## Reductions and Asymmetric cryptography

## Exercice 1. RSA reduction to factorization: small exponent case

Let $n=p q$ with $p, q>3$, two prime numbers, and $e<n$ be an integer coprime with $\phi(n)=$ $(p-1)(q-1)$. Let $d=e^{-1} \bmod \phi(n)$.

RSA is a public key cryptosystem where the public key is a the pair ( $n, e$ ) and the private key is the pair $(n, d)$.

- The encryption function $E$ is defined by $E(m)=m^{e} \bmod n$
- The decryption function $D$ is defined by $D(c)=c^{d} \bmod n$

The computational problem BREAK_RSA $(n, e)$ is to find the secret exponent $d$ from the public key ( $n, e$ ).
a. What is the complexity of the key generation and the encryption function?
b. Show that BREAK_RSA $\leq_{P}$ FACTORIZATION

We will now focus on the converse: showing that FACTORIZATION $\leq_{P}$ BREAK_RSA. We will first consider a weaker problem, where the secret exponent $e$ is small: $e=\Theta(\log n)$.
c. Show that $p, q \leq n / 4$ and deduce that $\phi(n) \geq n / 2$.
d. Show that $\exists k \leq 2 e$ such that $e d-1=k \phi(n)$.
e. Express $S_{k}=p+q$ as a function of $k, n, e, d$
f. How to recover $p$ and $q$ from $S_{k}$ and $n$ ?
g. Write down an algorithm and its complexity analysis.

## Exercice 2. RSA reduction to factorization: arbitrary case

We now consider the general case where $e$ can be arbitrarily large. Define $s$ and $t$ such that $e d-1=t 2^{s}$, where $t$ is odd. Consider an integer $a \leq n$ coprime with $n$, chosen at random.
a. Show that $\exists i<s, u=a^{t 2^{i}}$ and $\left\{\begin{array}{l}u^{2}=1 \bmod n \\ u \neq 1 \bmod n\end{array}\right.$

For the moment, assume that $a$ verifies $\exists i<s, u=a^{t 2^{i}}$ and

$$
\left\{\begin{array}{l}
u^{2}=1 \quad \bmod n  \tag{1}\\
u \notin\{1,-1\} \quad \bmod n
\end{array}\right.
$$

b. Show that $\operatorname{gcd}(u-1, n) \neq 1$ and deduce an algorithm factoring $n$.

We will now show that half of the choices for $a \in(\mathbb{Z} / n \mathbb{Z})^{*}$ satisfy (1). Write

$$
e d-1=\underbrace{k}_{\ell 2^{\sigma}} \underbrace{(p-1)}_{t_{1} 2^{s_{1}}} \underbrace{(q-1)}_{t_{2} 2^{s_{2}}}=\ell t_{1} t_{2} 2^{\sigma s_{1} s_{2}}
$$

where $\ell, t_{1}, t_{2}$ are odd. Suppose without loss of generality that $s_{1} \leq s_{2}$ and define

$$
r=\frac{e d-1}{2^{\sigma+s_{1}+1}}=\ell t_{1} t_{2} 2^{s_{2}-1}
$$

c. Show that half of the $a \in(\mathbb{Z} / q \mathbb{Z})^{*}$ verifiy $a^{\frac{q-1}{2}}=1$ and the other half verify $a^{\frac{q-1}{2}}=-1$
d. Deduce from the above question that half of the $a \in(\mathbb{Z} / q \mathbb{Z})^{*}$ verify $a^{r}=-1$ and the other half $a^{r}=1$.
e. When $s_{1}<s_{2}$, conclude that half of the $a \in(\mathbb{Z} / n \mathbb{Z})^{*}$ verify $a^{r} \notin\{1,-1\}$
f. When $s_{1}=s_{2}$, conclude that half of the $a \in(\mathbb{Z} / n \mathbb{Z})^{*}$ verify $a^{r} \notin\{1,-1\}$

## Exercice 3. Reduction and RSA

Suppose $n=p q$ is an RSA integer with $p, q$ two large primes, such that it is computationnaly intractable to factor $n$.
a. Is it possible to compute $\phi(n)$ ?
b. Which reduction scheme would you use, between the two given below:
1.

AlgoReduction1-Fatctorize (n) AlgoReduction1-ComputePhi (n) \{
\{
phi = OracleComputePhi (n)
( $\mathrm{p}, \mathrm{q}$ ) = OracleFactorize ( n )
return p,q return phi
\}
\}

## Exercice 4. Merkle-Hellman

Consider Merkle-Hellman protocol (MH). Bob chooses a super-increasing secret sequence of $n=1000$ integers $a_{i}$ for $0 \leq i<n$. Alice signs a binary plain text $P$ (a block), computes $C=E_{B o b}(P)$ and sends $C$ to Bob.
a. What is the size of a $P$ ?
b. Give an algorithm that Bob uses to build its secret integers $a_{i}$.
c. Deduce that, if $a_{0}=c$, we may consider $a_{i} \leq 4^{i}$.c.
d. What is the order of the size of the cipher text $C$ ?
e. Write the algorithms for encoding and decoding and analyze their costs.
f. Conclude on the provable security of $\operatorname{MH}\left(b_{0}, \ldots, b_{n-1}, m\right)$.

