Error correcting codes

Exercice 1. Construction of a Reed-Solomon code

a. Build a Reed-Solomon code over the field \mathbb{F}_{8} of dimension 3, able to correct 2 errors. Give the corresponding generating matrix.
b. What code does it correspond to when $k=1$?

Exercice 2. Dual of a GRS code

Let $C_{1}=\mathcal{C}_{\mathrm{GRS}}(n, k, \mathbf{x}, \mathbf{v})$ be a Generalized Reed Solomon code over a field K.
a. What is a generating matrix G for C_{1} ?
b. Let $L_{i}=\prod_{j \neq i}\left(x_{i}-x_{j}\right)$. Show that the vector $\left(\frac{1}{L_{1}}, \frac{1}{L_{2}}, \ldots, \frac{1}{L_{n}}\right.$ is in the right kernel of the Vandermonde matrix $V=\left[\begin{array}{ccc}1 & \ldots & 1 \\ x_{1} & \ldots & x_{n} \\ \vdots & & \vdots \\ x_{1}^{n-2} & \ldots & x_{n}^{n-2}\end{array}\right]$
c. Deduce that there exist a vector $w \in\left(K^{*}\right)^{n}$ such that

$$
H=\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
x_{1} & x_{2} & \ldots & x_{n} \\
\vdots & & & \vdots \\
x_{1}^{n-k-1} & x_{2}^{n-k-1} & \ldots & x_{n}^{n-k-1}
\end{array}\right]\left[\begin{array}{cccc}
w_{1} & & & \\
& w_{2} & & \\
& & \ddots & \\
& & & w_{n}
\end{array}\right]
$$

verifies $G H^{T}=0$.
d. Deduce that the dual of any Generalized Reed-Solomon code is a Generalized ReedSolomon code in the same evaluation points.

Exercice 3. Alternant codes

Let C be an alternant code over a field \mathbb{F}_{q} built from a GRS codes over $\mathbb{F}_{q^{m}}$ with parameters (n, k).
a. Prove that the minimum distance of C is $\geq n-k+1$.
b. Prove that its dimension is $\geq n-(n-k) m$.

Exercice 4. Mc Eliece

Recall that the Mc Eliece cryptosystem based on a code \mathcal{C} over a field \mathbb{K} is defined by:

- the private key is composed of a generator matrix $G \in \mathbb{K}^{k \times n}$ of a code with an efficient decoding algorithm up to t errors, an invertible matrix $S \in \mathbb{K}^{k \times k}$, a permutation matrix $P \in \mathbb{K}^{n \times n}$;
- the public key is (\hat{G}, t) where $\hat{G}=S G P$
- the encryption function: $E: m \mapsto m \hat{G}+e$ where e is sampled uniformly with $w_{H}(e) \leq t$
a. Recall how the decryption algorithm works.
b. When instantiated with a Reed-Solomon code of length 256 and dimension 224 over \mathbb{F}_{256}, what is the maximum value for t. What is the size in kilobytes of the public key?
c. For an arbitrary field (no longer assuming 256), suppose that a same message m is sent twice using McEliece cryptosystem. An attacker, has then access to two different ciphertexts c_{1} and c_{2} for the same message m. Explain why the attacker can deduce, with high probability of success, k positions in c_{1} at which the corresponding error e_{1} is zero.
d. Deduce that there is then a polynomial time algorithm (state its cost) to compute m, and therefore decode c_{1} without knowing the private key.
e. Explain how does this attack generalizes for the related plaintext attack: when the ciphertexts c_{1} and c_{2} correspond to plain texts which difference is known to the attacker.
f. Propose a countermeasure for this attack.

