i+1}E = 0$
 $\Rightarrow E = -u_{i+1}\Pi / v_{i+1}$
 \Rightarrow test if v_j divides Π

- check if X satisfies: $\nu(X) \leq \frac{\nu(\Pi)}{4\nu(v_j)^2}$

- But several candidates are possible
 \Rightarrow discrimination by a post-condition on the result

Example

<table>
<thead>
<tr>
<th>m_i</th>
<th>3</th>
<th>5</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_i</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

- $x = 23$ with 0 error
- $x = 2$ with 1 error
Detecting a gap

\[u_i \Pi + v_i (X + E) = r_i \quad \Rightarrow \quad u_i \Pi + v_i E = r_i - v_i X \]
Detecting a gap

\[u_i \Pi + v_i (X + E) = r_i \quad \Rightarrow \quad u_i \Pi + v_i E = r_i - v_i X \]

\[r_i \]

\[v_i X \]
Detecting a gap

\[u_i \Pi + v_i (X + E) = r_i \quad \Rightarrow \quad u_i \Pi + v_i E = r_i - v_i X \]
Detecting a gap

\[u_i \Pi + v_i (X + E) = r_i \quad \Rightarrow \quad u_i \Pi + v_i E = r_i - v_i X \]

At the final iteration:
\[\nu(r_i) = \nu(v_i X) \]
If necessary, a gap appears between \(r_{i-1} \) and \(r_i \).
Detecting a gap

\[u_i \Pi + v_i(X + E) = r_i \quad \Rightarrow \quad u_i \Pi + v_iE = r_i - v_iX \]

\[X = -\frac{r_i}{v_i} \]

- At the final iteration: \(\nu(r_i) = \nu(v_iX) \)
- If necessary, a gap appears between \(r_{i-1} \) and \(r_i \).
- Introduce a blank \(2^g \) in order to detect a gap \(> 2^g \)
Detecting a gap

\[u_i \Pi + v_i (X + E) = r_i \quad \Rightarrow \quad u_i \Pi + v_i E = r_i - v_i X \]

\[X = -r_i / v_i \]

- At the final iteration: \(\nu(r_i) = \nu(v_i X) \)
- If necessary, a gap appears between \(r_{i-1} \) and \(r_i \).
- \(\Rightarrow \) Introduce a blank \(2^g \) in order to detect a gap \(> 2^g \)
Detecting a gap

\[u_i \Pi + v_i (X + E) = r_i \quad \Rightarrow \quad u_i \Pi + v_i E = r_i - v_i X \]

\[X = -r_i / v_i \]

- At the final iteration: \(\nu(r_i) = \nu(v_i X) \)
- If necessary, a gap appears between \(r_{i-1} \) and \(r_i \).
- \(\Rightarrow \) Introduce a blank \(2^g \) in order to detect a gap \(> 2^g \)
Detecting a gap

\[
ur \Xi + v_i(X + E) = r_i \quad \Rightarrow \quad ur \Xi + v_iE = r_i - v_iX
\]

\[X = -r_i/v_i\]

- At the final iteration: \(\nu(r_i) = \nu(v_iX)\)
- If necessary, a gap appears between \(r_{i-1}\) and \(r_i\).
- \(\Rightarrow\) Introduce a \textit{blank} \(2^g\) in order to detect a gap \(> 2^g\)
Detecting a gap

\[u_i \Pi + v_i(X + E) = r_i \quad \Rightarrow \quad u_i \Pi + v_i E = r_i - v_i X \]

\[X = -r_i/v_i \]

- At the final iteration: \(\nu(r_i) = \nu(v_iX) \)
- If necessary, a gap appears between \(r_{i-1} \) and \(r_i \).
- \(\Rightarrow \) Introduce a blank \(2^g \) in order to detect a gap \(> 2^g \)

Property

- Loss of correction capacity: very small in practice
- Test of the divisibility for the remaining candidates
- Strongly reduces the number of divisibility tests
Experiments

<table>
<thead>
<tr>
<th>Size of the error</th>
<th>10</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>500</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g = 2$</td>
<td>$1/446$</td>
<td>$1/765$</td>
<td>$1/1118$</td>
<td>$2/1183$</td>
<td>$2/4165$</td>
<td>$1/7907$</td>
</tr>
<tr>
<td>$g = 3$</td>
<td>$1/244$</td>
<td>$1/414$</td>
<td>$1/576$</td>
<td>$2/1002$</td>
<td>$2/2164$</td>
<td>$1/4117$</td>
</tr>
<tr>
<td>$g = 5$</td>
<td>$1/53$</td>
<td>$1/97$</td>
<td>$1/153$</td>
<td>$2/262$</td>
<td>$1/575$</td>
<td>$1/1106$</td>
</tr>
<tr>
<td>$g = 10$</td>
<td>$1/1$</td>
<td>$1/3$</td>
<td>$1/9$</td>
<td>$1/14$</td>
<td>$1/26$</td>
<td>$1/35$</td>
</tr>
<tr>
<td>$g = 20$</td>
<td>$1/1$</td>
<td>$1/1$</td>
<td>$1/1$</td>
<td>$1/1$</td>
<td>$1/1$</td>
<td>$1/1$</td>
</tr>
</tbody>
</table>

Table: Number of remaining candidates after the gap detection: c/d means d candidates with a gap $> 2^g$, and c of them passed the divisibility test. $n \approx 6001$ (3000 moduli), $\kappa \approx 201$ (100 moduli).
Figure: Comparison for $n \approx 26016$ ($m = 1300$ moduli of 20 bits), $\kappa \approx 6001$ (300 moduli) and $\tau \approx 10007$ (about 500 moduli).
Conclusion

Adaptive decoding of CRT codes

- finer bounds on the correction capacity
- adaptive decoding using the best effective redundancy
- efficient termination heuristics

Sparse interpolation code over $K[X]

- lower bound on the necessary number of evaluations
- optimal unique decoding algorithm
- list decoding variant

Perspectives

- Generalization to adaptive list decoding of CRT codes
- Tight bound on the size of the list when $n \geq 2t(E + 1)$,
- Sparse Cauchy interpolation with errors.
Bonus: Dense rational function interpolation with errors (Cauchy interpolation)

\[y_i = \frac{f(x_i)}{g(x_i)} \]

Rational function interpolation: Pade approximant

- Find \(h \in K[X] \) s.t. \(h(x_i) = y_i \)
- Find \(f, g \) s.t. \(hg = f \mod \prod (X - x_i) \)

Property

If \(n \geq \deg f + \deg g + 2e \), one can interpolate with at most \(e \) errors
Bonus: Dense rational function interpolation with errors (Cauchy interpolation)

\[y_i = \frac{f(x_i)}{g(x_i)} \]

Rational function interpolation: Pade approximant

- Find \(h \in K[X] \) s.t. \(h(x_i) = y_i \) (interpolation)
- Find \(f, g \) s.t. \(hg = f \mod \prod (X - x_i) \) (Pade approx)

Introducing an error of impact \(\Pi_F = \prod_{i \in I} (X - x_i) \):

\[hg\Pi_F = f\Pi_F \mod \prod (X - x_i) \]

Property

If \(n \geq \deg f + \deg g + 2e \), one can interpolate with at most \(e \) errors.