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Motivation: Post-Quantum Cryptography

Problem (Order finding problem)

Given a ∈ Z>0 coprime with N ∈ Z>0 find the smallest r ∈ Z>0 s.t.

ar = 1 mod N.

Theorem (Shor’s algorithm)

The Order finding problem can be solved by a quantum computer in
time O(log2 N log logN).



Factorization with a quantum computer

Corollary

Integer factorization can be solved by a quantum computer in time
O(log2 N log logN).

Sketch of proof.

1. Do
2. Sample a random a

3. r ← Order(a,N)

4. While (GCD(ar/2 − 1,N) = 1)
If r is even then N|(ar/2 − 1)(ar/2 + 1). But N ∤ (ar/2 − 1).
▶ Either N|ar/2 + 1 (with prob < 1/2) ⇒restart with another a
▶ Or the GCD(n, ar/2 − 1) reveals a factor of n.
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Discrete Logarithm with a quantum computer

Corollary

The Discrete logarithm problem can be solved by a quantum
computer in time O(log2 N log logN).

Sketch of proof.

Find x such that gx = y in G of order p. Let
f : Z/pZ× Z/pZ → G

(a, b) 7→ gay−b , a group isomorphism.

Note: f−1(1) = Z/pZ× (x, 1).
Find (r1, r2) s.t. f ((r1, r2)× (a, b)) = 1.
Hence gar1 y−r2b = gar1−xbr2 = 1.
⇒recover x from a, b, r1, r2.
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Post-quantum cryptography

Conclusion:
A quantum computer can break all of classical asymmetric crypto
(whenever it is capable of dealing with such instances)

Still not quite there yet:
▶ Number of qu-bits available
▶ Handling noise

But still a threat:
▶ Fast progresses, huge efforts
▶ Harvest now, decrypt later already happening
⇒paradigm of Perfect Forward Secrecy



Post-quantum cryptography

Conclusion:
A quantum computer can break all of classical asymmetric crypto
(whenever it is capable of dealing with such instances)

Still not quite there yet:
▶ Number of qu-bits available
▶ Handling noise

But still a threat:
▶ Fast progresses, huge efforts
▶ Harvest now, decrypt later already happening
⇒paradigm of Perfect Forward Secrecy



Post-quantum cryptography

Conclusion:
A quantum computer can break all of classical asymmetric crypto
(whenever it is capable of dealing with such instances)

Still not quite there yet:
▶ Number of qu-bits available
▶ Handling noise

But still a threat:
▶ Fast progresses, huge efforts
▶ Harvest now, decrypt later already happening
⇒paradigm of Perfect Forward Secrecy



Post-quantum cryptography
Building new schemes based on other computational hardness

assumptions

2016: NIST starts a standardization process calling for
proposals for asymetric primitives: signatures and
encryption schemes.

2020: 7 finalists of the 1st round + 8 alternative candidates
2024: Expected publication of standard
2030: Expected Q-day

Main fields

Lattices: Kyber (Module learning-with errors), ...
Coding theory: McEliece (Goppa codes)
Multivariate systems: Oil and Vinegar
But also

Isogenies: CSIDH, but no longer SIDH
Hash: SPHINX
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Errors everywhere



Error models

Communication channel
▶ Radio transmission electromagnetic interferences
▶ Ethernet, DSL electromagnetic interferences
▶ CD/DVD Audio/Video/ROM scratches, dust
▶ RAM cosmic radiations
▶ HDD magnetic field, crash

Sender

Message
Message Message

Receiver
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Generalities on coding theory

Goals:
Detect: require retransmission (integrity certificate)

Correct: i.e. when no interraction possible
Tool: Adding redundancy

Example (NATO phonetic alphabet)

A→ Alfa, B→ Bravo, C→ Charlie, D→ Delta . . .
Alpha Bravo India Tango Tango Echo Delta India Oscar Uniform Sierra !

Two categories of codes:
stream codes: online processing of the stream of information
block codes: cutting information in blocks and applying the same

treatment to each block
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Generalities and terminology

▶ A code is a sub-set C ⊂ E of a set of possible words.
▶ Often, E is built from an alphabet Σ: E = Σn.
▶ Encoding function: E : S → E such that E(S) = C.
▶ A code is

▶ t-detector, if any set error on t symbols can be detected
▶ t-corrector, if any set error on t symbols can be corrected



Examples

Parity check

E : (x1, x2, x3)→ (x1, x2, x3, s)

→ (x1, x2, x3, s)→ Error detected

with
s =

∑3
i=1 xi mod 2 ⇒

∑3
i=1 xi + s = 0 mod 2

Repetition code

▶ “Say that again?”

▶ “a”→ “aaa”→ “aab”→ “aaa”→ “a”
E : Σ −→ Σr

x 7−→ (x, . . . , x︸ ︷︷ ︸
r times

) , and C = Im(E) ⊂ Σr



Examples

Parity check

E : (x1, x2, x3)→ (x1, x2, x3, s)→ (x1, x2, x3, s)→ Error detected with
s =

∑3
i=1 xi mod 2 ⇒

∑3
i=1 xi + s = 0 mod 2

Repetition code

▶ “Say that again?”

▶ “a”→ “aaa”→ “aab”→ “aaa”→ “a”
E : Σ −→ Σr

x 7−→ (x, . . . , x︸ ︷︷ ︸
r times

) , and C = Im(E) ⊂ Σr



Examples

Parity check

E : (x1, x2, x3)→ (x1, x2, x3, s)→ (x1, x2, x3, s)→ Error detected with
s =

∑3
i=1 xi mod 2 ⇒

∑3
i=1 xi + s = 0 mod 2

Repetition code

▶ “Say that again?”

▶ “a”→ “aaa”→ “aab”→ “aaa”→ “a”
E : Σ −→ Σr

x 7−→ (x, . . . , x︸ ︷︷ ︸
r times

) , and C = Im(E) ⊂ Σr



Examples

Parity check

E : (x1, x2, x3)→ (x1, x2, x3, s)→ (x1, x2, x3, s)→ Error detected with
s =

∑3
i=1 xi mod 2 ⇒

∑3
i=1 xi + s = 0 mod 2

Repetition code

▶ “Say that again?”
▶ “a”→ “aaa”→ “aab”→ “aaa”→ “a”

E : Σ −→ Σr

x 7−→ (x, . . . , x︸ ︷︷ ︸
r times

) , and C = Im(E) ⊂ Σr



Examples

Parity check

E : (x1, x2, x3)→ (x1, x2, x3, s)→ (x1, x2, x3, s)→ Error detected with
s =

∑3
i=1 xi mod 2 ⇒

∑3
i=1 xi + s = 0 mod 2

Repetition code

▶ “Say that again?”
▶ “a”→ “aaa”→ “aab”→ “aaa”→ “a”
E : Σ −→ Σr

x 7−→ (x, . . . , x︸ ︷︷ ︸
r times

) , and C = Im(E) ⊂ Σr



Outline

Motivation

Coding Theory
Introduction
Linear Codes
Reed-Solomon codes

McEliece cryptosystem



Linear Codes

Linear Codes
Let E = Vn over a finite field V.
A linear code C is a subspace of E .
▶ length: n
▶ dimension: k = dim(C)
▶ Rate (of information): k/n

Encoding function: E : Vk −→ Vn s.t. C = Im(E) ⊂ Vn

Example

▶ Parity code: k = n− 1 1-detector
▶ r-repetition code: k = r/r = 1 r − 1-detector,

⌊ r−1
2 ⌋-corrector
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Distance of a code

▶ Hamming weight: wH(x) = |{i, xi ̸= 0}|.

▶ Hamming distance: dH(x, y) = wH(x− y) = |{i, xi ̸= yi}|
▶ Minimum distance of a code δ = minx,y∈C dH(x, y)

In a linear code: δ = minx∈C\{0} wH(x))

C is t-corrector if

▶ ∀x ∈ E |{c ∈ C, dH(x, c) ≤ t}| ≤ 1
▶ ∀c1, c2 ∈ C c1 ̸= c2 ⇒ dH(c1, c2) > 2t
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Perfect codes

Definition
A code is perfect if any detected error can be corrected.

Example

▶ 4-repetition is not perfect
▶ 3-repetition is perfect

Property

A code is perfect if the balls of radius t around the codewords form a
partition of the ambiant space.

Remark
Can be corrected into the wrong code-word. For instance
(b, a, b)→ (b, b, b)



Perfect codes

Definition
A code is perfect if any detected error can be corrected.

Example

▶ 4-repetition is not perfect
▶ 3-repetition is perfect

Property

A code is perfect if the balls of radius t around the codewords form a
partition of the ambiant space.

Remark
Can be corrected into the wrong code-word. For instance
(b, a, b)→ (b, b, b)



Perfect codes

Definition
A code is perfect if any detected error can be corrected.

Example

▶ 4-repetition is not perfect
▶ 3-repetition is perfect

Property

A code is perfect if the balls of radius t around the codewords form a
partition of the ambiant space.

Remark
Can be corrected into the wrong code-word. For instance
(b, a, b)→ (b, b, b)



Generator matrix and parity check matrix

Generator matrix
▶ The matrix G of the encoding function (depends on a choice of

basis):
E : xT −→ xTG

▶ Under systematic form: G =

 1 0
. . .

0 1

G



Parity check matrix

1. A matrix H ∈ K(n−k)×n such that ker(H) = C:

c ∈ C ⇔ Hc = 0

2. A basis of ker(GT): HGT = 0
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Generator matrix and parity check matrix
Exercise
Find G and H of the binary parity check and of the k-repetition codes.

Gpar =

1 1
. . .

...
1 1

 ,Hpar = [1 . . . 1]

Grep = [1 . . . 1] = Hpar,Hrep =

1 1
. . .

...
1 1

 = Gpar

The parity check code is the dual of the repetition code

Definition
Let C be a linear code with generating matrix G and parity check
matrix H.
The dual code D of C is the linear code with generating matrix H and
parity check matrix G.
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Role of the parity check matrix

c ∈ C ⇔ Hc = 0

▶ Certificate for detecting errors
▶ Syndrom: sx = Hx = H(c + e) = He

A first correction algorithm:

▶ pre-compute all se for wH(e) ≤ t in a table S
▶ For x received. If sx ̸= 0, look for sx in the table S
▶ return the corresponding codeword

s=Hxx s==0? Return x
Y

Return c = x−e
s

N

e
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Hamming codes

Let H =

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1


▶ Parameters of the corresponding code?

(n, k) = (7, 4)

▶ Generator matrix?

G =


1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 1 0 1 0 1 0
1 1 0 1 0 0 1



▶ Minimal distance?

δ ≤ 3.
▶ If δ = 1, ∃i,Hi = 0
▶ If δ = 2, ∃i ̸= j,Hi = Hj ⇒δ = 3

▶ Is it a perfect code?

δ = 3 ⇒t = 1 corrector.
|C| = 2k ⇒# of elements in each ball of radius 1:
2k(1 + 7) = 16 · 8 = 27 = |Kn| ⇒perfect

Generalization
∀ℓ: H(2ℓ − 1, 2ℓ − ℓ), is 1-corrector, perfect.
Example: Minitel, ECC memory: ℓ = 7
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Some bounds

Let C be a code (n, k, δ) over a field Fq with q elements.
k and δ can not be simulatneously large for a given n.
Sphere packing:

qk
t∑

i=0

(
n
i

)
(q− 1)i ≤ qn, with t = ⌊δ − 1

2
⌋.

Singleton bound:
δ ≤ n− k + 1

Sketch of proof:
▶ Let H be the parity check matrix (n− k)× n.
▶ δ is the smallest number of linearly dependent cols of H.
▶ n− k + 1 = rank(H) + 1 cols are always linearly dependent.
⇒How to build codes correcting up to n−k

2 .
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Evaluation-interpolation codes

Theorem (Interpolation)

For all x1, . . . , xk, distincts, and all y1, . . . , yk, there is a unique
polynomial f = f0 + f1x + . . . fk−1xk−1 of degree < k such that :

f (xj) = yj, for all 1 ≤ j ≤ k.

Corollary

For some fixed xi’s
▶ equivalent representation: (y1, . . . , yk)⇔ (f0, . . . , fk−1).
▶ oversampling: (y1, . . . , yk, yk+1, . . . , yn)⇐ (f0, . . . , fk−1).
⇒adding redundancy
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Reed-Solomon codes

Definition (Reed-Solomon codes)

Let K be a finite field, and x1, . . . , xn ∈ K distinct elements. The
Reed-Solomon code of length n and dimension k is defined by

C(n, k) = {(f (x1), . . . , f (xn)), f ∈ K[X]; deg f < k}

Example

(n, k) = (5, 3), f = x2 + 2x + 1 over Z/19Z.
(1, 2, 1, 0, 0) Eval−−→ (f (1), f (5), f (8), f (10), f (12)) = (4, 5, 17, 5, 7, 17)

(4, 17, 5, 7, 17)
Interp.−−−→ (1, 2, 1, 0, 0) x2 + 2x + 1

(4, 17, 13, 7, 17)
Interp.−−−→ (12, 8, 11, 10, 1) x4 + 10x3 + 11x2 + 8x + 12
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Minimal distance of Reed-Solomon codes

Property

δ = n− k + 1 (Maximum Distance Separable codes)

Proof.
Singeton bound: δ ≤ n− k + 1

Let f , g ∈ C: deg f ,deg g < k.
If f (xi) ̸= g(xi) for d < n− k + 1 values xi,
Then f (xj)− g(xj) = 0 for at least n− d > k − 1 values xj.
Now deg(f − g) < k, hence f = g.

⇒correct up to n−k
2 errors.
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Decoding via the key equation

Let P be the

erroneous

interpolant P(xi) = yi

+ei

for all 1 ≤ i ≤ n.

f (xi) = P(xi)
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Decoding via the key equation

Let P be the erroneous interpolant P(xi) = yi +ei for all 1 ≤ i ≤ n.

Λf = ΛP mod

n∏
i=1

(x− xi)

and Λ =
∏

i|ei ̸=0(x− xi)



Decoding via the key equation

Let P be the erroneous interpolant P(xi) = yi +ei for all 1 ≤ i ≤ n.

N = ΛP mod

n∏
i=1

(x− xi)

and Λ =
∏

i|ei ̸=0(x− xi)

(Linearization)



Berlekamp-Welch decoding

Find N of degree < k + t and Λ of degree ≤ t s.t.

N = ΛP mod

n∏
i=1

(x− xi)

Linear system solving

N(X) = n0 + . . . nk+t−1Xk+t−1 and Λ(X) = ℓ0 + · · ·+ ℓt−1Xt−1 + Xt.
Unknonwns: n0, . . . nk+t−1, ℓ0, . . . , ℓt−1 (k + 2t unknowns)

Equations: each in xi (n equations)


1 x1 x2

1 . . . xk+t−1
1


−P(x1)

. . .
−P(xn)




1 x1 . . . xt
1

...
...

. . .
...

1 xn . . . xt
n

1 x2 x2
1 . . . xk+t−1

1
...

...
...

. . .
...

1 xn x2
n . . . xk+t−1

n





n0

...
nk+t−1

ℓ0
. . .
ℓt−1
ℓt


=


0
...
0





Rational fraction reconstruction

Problem (RFR: Rational Fraction Reconstruction)

Given A,B ∈ K[X] with degB < degA = n, find f , g ∈ K[X], such that f = gB mod A
deg f ≤ dF,
deg g ≤ n− dF − 1,

.

Theorem
Let (f0 = A, f1 = B, . . . , fℓ) the sequence of remainders of the extended
Euclidean algorithm applied on (A,B) and ui, vi the coefficients s.t.
fi = uif0 + vif1. Then, at iteration j s.t. deg fj ≤ dF < deg fj−1,

1. (fj, vj) is a solution of problem RFR.
2. it is minimal: any other solution (f , g) writes

f = qfj, g = qvj for q ∈ K[X].



Reed-Solomon decoding with Extended Euclidean
algorithm

Berlekamp-Welch using extended Euclidean algorithm

▶ Erroneous interpolant: P = Interp((yi, xi))

▶ Error locator polynomial: Λ =
∏

i|yi is erroneous(X − xi)

Find f with deg f ≤ dF s.t.. f and P match on ≥ n− t evaluations xi.

Λf︸︷︷︸
fj

= Λ︸︷︷︸
gj

P mod

n∏
i=1

(X − xi)

and (Λf ,Λ) is minimal
⇒computed by extended Euclidean Algorithm

f = fj/gj.



Another decoding algorithm: syndrom based
From now on: K = Fq, n = q− 1, xi = αi where α is a primitive n-th
root of unity.

E(f ) = (f (α0), f (α1), f (α2), . . . , f (αn−1)) = DFTα(f )

Linear recurring sequences

Sequences (a0, a1, . . . , an, . . . ) such that

∀j ≥ 0 aj+t =
t−1∑
i=0

λiai+j

generator polynomial: Λ(z) = zt −
∑t−1

i=0 λizi

minimal polynomial: Λ(z) of minimal degree
linear complexity of (ai)i: degree t of the minimal polynomial Λ
Computing Λmin: Berlekamp/Massey algorithm, from 2t consecutive

elements, in O
(
t2
)
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Blahut theorem

Theorem ( [Blahut84], [Prony1795] )

The DFTα of a vector of weight t has linear complexity t.

Skecth of proof

▶ Let v = ei be a 1-weight vector. Then
DFTα(v) = Ev(α0,α1,...,αn)(Xi) = ((α0)i, (α1)i, . . . , (αn−1)i) is
linearly generated by Λ(z) = z− αi.

▶ For v =
∑t

j=1 eij , the sequence DFTα(v) is generated by
ppcmj(z− αij) =

∏t
j=1(z− αij)

Corollary

The roots of Λ localize the non-zero elements of v: αij .
⇒error locator
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Syndrom Decoding of Reed-Solomon codes

C = {(f (x1), . . . , f (xn))|deg f < k}

f

error 

g

0

=

0

+

f

Evaluation

Interpolation

m = f (x),deg f < k ey = Eval(f ), yi = f (xi)

z = y + e

Interp(e)
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error 
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Interpolation

f

Berlekamp Massey algorithm

m = f (x),deg f < k ey = Eval(f ), yi = f (xi)

z = y + e

Interp(e)



Codes derived from Reed Solomon codes

Generalized Reed-Solomon codes

CGRS(n, k, x, v) = {(v1f (x1), . . . , vnf (xn)), f ∈ K<k[X]}

▶ Same dimension and minimal distance ⇒MDS
▶ Existence of a dual GRS code in the same evaluation points:

There is a vector w such that

CGRS(n, k, x, v)⊥ = CGRS(n, n− k, x,w)

i.e.
HGRS(x,w)GGRS(x, v)T = 0

(Proof in exercise)



Codes derived from Reed-Solomon

Alternant codes

Motivation: workaround the limitatoin of GRS codes: n ≤ q
⇒allow for arbitrary length n given a fixed field Fq.

Idea: use a GRS over an extension Fqm , and restrict to Fq.
Let
▶ K = Fq, K̄ = Fqm and x ∈ K̄n,v ∈ (K̄∗)n

▶ CK̄ = CGRS(n, k, x, v) over K̄ with minimum distance D = n− k + 1
Then

CAlt = CK̄ ∩ Fn
q

▶ Dimension: ≥ n− (D− 1)m = n− (n− k)m
▶ Minimum distance: ≥ D by design

(Proof in exercise)



Codes derived from Reed Solomon codes
Goppa codes

▶ An instance of a broad class of Algebraic Geometric Codes
(AG-codes).

▶ Can be viewed as an alternant code for some special multiplier
vector v.

Let
▶ K = Fq, K̄ = Fqm and x ∈ K̄n

▶ f ∈ Fqm [X], deg f = r and mr < n

▶ v = ( f (xi)∏
j ̸=i(xj−xi)

)

▶ CK̄ = CGRS(n, n− r, x, v) over K̄ with parameters (n, n− r, r + 1)
Then

CGoppa = CK̄ ∩ Fn
q

▶ Dimension: ≥ n− rm
▶ Minimum distance: ≥ r + 1
▶ Case q = 2e (binary Goppa code), with f square free
⇒Minimum distance: = 2r + 1
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A code based cryptosystem [Mc Eliece 78]

Designing a one way function with trapdoor

Use the encoder of a linear code:

message×
[
G
]
+ rand. error = codeword

Encryption: is easy (matrix-vector product)
Decryption: decoding a received word

▶ easy for known codes
▶ NP-complete for random linear codes

Trapdoor: efficient decoding when the code familiy is known

⇒requires a family F of codes
▶ indistinguishable from random linear codes
▶ with fast decoding algorithm
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Mc Eliece Cryptosystem

KeyGen

▶ Select an (n, k) binary linear code C ∈ F correcting t errors,
having an efficient decoding algorithm AC ,

▶ Form G ∈ Fk×n
q , a generator matrix for C

▶ Sample uniformly a k × k non-singular matrix S
▶ Select uniformly an n-dimensional permutation P.
▶ Ĝ = SGP

Public key: (Ĝ, t)

Private key: (S,G,P)



Mc Eliece Cryptosystem

Encrypt

E(m) = mĜ + e = mSGP + e = y

where e is an error vector of Hamming weight at most t.

Decrypt

1. y′ = yP−1 = mSG + eP−1

2. m′ = AC(y′) = mS

3. m = m′S−1



Parameters for Mc Eliece in practice

(n, k, d) Code family key size Security Attack

(256, 128, 129) Gen. Reed-Solomon 67ko 295 [SS92]

subcodes of GRS [Wie10]
(1024, 176, 128) Reed-Muller codes 22.5ko 272 [MS07, CB13]
(2048, 232, 256) Reed-Muller codes 59.4ko 293 [MS07, CB13]
(171, 109, 61)128 Alg.-Geom. codes 16ko 266 [FM08, CMP14]
(1024, 524, 101)2 Goppa codes 67kB 262

(2048, 1608, 48)2 Goppa codes 412kB 296

(6960, 5413, 239)2 Goppa codes 8MB 2128
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Advantages of McEliece cryptosystem

Security

Based on two assumptions:
▶ decoding a random linear code is hard (NP complete reduction)
▶ the generator matrix of a Goppa code looks random

(indistinguishability)

Pros:
▶ faster encoding/decoding algorithms than RSA, ECC (for a given

security parameter)
▶ Post quantum security: still robust against quantum computer

attacks
Cons:
▶ harder to use for signature (non determinstic encoding)
▶ large key size
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