Code based cryptography
Cryptographic Engineering

Clément PERNET

M2 Cyber Security,
UFR-IM?AG, Univ. Grenoble-Alpes
ENSIMAG, Grenoble INP

Outline

Motivation

Motivation: Post-Quantum Cryptography

Problem (Order finding problem)

Given a € Z~o coprime with N € Z~ find the smallestr € 7~ s.t.

a =1 modN.

Theorem (Shor’s algorithm)

The Order finding problem can be solved by a quantum computer in
time O(log” N loglog N).

Factorization with a quantum computer

Corollary

Integer factorization can be solved by a quantum computer in time
O(log® Nloglog N).

Factorization with a quantum computer

Corollary

Integer factorization can be solved by a quantum computer in time
O(log? Nloglog N).

Sketch of proof.

1. Do
2. Sample a random a
3. r<« Order(a,N)
4. While (GCD(a"/> — 1,N) = 1)
If is even then N|(a'"/? — 1)(a’/> + 1). But N { (a'/* — 1).

Factorization with a quantum computer

Corollary

Integer factorization can be solved by a quantum computer in time
O(log? Nloglog N).

Sketch of proof.

1. Do
2. Sample a random a
3. r<« Order(a,N)
4. While (GCD(a"/> — 1,N) = 1)
If is even then N|(a'"/? — 1)(a’/> + 1). But N { (a'/* — 1).
» Either N|a'/? + 1 (with prob < 1/2) =-restart with another a
> Or the GCD(n,a’/*> — 1) reveals a factor of n.

Discrete Logarithm with a quantum computer

Corollary

The Discrete logarithm problem can be solved by a quantum
computer in time O(log” N loglog N).

Discrete Logarithm with a quantum computer

Corollary

The Discrete logarithm problem can be solved by a quantum
computer in time O(log” N loglog N).

Sketch of proof.

Find x such that g¢* = y in G of order p. Let

I Z/p%axb?/pz : gag,b , @ group isomorphism.

Discrete Logarithm with a quantum computer

Corollary

The Discrete logarithm problem can be solved by a quantum
computer in time O(log” N loglog N).

Sketch of proof.

Find x such that g¢* = y in G of order p. Let

f: Z/pZxZ/pZ — G : :
(a,b) o giyh , @ group isomorphism.

Note: f~1(1) = Z/pZ x (x,1).

Find (r,r2) s.t. f((r1,m2) x (a,b)) = 1.

Discrete Logarithm with a quantum computer

Corollary

The Discrete logarithm problem can be solved by a quantum
computer in time O(log” N loglog N).

Sketch of proof.

Find x such that g¢* = y in G of order p. Let

f: Z/pZxZ/pZ — G : :
(a,b) o giyh , @ group isomorphism.

Note: f~1(1) = Z/pZ x (x,1).

Find (r,r2) s.t. f((r1,m2) x (a,b)) = 1.

Hence garly—rzb — gar1 —xbry _ 1.

Discrete Logarithm with a quantum computer

Corollary

The Discrete logarithm problem can be solved by a quantum
computer in time O(log” N loglog N).

Sketch of proof.

Find x such that g¢* = y in G of order p. Let

f Z/p%:b?/pz : gag,b , @ group isomorphism.

Note: f~1(1) = Z/pZ x (x,1).

Find (r,r2) s.t. f((r1,m2) x (a,b)) = 1.

Hence garly—rzb — gar1 —xbry _ 1.
=-recover x from a, b, ry, r;.

Post-quantum cryptography

Conclusion:

A quantum computer can break all of classical asymmetric crypto
(whenever it is capable of dealing with such instances)

Post-quantum cryptography

Conclusion:

A quantum computer can break all of classical asymmetric crypto
(whenever it is capable of dealing with such instances)

Still not quite there yet:
» Number of qu-bits available
» Handling noise

Post-quantum cryptography

Conclusion:

A quantum computer can break all of classical asymmetric crypto
(whenever it is capable of dealing with such instances)

Still not quite there yet:
» Number of qu-bits available
» Handling noise

But still a threat:
» Fast progresses, huge efforts

» Harvest now, decrypt later already happening
=-paradigm of Perfect Forward Secrecy

Post-quantum cryptography

Building new schemes based on other computational hardness
assumptions

2016: NIST starts a standardization process calling for
proposals for asymetric primitives: signatures and
encryption schemes.

2020: 7 finalists of the 1st round + 8 alternative candidates
2024: Expected publication of standard
2030: Expected Q-day

Post-quantum cryptography

Building new schemes based on other computational hardness
assumptions

2016: NIST starts a standardization process calling for
proposals for asymetric primitives: signatures and
encryption schemes.

2020: 7 finalists of the 1st round + 8 alternative candidates
2024: Expected publication of standard
2030: Expected Q-day

Main fields

Lattices: Kyber (Module learning-with errors), ...
Coding theory: McEliece (Goppa codes)
Multivariate systems: Oil and Vinegar
But also

Isogenies: CSIDH, but no longer SIDH
Hash: SPHINX

Post-quantum cryptography

Building new schemes based on other computational hardness
assumptions

2016: NIST starts a standardization process calling for
proposals for asymetric primitives: signatures and
encryption schemes.

2020: 7 finalists of the 1st round + 8 alternative candidates
2024: Expected publication of standard
2030: Expected Q-day

Main fields

Lattices: Kyber (Module learning-with errors), ...
Coding theory: McEliece (Goppa codes)
Multivariate systems: Oil and Vinegar
But also

Isogenies: CSIDH, but no longer SIDH
Hash: SPHINX

Outline

Coding Theory
Introduction
Linear Codes
Reed-Solomon codes

Outline

Coding Theory
Introduction

Errors everywhere

Error models

Communication channel

vvyyvyy

Radio transmission
Ethernet, DSL

CD/DVD Audio/Video/ROM
RAM

HDD

electromagnetic interferences
electromagnetic interferences
scratches, dust

cosmic radiations

magnetic field, crash

Error models

Communication channel

» Radio transmission electromagnetic interferences
» Ethernet, DSL electromagnetic interferences
» CD/DVD Audio/Video/ROM scratches, dust
» RAM cosmic radiations
» HDD magnetic field, crash

{] Message []
Message Message

Sender Receiver

Error models

Communication channel

» Radio transmission electromagnetic interferences
» Ethernet, DSL electromagnetic interferences
» CD/DVD Audio/Video/ROM scratches, dust
» RAM cosmic radiations
» HDD magnetic field, crash

{] ?essage []
Message Message
Sender S

Receiver

Error models

Communication channel

» Radio transmission electromagnetic interferences
» Ethernet, DSL electromagnetic interferences
» CD/DVD Audio/Video/ROM scratches, dust
» RAM cosmic radiations
» HDD magnetic field, crash
[[Messagej?@ode word %{E&eived W(%—-»[Messagej
;.% Error N %‘J
Sender e Receiver =)
£ g
@ =

Generalities on coding theory

Goals:
Detect: require retransmission (integrity certificate)
Correct: i.e. when no interraction possible

Tool: Adding redundancy

Generalities on coding theory

Goals:
Detect: require retransmission (integrity certificate)
Correct: i.e. when no interraction possible

Tool: Adding redundancy

Example (NATO phonetic alphabet)

A — Alfa, B — Bravo, C — Charlie, D — Delta ...
Alpha Bravo India Tango Tango Echo Delta India Oscar Uniform Sierra !

Generalities on coding theory

Goals:
Detect: require retransmission (integrity certificate)
Correct: i.e. when no interraction possible

Tool: Adding redundancy

Example (NATO phonetic alphabet)

A — Alfa, B — Bravo, C — Charlie, D — Delta ...
Alpha Bravo India Tango Tango Echo Delta India Oscar Uniform Sierra !

Two categories of codes:
stream codes: online processing of the stream of information

block codes: cutting information in blocks and applying the same
treatment to each block

Generalities on coding theory

Goals:
Detect: require retransmission (integrity certificate)
Correct: i.e. when no interraction possible

Tool: Adding redundancy

Example (NATO phonetic alphabet)

A — Alfa, B — Bravo, C — Charlie, D — Delta ...
Alpha Bravo India Tango Tango Echo Delta India Oscar Uniform Sierra !

Two categories of codes:
stream codes: online processing of the stream of information

block codes: cutting information in blocks and applying the same
treatment to each block

Generalities and terminology

» A code is a sub-set C C £ of a set of possible words.
» Often, £ is built from an alphabet ¥: £ = ¥".

» Encoding function: E : S — £ such that E(S) = C.

» A codeis

» r-detector, if any set error on t symbols can be detected
> t-corrector, if any set error on r symbols can be corrected

Examples

Parity check

E: (X1,X2,X3) — (Xl,xz,X?,,S) W|th
§ = E?:Mi mod 2 éZ?zlxi +s5=0 mod 2

Examples

Parity check

E: (x1,x,x3) = (X1,X2,%3,5) = (x1,%2,x3,5) — Error detected with
§ = Z?:lxi mod 2 éZ?ﬂxi +s5=0 mod 2

Examples

Parity check

E: (x1,x,x3) = (X1,X2,%3,5) = (x1,%2,x3,5) — Error detected with
s = Z?=1xi mod 2 éZ?:lxi +s=0 mod 2

Repetition code

> “Say that again?”

Examples

Parity check
E : (x1,x,x3) = (x1,%2,%3,5) — (x1,x2,%3,5) — Error detected with
§ = Z?:lxi mod 2 éZ?:HCi +s5=0 mod 2

Repetition code

> “Say that again?”
> lla” 4) “aaa”% “aab”% “aaa”% “a!!

Examples

Parity check
E : (x1,x,x3) = (x1,%2,%3,5) — (x1,x2,%3,5) — Error detected with
§ = Z?:lxi mod 2 éZ?:HCi +s5=0 mod 2

Repetition code

> “Say that again?”
> Ha” 4) “aaa”% “aab”% “aaa”% “a!!
E: ¥ — T
x — (x,...,x) ,andC =Im(E) C X"
——

rtimes

Outline

Coding Theory

Linear Codes

Linear Codes

Linear Codes
Let & = V" over a finite field V.
A linear code C is a subspace of £.
> length: n
» dimension: k = dim(C)
> Rate (of information): k/n
Encoding function: E : V¥ — V" sit. C = Im(E) C V"

Linear Codes

Linear Codes

Let & = V" over a finite field V.
A linear code C is a subspace of £.

> length: n
» dimension: k = dim(C)
> Rate (of information): k/n
Encoding function: E : V¥ — V" sit. C = Im(E) C V"

Example
» Parity code: k=n— 1 1-detector
» r-repetition code: k =r/r =1 r — 1-detector,

| 5 |-corrector

Distance of a code

» Hamming weight: wy(x) = |{i,x; # 0}].

Distance of a code

» Hamming weight: wy(x) = |{i,x; # 0}].
» Hamming distance: dy(x,y) = wy(x —y) = |{i,xi # i }|

Distance of a code

» Hamming weight: wy(x) = |{i,x; # 0}|.
» Hamming distance: dy(x,y) = wy(x —y) = |{i,xi # i }|
» Minimum distance of a code § = minxyec dy(x,y)

In a linear code: § = min,cc\ o3 Wr(x

)
(=

Distance of a code

» Hamming weight: wy(x) = |{i,x; # 0}|.
» Hamming distance: dy(x,y) = wy(x —y) = |{i,x; # yi}|
» Minimum distance of a code ¢ = min, yec du(x,y)

In alinear code: 0 = min,ce\ (0} Wa (%))

C is t-corrector if
> Vxe & {cel,du(x,c) <t} <1

Distance of a code

» Hamming weight: wy(x) = |{i,x; # 0}|.
» Hamming distance: dy(x,y) = wy(x —y) = |{i,xi # i }|
» Minimum distance of a code ¢ = min, yec du(x,y)

In a linear code: § = min,cc\ o} Wr(x))

C is t-corrector if
> Vxe & |{cel,duy(x,c) <t} <1
» Yy, € Cc 75 C) = dH(Cl,CQ) > 2t

Perfect codes
Definition
A code is perfect if any detected error can be corrected.
Example

> 4-repetition is not perfect
> 3-repetition is perfect

Perfect codes

Definition
A code is perfect if any detected error can be corrected.

Example

> 4-repetition is not perfect
> 3-repetition is perfect

Property

A code is perfect if the balls of radius t around the codewords form a
partition of the ambiant space.

Perfect codes

Definition
A code is perfect if any detected error can be corrected.

Example

> 4-repetition is not perfect
> 3-repetition is perfect

Property

A code is perfect if the balls of radius t around the codewords form a
partition of the ambiant space.

Remark

Can be corrected into the wrong code-word. For instance
(bya,b) — (b,b,b)

Generator matrix and parity check matrix

Generator matrix

» The matrix G of the encoding function (depends on a choice of
basis):
E:xXI' —Xx'G
1 0
» Under systematic form: G = G

Generator matrix and parity check matrix

Generator matrix

» The matrix G of the encoding function (depends on a choice of

basis):
E:x' —x'G
1 0
» Under systematic form: G = G
0 1

Parity check matrix
1. A matrix H € K(*=x" such that ker(H) = C:
ceC& He=0

2. Abasis of ker(G"): HGT =0

Generator matrix and parity check matrix

Exercise
Find G and H of the binary parity check and of the k-repetition codes.

Generator matrix and parity check matrix

Exercise
Find G and H of the binary parity check and of the k-repetition codes.

1 1
Gpar: '-_ ;Hpaf:[ll]
11

Generator matrix and parity check matrix

Exercise
Find G and H of the binary parity check and of the k-repetition codes.

1 1
Gpar: '_. E 7Hpa,:[1...1]
1

1

1
The parity check code is the dual of the repetition code

1 1
Grep: [1 1] :Hpar,Hrep: [] = Gpar
1

Generator matrix and parity check matrix

Exercise
Find G and H of the binary parity check and of the k-repetition codes.

1

1
Gpar = o JHpar=[1 ... 1]
11

1 1
Grep = [1 ... 1] = Hpar, Hrep = [] = Gpar
11

The parity check code is the dual of the repetition code

Definition
Let C be a linear code with generating matrix G and parity check

matrix H.
The dual code D of C is the linear code with generating matrix H and

parity check matrix G.

Role of the parity check matrix

ceC&S He=0

» Certificate for detecting errors
» Syndrom: s, = Hx = H(c + ¢) = He

Role of the parity check matrix

ceC& He=0
» Certificate for detecting errors
» Syndrom: s, = Hx = H(c + ¢) = He
A first correction algorithm:

» pre-compute all s, for wy(e) < rin atable S
» For x received. If s, # 0, look for s, in the table S
» return the corresponding codeword

Y
[X H s=Hx]—' s==0? 4{Return X

Return ¢ = x—e

Hamming codes

1 01 01 01
LetH=|(0 1 1 0 0 1 1
00011 11

» Parameters of the corresponding code?
» Generator matrix?

» Minimal distance?

> Is it a perfect code?

Hamming codes

1 01 01 01
LetH=|(0 1 1 0 0 1 1
00011 11

» Parameters of the corresponding code? (n,k) = (7,4)
» Generator matrix?

» Minimal distance?

> Is it a perfect code?

Hamming codes

1 01 01 0 1
LetH=1|0 1 1 0 0 1 1
00 0 1 1 11
» Parameters of the corresponding code? (n,k) = (7,4)

1 1. 1.0 0 0 0

o (1 0 0 1 0 0

> Generatormatrix? G= |, | o | o | o

1 1.0 1 0 0 1

» Minimal distance?

> Is it a perfect code?

Hamming codes

1 01 01 01
LetH=|(0 1 1 0 0 1 1
00011 11

» Parameters of the corresponding code?

1 1 1
» Generator matrix? ¢ =

—_ 0 =

0 0
1 0
1 0
» Minimal distance? § < 3.

> If§=1,3H =0

> f5=23i£jHi=H =6=3

> Is it a perfect code?

0

—_ = =

0
1
0
0

o—~oo

n, k) = (7,4)
0
0
0
1

Hamming codes

1 01 01 0 1
LetH=1|0 1 1 0 0 1 1
00 0 1 1 11
» Parameters of the corresponding code? (n,k) = (7,4)

1 1. 1.0 0 0 0

o100 1 1 0 0

> Generatormatrix? G= |, | o | o | o

1 1.0 1 0 0 1

» Minimal distance? § < 3.
> If5=1,3H =0
> If6=23i#j,H=H =0=3
> Is it a perfect code? § =3 == 1 corrector.
|C| =2F =# of elements in each ball of radius 1:
2K(1+7)=16-8=2" = |[K"| =-perfect

Hamming codes

1 01 01 0 1
LetH=1|0 1 1 0 0 1 1
00 0 1 1 11
» Parameters of the corresponding code? (n,k) = (7,4)

1 1. 1.0 0 0 0

o100 1 1 0 0

> Generatormatrix? G= |, | o | o | o

1 1.0 1 0 0 1

» Minimal distance? § < 3.
> If5=1,3H =0
> If6=23i#j,H=H =0=3
> Is it a perfect code? § =3 == 1 corrector.
|C| =2F =# of elements in each ball of radius 1:
2K(1+7)=16-8=2" = |[K"| =-perfect

Generalization

Ve: H(2° — 1,2 — (), is 1-corrector, perfect.
Example: Minitel, ECC memory: ¢ =17

Some bounds

Let C be a code (n,k,0) over a field F, with ¢ elements.
k and ¢ can not be simulatneously large for a given n.

Sphere packing:

t

#3(5) =10 < witn = 120,

i=0

Some bounds

Let C be a code (n,k,0) over a field F, with ¢ elements.
k and ¢ can not be simulatneously large for a given n.

Sphere packing:
t
n : . 0—1
qkz <l)(q - 1)1 < qnv with ¢ = LTJ
i=0

Singleton bound:
0<n—k+1

Some bounds

Let C be a code (n,k,0) over a field F, with ¢ elements.
k and ¢ can not be simulatneously large for a given n.

Sphere packing:

¢ (1) a1 < wine= 25

i=0

Singleton bound:
0<n—k+1

Sketch of proof:
> Let H be the parity check matrix (n — k) x n.
> § is the smallest number of linearly dependent cols of H.
» n—k-+ 1 =rank(H) + 1 cols are always linearly dependent.

Some bounds

Let C be a code (n,k,0) over a field F, with ¢ elements.
k and ¢ can not be simulatneously large for a given n.

Sphere packing:

¢ (1) a1 < wine= 25

i=0

Singleton bound:
0<n—k+1

Sketch of proof:
> Let H be the parity check matrix (n — k) x n.
> § is the smallest number of linearly dependent cols of H.
» n—k-+ 1 =rank(H) + 1 cols are always linearly dependent.
=How to build codes correcting up to “5*.

Outline

Coding Theory

Reed-Solomon codes

Evaluation-interpolation codes

Theorem (Interpolation)

For all x,, . . ., x, distincts, and all y,, . . ., yx, there is a unique
polynomial f = fy + fix + .. .fi_1x*~! of degree < k such that :

flx) =y, forall 1<j<k

Evaluation-interpolation codes

Theorem (Interpolation)

Forallx,, ..., x, distincts, and all yy, . . ., y, there is a unique
polynomial f = fy + fix + .. .fi_1x*~! of degree < k such that :

flx) =y, forall 1<j<k

Corollary

For some fixed x;’s
» equivalent representation: (yi,...,yx) < (fo,- -, i—1)-
> oversampling: (Y1, .-y Yk, Ykt1s -y Yn) <= (fos - s fie1)-

=-adding redundancy

Reed-Solomon codes

Definition (Reed-Solomon codes)

Let K be a finite field, and xi, ... ,x, € K distinct elements. The
Reed-Solomon code of length n and dimension k is defined by

Cln, k) = {(f(x1), - (). f € K[X]; degf < k}

Reed-Solomon codes

Definition (Reed-Solomon codes)

Let K be a finite field, and xi, ... ,x, € K distinct elements. The
Reed-Solomon code of length n and dimension k is defined by

Cln, k) ={(f(x1), - . .f (xn)),f € K[X]; degf < k}

Example

(n,k) = (5,3), f_x2+2x+ 1 over Z/19Z.
Eval

(4 17,5, 7 17) 2w, (1 2,1,0,0) 24241
(4,17,13,7,17) 2275 (12, 8,11, 10, 1) x4 10x° + 11x2 + 8x + 12

Minimal distance of Reed-Solomon codes

Property

0 = n—k -+ 1 (Maximum Distance Separable codes)

Minimal distance of Reed-Solomon codes

Property

0 = n—k -+ 1 (Maximum Distance Separable codes)

Proof.
Singeton bound: 6 <n—k+1

Minimal distance of Reed-Solomon codes

Property

0 = n—k -+ 1 (Maximum Distance Separable codes)

Proof.

Singeton bound: 6 <n—k+1

Letf,g € C: degf,degg < k.

If f(x;) # g(x;) ford < n — k + 1 values x;,

Then f(x;) — g(x;) = 0 for at least n — d > k — 1 values x;.
Now deg(f — g) < k, hence f = g.

Minimal distance of Reed-Solomon codes

Property

0 = n—k -+ 1 (Maximum Distance Separable codes)

Proof.

Singeton bound: 6 <n—k+1

Letf,g € C: degf,degg < k.

If f(x;) # g(x;) ford < n — k + 1 values x;,

Then f(x;) — g(x;) = 0 for at least n — d > k — 1 values x;.
Now deg(f — g) < k, hence f = g.

=-correct up to “5* errors.

Decoding via the key equation

Let P be the interpolant P(x;) = y; forall1 <i<n.

flxi) = P(x:)

Decoding via the key equation

Let P be the interpolant P(x;) = y; forall1 <i<n.

f =P mod H(xfxi)

i=1

Decoding via the key equation

Let P be the erroneous interpolant P(x;) = y; +e; forall 1 <i <n.

f=P mod H (x — x;)

ile;=0

Decoding via the key equation

Let P be the erroneous interpolant P(x;) = y; +e; forall 1 <i <n.

Af = AP mod H(x —Xx;)

i=1

and A = [, .o(x — xi)

Decoding via the key equation

Let P be the erroneous interpolant P(x;) = y; +e; forall 1 <i <n.

N =AP mod H(x—xi)
i=1

and A = [[;,, .o(x — x;)
(Linearization)

Berlekamp-Welch decoding

Find N of degree < k+rand A of degree <rs.t.

i=1

Linear system solving
NX)=no+...mpu 1 X" land A(X) = 4o+ - + 4,1 X! + X".

Unknonwns: ny, . .. fgy—1, o, - -
each in x; (n equations)

Equations:

2

Toxy xp ...
1 x xf

j«H*l

x}]ﬂ»r—l

xk+.r—l

2
Lox, x, ...

n

1

1

N =AP mod H(x—xi)

X1 ...

—P(x1)
. —P(xn) 1 x

s —1 (k + 2t unknowns)

A N
|
S
=
N
ST

: |

Il
——
o... o
| I

&y ooo 4,

Rational fraction reconstruction

Problem (RFR: Rational Fraction Reconstruction)
Given A, B € K[X] withdegB < degA = n, findf, g € K[X], such that

f = gB modA
degf < dp, .
<

degg

Theorem

Let (fo = A,fi = B,...,f:) the sequence of remainders of the extended
Euclidean algorithm applied on (A, B) and u;, v; the coefficients s.t.
fi = wifo +vifi. Then, at iteration j s.t. degf; < dp < degfi_1,

1. (f;.v;) is a solution of problem RFR.
2. itis minimal: any other solution (f, g) writes

f=dqf;, §=qv; forqeK[X|.

Reed-Solomon decoding with Extended Euclidean
algorithm

Berlekamp-Welch using extended Euclidean algorithm

» Erroneous interpolant: P = Interp((y;,x;))
> Error locator polynomial: A = [, i erroneous (X — Xi)
Find / with degf < dr s.t.. f and P match on > n — ¢ evaluations x;.

\AL:\A’,P mod H(X—xi)

. i=1
fi 8j

and (Af, A) is minimal
=-computed by extended Euclidean Algorithm

f=1ilg-

Another decoding algorithm: syndrom based
From now on: K = F,,n = ¢ — 1,x; = o/ where « is a primitive n-th
root of unity.

E(f) = (f(a°),f(a"),f(a?),....f(a""")) = DFT4(f)

Another decoding algorithm: syndrom based
From now on: K = F,,n = ¢ — 1,x; = o/ where « is a primitive n-th
root of unity.

E(f) = (f(a"),f(a").f(a?),....f(a""")) = DFT4(f)

Linear recurring sequences

Sequences (ag, ay, - - . ,an, - ..) such that
t—1

Vi>0a, = Z AiGitj
i=0

generator polynomial: A(z) = z' — Y'—g AiZ’
minimal polynomial: A(z) of minimal degree
linear complexity of (;);: degree ¢ of the minimal polynomial A

Computing Anin: Berlekamp/Massey algorithm, from 2¢ consecutive
elements, in O (1)

Blahut theorem

Theorem ([Blahut84], [Prony1795])

The DFT, of a vector of weight ¢t has linear complexity t.

Blahut theorem

Theorem ([Blahut84], [Prony1795])

The DFT, of a vector of weight ¢t has linear complexity t.

Skecth of proof

> Letv =¢; be a 1-weight vector. Then
DFTa(V) = Ev(ao,al oz")(Xi) = ((ao)i7 (al)i7 BN (O‘nil)i) is
linearly generated by A(z) = z — a'.

Blahut theorem

Theorem ([Blahut84], [Prony1795])

The DFT, of a vector of weight ¢t has linear complexity t.

Skecth of proof

> Letv =¢; be a 1-weight vector. Then
DFTa(V) = Ev(ao,al oz")(Xi) = ((ao)i7 (al)i7 BN (O‘nil)i) is
linearly generated by A(z) = z — a'.

> Forv= EJ’:I e;;, the sequence DFT,, (v) is generated by

ppcmj(z —ah) = Hjt':1(z —ah)

Blahut theorem

Theorem ([Blahut84], [Prony1795])

The DFT, of a vector of weight ¢t has linear complexity t.

Skecth of proof

> Letv =¢; be a 1-weight vector. Then
DFTa(V) = Ev(ao,al oz")(Xi) = ((a())i7 (al)i7 BN (O‘nil)i) is
linearly generated by A(z) = z — a'.

> Forv= 25:1 e;;, the sequence DFT,, (v) is generated by

ppcmj(z —ah) = Hjt':l(z —ah)

Corollary

The roots of A localize the non-zero elements of v: o/i.
= error locator

Syndrom Decoding of Reed-Solomon codes

C={(f(xr), - oS ()| degf < k}

Evaluation

/_\
[« [T o J | LTI TTTT M ITTHT]
m=f(x),degf < k y = Eval(f)|yi :f(x;)_‘_,—*’"' error €
Y

| g (T

= _/z = y+e
‘ f ‘ 0 ‘ Interpolation

T

Syndrom Decoding of Reed-Solomon codes

C={(f(xr), - oS ()| degf < k}

Evaluation

| T
[« T o J | LITTTITTI MM TTIT]
m = f(x),degf < k y = Eval(f)|y: :f(x[)_‘_,—"’"' error €
Y

| g Eal EEE EE

= _/Z =y+e
‘ f ‘ 0 ‘ Interpolation

T

Interp(e)

Berlekamp Massey algorithm

Codes derived from Reed Solomon codes

Generalized Reed-Solomon codes
CGRS(nvka X, V) = {(Vlf(-xl)7 oo 7vnf(xn))af S K<k[X]}

» Same dimension and minimal distance =MDS

» Existence of a dual GRS code in the same evaluation points:
There is a vector w such that

Cors(n,k,x, V)= = Cors(n,n — k,x, W)

Hgprs(x, w)Gars(x,v)" =0

(Proof in exercise)

Codes derived from Reed-Solomon

Alternant codes

Motivation: workaround the limitatoin of GRS codes: n < ¢

=-allow for arbitrary length n given a fixed field F,,.
Idea: use a GRS over an extension F,., and restrict to I,.

Let

» K=F, K=F, andx € K",v € (K*)"

» Cx = Cgrs(n, k,x,v) over K with minimum distance D =n — k + 1
Then

Car =Cg N FZ

» Dimension: >n— (D—1)m=n— (n—k)m

» Minimum distance: > D by design
(Proof in exercise)

Codes derived from Reed Solomon codes
Goppa codes

» An instance of a broad class of Algebraic Geometric Codes
(AG-codes).

» Can be viewed as an alternant code for some special multiplier
vector v.

Let
> K: F‘I’i(: qu andX E f(”
> feFnX],degf =randmr <n
> v= (41_[,;{:(&1/)7/"))
» Cg = Cgrs(n,n — r,x,v) over K with parameters (n,n — r,r + 1)

Then
CGoppa =CgN FZ

» Dimension: > n —rm

» Minimum distance: > r + 1

» Case g = 2¢ (binary Goppa code), with f square free
=Minimum distance: = 2r + 1

Outline

McEliece cryptosystem

A code based cryptosystem [Mc Eliece 78]

Designing a one way function with trapdoor

Use the encoder of a linear code:

message x [G] + rand. error = codeword

Encryption: is easy (matrix-vector product)
Decryption: decoding a received word

» easy for known codes
» NP-complete for random linear codes

Trapdoor: efficient decoding when the code familiy is known

A code based cryptosystem [Mc Eliece 78]

Designing a one way function with trapdoor

Use the encoder of a linear code:

message x [G] + rand. error = codeword

Encryption: is easy (matrix-vector product)
Decryption: decoding a received word

» easy for known codes
» NP-complete for random linear codes

Trapdoor: efficient decoding when the code familiy is known

=requires a family F of codes
» indistinguishable from random linear codes
» with fast decoding algorithm

Mc Eliece Cryptosystem

KeyGen

» Select an (n, k) binary linear code C € F correcting ¢ errors,
having an efficient decoding algorithm Ac,

> Form G € F:*", a generator matrix for C
» Sample uniformly a k x k non-singular matrix S
» Select uniformly an n-dimensional permutation P.
> G =SGP
Public key: (G, 1)
Private key: (S, G, P)

Mc Eliece Cryptosystem

Encrypt

Em)=mG+e=mSGP+e=y

where e is an error vector of Hamming weight at most .

Decrypt
1.y =yP~! =mSG + eP!
2. m' = Ac(y) =mS

3. m=m'S"!

Parameters for Mc Eliece in practice

(n,k,d) Code family key size Security Attack

256,128, 129 en. Reed-Solomon (o] 2
Gen. Reed-Sol 67k 95 [SS92]

Parameters for Mc Eliece in practice

(n,k,d) Code family key size Security Attack

(256,128, 129) Gen. Reed-Solomon 67ko 295 [SS92]
subcodes of GRS [Wie10]

Parameters for Mc Eliece in practice

(n,k,d) Code family key size Security Attack
(256,128, 129) Gen. Reed-Solomon 67ko 295 [SS92]
subcodes of GRS [Wie10]
(1024, 176, 128) Reed-Muller codes 225k0 272 [MS07, CB13]
(2048, 232, 256) Reed-Muller codes 59.4k0 2% [MS07, CB13]

Parameters for Mc Eliece in practice

(n,k,d) Code family key size Security Attack
(256,128, 129) Gen. Reed-Solomon 67ko 295 [SS92]
subcodes of GRS [Wie10]
(1024, 176, 128) Reed-Muller codes 225k0 272 [MS07, CB13]
(2048, 232, 256) Reed-Muller codes 59.4k0 2% [MS07, CB13]

(171,109, 61) 28 Alg.-Geom. codes 16ko 206 [FM08, CMP14]

Parameters for Mc Eliece in practice

(n,k,d) Code family key size Security Attack

(256,128, 129) Gen. Reed-Solomon 67ko 295 [SS92]
subcodes of GRS [Wie10]

(1024, 176, 128) Reed-Muller codes 225k0 272 [MS07, CB13]

(2048, 232, 256) Reed-Muller codes 59.4k0 2% [MS07, CB13]

(171,109, 61) 28 Alg.-Geom. codes 16ko 206 [FM08, CMP14]

(1024,524,101), Goppa codes 67kB 262

(2048, 1608, 48), Goppa codes 412kB 2%

(6960,5413,239), Goppa codes 8MB 2128

Advantages of McEliece cryptosystem

Security

Based on two assumptions:
» decoding a random linear code is hard (NP complete reduction)

» the generator matrix of a Goppa code looks random
(indistinguishability)

Pros:

» faster encoding/decoding algorithms than RSA, ECC (for a given
security parameter)

» Post quantum security: still robust against quantum computer
attacks

Cons:
» harder to use for signature (non determinstic encoding)
> large key size

	Motivation
	Coding Theory
	Introduction
	Linear Codes
	Reed-Solomon codes

	McEliece cryptosystem

