Reductions and Asymmetric cryptography

Exercice 1. RSA reduction to factorization: small exponent case

Let n = pg with p,q > 3, two prime numbers, and e < n be an integer coprime with ¢(n) =
(p—1)(g—1). Let d = e~ mod ¢(n).

RSA is a public key cryptosystem where the public key is a the pair (n,e) and the private
key is the pair (n,d).

e The encryption function E is defined by E(m) =m® mod n

e The decryption function D is defined by D(c) = ¢ mod n

The computational problem BREAK RSA(n,e) is to find the secret exponent d from the
public key (n,e).

a. What is the complexity of the key generation and the encryption function ?

b. Show that BREAK_RSA <p FACTORIZATION

We will now focus on the converse: showing that FACTORIZATION <p BREAK_RSA. We
will first consider a weaker problem, where the secret exponent e is small: e = O(logn).

c. Show that p,q < n/4 and deduce that ¢(n) > n/2.

d. Show that 3k < 2e such that ed — 1 = k¢(n).

e. Express S, = p+ ¢q as a function of k,n, e, d

f. How to recover p and g from Sy and n?

g. Write down an algorithm and its complexity analysis.

Exercice 2. RSA reduction to factorization: arbitrary case

We now consider the general case where e can be arbitrarily large. Define s and ¢ such that
ed —1 =t2° where t is odd. Consider an integer a < n coprime with n, chosen at random.

w2 =1 modn

. 12t
a. Show that 3i < s, u =a" and { u#1 modn

For the moment, assume that a verifies 3i < s, v = a*?" and

u?>=1 modn
{ u¢ {l,—1} modn (1)

b. Show that ged(u — 1,n) # 1 and deduce an algorithm factoring n.

We will now show that half of the choices for a € (Z/nZ)* satisfy (1).
Write
ed—1=_k (p—1)(qg—1)=Llt1t927°1%2
J_p-1)(¢-1)
£2° t1251 10252
where /,t1,t5 are odd. Suppose without loss of generality that s; < sy and define
ed —1

= gt = thita2”

r
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c. Show that half of the a € (Z/qZ)* verifiy a"" =1 and the other half verify a's = -1

d. Deduce from the above question that half of the a € (Z/qZ)* verify a" = —1 and the
other half a" = 1.

e. When s; < s, conclude that half of the a € (Z/nZ)* verify a" ¢ {1, —1}
f. When s; = s9, conclude that half of the a € (Z/nZ)* verify a” ¢ {1,—1}

Exercice 3. Reduction and RSA

Suppose n = pq is an RSA integer with p, ¢ two large primes, such that it is computationnaly
intractable to factor n.

a. Is it possible to compute ¢(n)?

b. Which reduction scheme would you use, between the two given below:
1. 2

AlgoReductionl-Fatctorize (n)  AlgoReductionl-ComputePhi (n)

{ {

phi = OracleComputePhi (n) (p,q) = OracleFactorize (n)
return p,q return phi

} b

Exercice 4. Merkle-Hellman

Consider Merkle-Hellman protocol (MH). Bob chooses a super-increasing secret sequence of
n = 1000 integers a; for 0 < ¢ < n. Alice signs a binary plain text P (a block), computes
C' = Epyp(P) and sends C' to Bob.

a. What is the size of a P?
b. Give an algorithm that Bob uses to build its secret integers a;.

. Deduce that, if ag = ¢, we may consider a; < 4%.c.

o

d. What is the order of the size of the cipher text C'?

0]

. Write the algorithms for encoding and decoding and analyze their costs.

bl

Conclude on the provable security of MH (b, ..., b,—1,m).
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