
Reductions and Asymmetric cryptography

Exercice 1. RSA reduction to factorization: small exponent case

Let n = pq with p, q > 3, two prime numbers, and e < n be an integer coprime with ϕ(n) =
(p− 1)(q − 1). Let d = e−1 mod ϕ(n).

RSA is a public key cryptosystem where the public key is a the pair (n, e) and the private
key is the pair (n, d).

� The encryption function E is defined by E(m) = me mod n

� The decryption function D is defined by D(c) = cd mod n

The computational problem BREAK RSA(n, e) is to find the secret exponent d from the
public key (n, e).

a. What is the complexity of the key generation and the encryption function ?

b. Show that BREAK RSA ≤P FACTORIZATION

We will now focus on the converse: showing that FACTORIZATION ≤P BREAK RSA. We
will first consider a weaker problem, where the secret exponent e is small: e = Θ(log n).

c. Show that p, q ≤ n/4 and deduce that ϕ(n) ≥ n/2.

d. Show that ∃k ≤ 2e such that ed− 1 = kϕ(n).

e. Express Sk = p+ q as a function of k, n, e, d

f. How to recover p and q from Sk and n?

g. Write down an algorithm and its complexity analysis.

Exercice 2. RSA reduction to factorization: arbitrary case

We now consider the general case where e can be arbitrarily large. Define s and t such that
ed− 1 = t2s, where t is odd. Consider an integer a ≤ n coprime with n, chosen at random.

a. Show that ∃i < s, u = at2
i
and

{
u2 = 1 mod n
u ̸= 1 mod n

For the moment, assume that a verifies ∃i < s, u = at2
i
and{

u2 = 1 mod n
u /∈ {1,−1} mod n

(1)

b. Show that gcd(u− 1, n) ̸= 1 and deduce an algorithm factoring n.

We will now show that half of the choices for a ∈ (Z/nZ)∗ satisfy (1).
Write

ed− 1 = k︸︷︷︸
ℓ2σ

(p− 1)︸ ︷︷ ︸
t12s1

(q − 1)︸ ︷︷ ︸
t22s2

= ℓt1t22
σs1s2

where ℓ, t1, t2 are odd. Suppose without loss of generality that s1 ≤ s2 and define

r =
ed− 1

2σ+s1+1
= ℓt1t22

s2−1

M2 Cybersecurity – Cryptographic Engineering –Clément Pernet Page 1/2



c. Show that half of the a ∈ (Z/qZ)∗ verifiy a
q−1
2 = 1 and the other half verify a

q−1
2 = −1

d. Deduce from the above question that half of the a ∈ (Z/qZ)∗ verify ar = −1 and the
other half ar = 1.

e. When s1 < s2, conclude that half of the a ∈ (Z/nZ)∗ verify ar /∈ {1,−1}

f. When s1 = s2, conclude that half of the a ∈ (Z/nZ)∗ verify ar /∈ {1,−1}

Exercice 3. Reduction and RSA

Suppose n = pq is an RSA integer with p, q two large primes, such that it is computationnaly
intractable to factor n.

a. Is it possible to compute ϕ(n)?

b. Which reduction scheme would you use, between the two given below:
1.

AlgoReduction1-Fatctorize (n)

{

...

phi = OracleComputePhi (n)

...

return p,q

}

2.

AlgoReduction1-ComputePhi (n)

{

...

(p,q) = OracleFactorize (n)

...

return phi

}

Exercice 4. Merkle-Hellman

Consider Merkle-Hellman protocol (MH). Bob chooses a super-increasing secret sequence of
n = 1000 integers ai for 0 ≤ i < n. Alice signs a binary plain text P (a block), computes
C = EBob(P ) and sends C to Bob.

a. What is the size of a P?

b. Give an algorithm that Bob uses to build its secret integers ai.

c. Deduce that, if a0 = c, we may consider ai ≤ 4i.c.

d. What is the order of the size of the cipher text C?

e. Write the algorithms for encoding and decoding and analyze their costs.

f. Conclude on the provable security of MH(b0, . . . , bn−1,m).
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