Error correcting codes

Exercice 1. Construction of a Reed-Solomon code

a. Build a Reed-Solomon code over the field \mathbb{F}_8 of dimension 3, able to correct 2 errors. Give the corresponding generating matrix.

b. What code does it correspond to when k = 1?

Exercice 2. Dual of a GRS code

Let $C_1 = \mathcal{C}_{GRS}(n, k, \mathbf{x}, \mathbf{v})$ be a Generalized Reed Solomon code over a field K.

a. What is a generating matrix G for C_1 ?

b. Let $L_i = \prod_{j \neq i} (x_i - x_j)$. Show that the vector $(\frac{1}{L_1}, \frac{1}{L_2}, \dots, \frac{1}{L_n}$ is in the right kernel of the

Vandermonde matrix $V = \begin{bmatrix} 1 & \dots & 1 \\ x_1 & \dots & x_n \\ \vdots & & \vdots \\ x_1^{n-2} & \dots & x_n^{n-2} \end{bmatrix}$

c. Deduce that there exist a vector $w \in (K^*)^n$ such that

$$H = \begin{bmatrix} 1 & 1 & \dots & 1 \\ x_1 & x_2 & \dots & x_n \\ \vdots & & & \vdots \\ x_1^{n-k-1} & x_2^{n-k-1} & \dots & x_n^{n-k-1} \end{bmatrix} \begin{bmatrix} w_1 & & & \\ & w_2 & & \\ & & \ddots & \\ & & & & w_n \end{bmatrix}$$

verifies $GH^T = 0$.

d. Deduce that the dual of any Generalized Reed-Solomon code is a Generalized Reed-Solomon code in the same evaluation points.

Exercice 3. Alternant codes

Let C be an alternant code over a field \mathbb{F}_q built from a GRS codes over \mathbb{F}_{q^m} with parameters (n, k).

- **a.** Prove that the minimum distance of C is $\geq n k + 1$.
- **b.** Prove that its dimension is $\geq n (n k)m$.

Exercice 4. Mc Eliece

Recall that the Mc Eliece cryptosystem based on a code \mathcal{C} over a field \mathbb{K} is defined by:

- the private key is composed of a generator matrix $G \in \mathbb{K}^{k \times n}$ of a code with an efficient decoding algorithm up to t errors, an invertible matrix $S \in \mathbb{K}^{k \times k}$, a permutation matrix $P \in \mathbb{K}^{n \times n}$;
- the public key is (\hat{G}, t) where $\hat{G} = SGP$
- the encryption function: $E: m \mapsto m\hat{G} + e$ where e is sampled uniformly with $w_H(e) \leq t$

a. Recall how the decryption algorithm works.

b. When instantiated with a Reed-Solomon code of length 256 and dimension 224 over \mathbb{F}_{256} , what is the maximum value for t. What is the size in kilobytes of the public key?

c. For an arbitrary field (no longer assuming $_{256}$), suppose that a same message m is sent twice using McEliece cryptosystem. An attacker, has then access to two different ciphertexts c_1 and c_2 for the same message m. Explain why the attacker can deduce, with high probability of success, k positions in c_1 at which the corresponding error e_1 is zero.

d. Deduce that there is then a polynomial time algorithm (state its cost) to compute m, and therefore decode c_1 without knowing the private key.

e. Explain how does this attack generalizes for the *related plaintext attack*: when the ciphertexts c_1 and c_2 correspond to plain texts which difference is known to the attacker.

f. Propose a countermeasure for this attack.