
Code based cryptography
Cryptographic Engineering

Clément PERNET

M2 Cyber Security,
UFR-IM2AG, Univ. Grenoble-Alpes

ENSIMAG, Grenoble INP

Outline

Motivation

Coding Theory
Introduction
Linear Codes
Reed-Solomon codes

McEliece cryptosystem

Motivation: Post-Quantum Cryptography

Problem (Order finding problem)

Given a ∈ Z>0 coprime with N ∈ Z>0 find the smallest r ∈ Z>0 s.t.

ar = 1 mod N.

Theorem (Shor’s algorithm)

The Order finding problem can be solved by a quantum computer in
time O(log2 N log logN).

Factorization with a quantum computer

Corollary

Integer factorization can be solved by a quantum computer in time
O(log2 N log logN).

Sketch of proof.

1. Do
2. Sample a random a

3. r ← Order(a,N)

4. While (GCD(ar/2 − 1,N) = 1)
If r is even then N|(ar/2 − 1)(ar/2 + 1). But N ∤ (ar/2 − 1).
▶ Either N|ar/2 + 1 (with prob < 1/2) ⇒restart with another a
▶ Or the GCD(n, ar/2 − 1) reveals a factor of n.

Factorization with a quantum computer

Corollary

Integer factorization can be solved by a quantum computer in time
O(log2 N log logN).

Sketch of proof.

1. Do
2. Sample a random a

3. r ← Order(a,N)

4. While (GCD(ar/2 − 1,N) = 1)
If r is even then N|(ar/2 − 1)(ar/2 + 1). But N ∤ (ar/2 − 1).

▶ Either N|ar/2 + 1 (with prob < 1/2) ⇒restart with another a
▶ Or the GCD(n, ar/2 − 1) reveals a factor of n.

Factorization with a quantum computer

Corollary

Integer factorization can be solved by a quantum computer in time
O(log2 N log logN).

Sketch of proof.

1. Do
2. Sample a random a

3. r ← Order(a,N)

4. While (GCD(ar/2 − 1,N) = 1)
If r is even then N|(ar/2 − 1)(ar/2 + 1). But N ∤ (ar/2 − 1).
▶ Either N|ar/2 + 1 (with prob < 1/2) ⇒restart with another a
▶ Or the GCD(n, ar/2 − 1) reveals a factor of n.

Discrete Logarithm with a quantum computer

Corollary

The Discrete logarithm problem can be solved by a quantum
computer in time O(log2 N log logN).

Sketch of proof.

Find x such that gx = y in G of order p. Let
f : Z/pZ× Z/pZ → G

(a, b) 7→ gay−b , a group isomorphism.

Note: f−1(1) = Z/pZ× (x, 1).
Find (r1, r2) s.t. f ((r1, r2)× (a, b)) = 1.
Hence gar1 y−r2b = gar1−xbr2 = 1.
⇒recover x from a, b, r1, r2.

Discrete Logarithm with a quantum computer

Corollary

The Discrete logarithm problem can be solved by a quantum
computer in time O(log2 N log logN).

Sketch of proof.

Find x such that gx = y in G of order p. Let
f : Z/pZ× Z/pZ → G

(a, b) 7→ gay−b , a group isomorphism.

Note: f−1(1) = Z/pZ× (x, 1).
Find (r1, r2) s.t. f ((r1, r2)× (a, b)) = 1.
Hence gar1 y−r2b = gar1−xbr2 = 1.
⇒recover x from a, b, r1, r2.

Discrete Logarithm with a quantum computer

Corollary

The Discrete logarithm problem can be solved by a quantum
computer in time O(log2 N log logN).

Sketch of proof.

Find x such that gx = y in G of order p. Let
f : Z/pZ× Z/pZ → G

(a, b) 7→ gay−b , a group isomorphism.

Note: f−1(1) = Z/pZ× (x, 1).
Find (r1, r2) s.t. f ((r1, r2)× (a, b)) = 1.

Hence gar1 y−r2b = gar1−xbr2 = 1.
⇒recover x from a, b, r1, r2.

Discrete Logarithm with a quantum computer

Corollary

The Discrete logarithm problem can be solved by a quantum
computer in time O(log2 N log logN).

Sketch of proof.

Find x such that gx = y in G of order p. Let
f : Z/pZ× Z/pZ → G

(a, b) 7→ gay−b , a group isomorphism.

Note: f−1(1) = Z/pZ× (x, 1).
Find (r1, r2) s.t. f ((r1, r2)× (a, b)) = 1.
Hence gar1 y−r2b = gar1−xbr2 = 1.

⇒recover x from a, b, r1, r2.

Discrete Logarithm with a quantum computer

Corollary

The Discrete logarithm problem can be solved by a quantum
computer in time O(log2 N log logN).

Sketch of proof.

Find x such that gx = y in G of order p. Let
f : Z/pZ× Z/pZ → G

(a, b) 7→ gay−b , a group isomorphism.

Note: f−1(1) = Z/pZ× (x, 1).
Find (r1, r2) s.t. f ((r1, r2)× (a, b)) = 1.
Hence gar1 y−r2b = gar1−xbr2 = 1.
⇒recover x from a, b, r1, r2.

Post-quantum cryptography

Conclusion:
A quantum computer can break all of classical asymmetric crypto
(whenever it is capable of dealing with such instances)

Still not quite there yet:
▶ Number of qu-bits available
▶ Handling noise

But still a threat:
▶ Fast progresses, huge efforts
▶ Harvest now, decrypt later already happening
⇒paradigm of Perfect Forward Secrecy

Post-quantum cryptography

Conclusion:
A quantum computer can break all of classical asymmetric crypto
(whenever it is capable of dealing with such instances)

Still not quite there yet:
▶ Number of qu-bits available
▶ Handling noise

But still a threat:
▶ Fast progresses, huge efforts
▶ Harvest now, decrypt later already happening
⇒paradigm of Perfect Forward Secrecy

Post-quantum cryptography

Conclusion:
A quantum computer can break all of classical asymmetric crypto
(whenever it is capable of dealing with such instances)

Still not quite there yet:
▶ Number of qu-bits available
▶ Handling noise

But still a threat:
▶ Fast progresses, huge efforts
▶ Harvest now, decrypt later already happening
⇒paradigm of Perfect Forward Secrecy

Post-quantum cryptography
Building new schemes based on other computational hardness

assumptions

2016: NIST starts a standardization process calling for
proposals for asymetric primitives: signatures and
encryption schemes.

2020: 7 finalists of the 1st round + 8 alternative candidates
2024: Expected publication of standard
2030: Expected Q-day

Main fields

Lattices: Kyber (Module learning-with errors), ...
Coding theory: McEliece (Goppa codes)
Multivariate systems: Oil and Vinegar
But also

Isogenies: CSIDH, but no longer SIDH
Hash: SPHINX

Post-quantum cryptography
Building new schemes based on other computational hardness

assumptions

2016: NIST starts a standardization process calling for
proposals for asymetric primitives: signatures and
encryption schemes.

2020: 7 finalists of the 1st round + 8 alternative candidates
2024: Expected publication of standard
2030: Expected Q-day

Main fields

Lattices: Kyber (Module learning-with errors), ...
Coding theory: McEliece (Goppa codes)
Multivariate systems: Oil and Vinegar
But also

Isogenies: CSIDH, but no longer SIDH
Hash: SPHINX

Post-quantum cryptography
Building new schemes based on other computational hardness

assumptions

2016: NIST starts a standardization process calling for
proposals for asymetric primitives: signatures and
encryption schemes.

2020: 7 finalists of the 1st round + 8 alternative candidates
2024: Expected publication of standard
2030: Expected Q-day

Main fields

Lattices: Kyber (Module learning-with errors), ...
Coding theory: McEliece (Goppa codes)
Multivariate systems: Oil and Vinegar
But also

Isogenies: CSIDH, but no longer SIDH
Hash: SPHINX

Outline

Motivation

Coding Theory
Introduction
Linear Codes
Reed-Solomon codes

McEliece cryptosystem

Outline

Motivation

Coding Theory
Introduction
Linear Codes
Reed-Solomon codes

McEliece cryptosystem

Errors everywhere

Error models

Communication channel
▶ Radio transmission electromagnetic interferences
▶ Ethernet, DSL electromagnetic interferences
▶ CD/DVD Audio/Video/ROM scratches, dust
▶ RAM cosmic radiations
▶ HDD magnetic field, crash

Sender

Message
Message Message

Receiver

Error models

Communication channel
▶ Radio transmission electromagnetic interferences
▶ Ethernet, DSL electromagnetic interferences
▶ CD/DVD Audio/Video/ROM scratches, dust
▶ RAM cosmic radiations
▶ HDD magnetic field, crash

Sender

Message
Message Message

Receiver

Error models

Communication channel
▶ Radio transmission electromagnetic interferences
▶ Ethernet, DSL electromagnetic interferences
▶ CD/DVD Audio/Video/ROM scratches, dust
▶ RAM cosmic radiations
▶ HDD magnetic field, crash

Sender

Message
Message Message

Error
Receiver

Error models

Communication channel
▶ Radio transmission electromagnetic interferences
▶ Ethernet, DSL electromagnetic interferences
▶ CD/DVD Audio/Video/ROM scratches, dust
▶ RAM cosmic radiations
▶ HDD magnetic field, crash

Error

Message Messagecode word received word
code word

d
e
c
o
d

in
g

e
n

c
o
d

in
g

Sender Receiver

Generalities on coding theory

Goals:
Detect: require retransmission (integrity certificate)

Correct: i.e. when no interraction possible
Tool: Adding redundancy

Example (NATO phonetic alphabet)

A→ Alfa, B→ Bravo, C→ Charlie, D→ Delta . . .
Alpha Bravo India Tango Tango Echo Delta India Oscar Uniform Sierra !

Two categories of codes:
stream codes: online processing of the stream of information
block codes: cutting information in blocks and applying the same

treatment to each block

Generalities on coding theory

Goals:
Detect: require retransmission (integrity certificate)

Correct: i.e. when no interraction possible
Tool: Adding redundancy

Example (NATO phonetic alphabet)

A→ Alfa, B→ Bravo, C→ Charlie, D→ Delta . . .
Alpha Bravo India Tango Tango Echo Delta India Oscar Uniform Sierra !

Two categories of codes:
stream codes: online processing of the stream of information
block codes: cutting information in blocks and applying the same

treatment to each block

Generalities on coding theory

Goals:
Detect: require retransmission (integrity certificate)

Correct: i.e. when no interraction possible
Tool: Adding redundancy

Example (NATO phonetic alphabet)

A→ Alfa, B→ Bravo, C→ Charlie, D→ Delta . . .
Alpha Bravo India Tango Tango Echo Delta India Oscar Uniform Sierra !

Two categories of codes:
stream codes: online processing of the stream of information
block codes: cutting information in blocks and applying the same

treatment to each block

Generalities on coding theory

Goals:
Detect: require retransmission (integrity certificate)

Correct: i.e. when no interraction possible
Tool: Adding redundancy

Example (NATO phonetic alphabet)

A→ Alfa, B→ Bravo, C→ Charlie, D→ Delta . . .
Alpha Bravo India Tango Tango Echo Delta India Oscar Uniform Sierra !

Two categories of codes:
stream codes: online processing of the stream of information
block codes: cutting information in blocks and applying the same

treatment to each block

Generalities and terminology

▶ A code is a sub-set C ⊂ E of a set of possible words.
▶ Often, E is built from an alphabet Σ: E = Σn.
▶ Encoding function: E : S → E such that E(S) = C.
▶ A code is

▶ t-detector, if any set error on t symbols can be detected
▶ t-corrector, if any set error on t symbols can be corrected

Examples

Parity check

E : (x1, x2, x3)→ (x1, x2, x3, s)

→ (x1, x2, x3, s)→ Error detected

with
s =

∑3
i=1 xi mod 2 ⇒

∑3
i=1 xi + s = 0 mod 2

Repetition code

▶ “Say that again?”

▶ “a”→ “aaa”→ “aab”→ “aaa”→ “a”
E : Σ −→ Σr

x 7−→ (x, . . . , x︸ ︷︷ ︸
r times

) , and C = Im(E) ⊂ Σr

Examples

Parity check

E : (x1, x2, x3)→ (x1, x2, x3, s)→ (x1, x2, x3, s)→ Error detected with
s =

∑3
i=1 xi mod 2 ⇒

∑3
i=1 xi + s = 0 mod 2

Repetition code

▶ “Say that again?”

▶ “a”→ “aaa”→ “aab”→ “aaa”→ “a”
E : Σ −→ Σr

x 7−→ (x, . . . , x︸ ︷︷ ︸
r times

) , and C = Im(E) ⊂ Σr

Examples

Parity check

E : (x1, x2, x3)→ (x1, x2, x3, s)→ (x1, x2, x3, s)→ Error detected with
s =

∑3
i=1 xi mod 2 ⇒

∑3
i=1 xi + s = 0 mod 2

Repetition code

▶ “Say that again?”

▶ “a”→ “aaa”→ “aab”→ “aaa”→ “a”
E : Σ −→ Σr

x 7−→ (x, . . . , x︸ ︷︷ ︸
r times

) , and C = Im(E) ⊂ Σr

Examples

Parity check

E : (x1, x2, x3)→ (x1, x2, x3, s)→ (x1, x2, x3, s)→ Error detected with
s =

∑3
i=1 xi mod 2 ⇒

∑3
i=1 xi + s = 0 mod 2

Repetition code

▶ “Say that again?”
▶ “a”→ “aaa”→ “aab”→ “aaa”→ “a”

E : Σ −→ Σr

x 7−→ (x, . . . , x︸ ︷︷ ︸
r times

) , and C = Im(E) ⊂ Σr

Examples

Parity check

E : (x1, x2, x3)→ (x1, x2, x3, s)→ (x1, x2, x3, s)→ Error detected with
s =

∑3
i=1 xi mod 2 ⇒

∑3
i=1 xi + s = 0 mod 2

Repetition code

▶ “Say that again?”
▶ “a”→ “aaa”→ “aab”→ “aaa”→ “a”
E : Σ −→ Σr

x 7−→ (x, . . . , x︸ ︷︷ ︸
r times

) , and C = Im(E) ⊂ Σr

Outline

Motivation

Coding Theory
Introduction
Linear Codes
Reed-Solomon codes

McEliece cryptosystem

Linear Codes

Linear Codes
Let E = Vn over a finite field V.
A linear code C is a subspace of E .
▶ length: n
▶ dimension: k = dim(C)
▶ Rate (of information): k/n

Encoding function: E : Vk −→ Vn s.t. C = Im(E) ⊂ Vn

Example

▶ Parity code: k = n− 1 1-detector
▶ r-repetition code: k = r/r = 1 r − 1-detector,

⌊ r−1
2 ⌋-corrector

Linear Codes

Linear Codes
Let E = Vn over a finite field V.
A linear code C is a subspace of E .
▶ length: n
▶ dimension: k = dim(C)
▶ Rate (of information): k/n

Encoding function: E : Vk −→ Vn s.t. C = Im(E) ⊂ Vn

Example

▶ Parity code: k = n− 1 1-detector
▶ r-repetition code: k = r/r = 1 r − 1-detector,

⌊ r−1
2 ⌋-corrector

Distance of a code

▶ Hamming weight: wH(x) = |{i, xi ̸= 0}|.

▶ Hamming distance: dH(x, y) = wH(x− y) = |{i, xi ̸= yi}|
▶ Minimum distance of a code δ = minx,y∈C dH(x, y)

In a linear code: δ = minx∈C\{0} wH(x))

C is t-corrector if

▶ ∀x ∈ E |{c ∈ C, dH(x, c) ≤ t}| ≤ 1
▶ ∀c1, c2 ∈ C c1 ̸= c2 ⇒ dH(c1, c2) > 2t

Distance of a code

▶ Hamming weight: wH(x) = |{i, xi ̸= 0}|.
▶ Hamming distance: dH(x, y) = wH(x− y) = |{i, xi ̸= yi}|

▶ Minimum distance of a code δ = minx,y∈C dH(x, y)
In a linear code: δ = minx∈C\{0} wH(x))

C is t-corrector if

▶ ∀x ∈ E |{c ∈ C, dH(x, c) ≤ t}| ≤ 1
▶ ∀c1, c2 ∈ C c1 ̸= c2 ⇒ dH(c1, c2) > 2t

Distance of a code

▶ Hamming weight: wH(x) = |{i, xi ̸= 0}|.
▶ Hamming distance: dH(x, y) = wH(x− y) = |{i, xi ̸= yi}|
▶ Minimum distance of a code δ = minx,y∈C dH(x, y)

In a linear code: δ = minx∈C\{0} wH(x))

t

δ

C is t-corrector if

▶ ∀x ∈ E |{c ∈ C, dH(x, c) ≤ t}| ≤ 1
▶ ∀c1, c2 ∈ C c1 ̸= c2 ⇒ dH(c1, c2) > 2t

Distance of a code

▶ Hamming weight: wH(x) = |{i, xi ̸= 0}|.
▶ Hamming distance: dH(x, y) = wH(x− y) = |{i, xi ̸= yi}|
▶ Minimum distance of a code δ = minx,y∈C dH(x, y)

In a linear code: δ = minx∈C\{0} wH(x))

t

C is t-corrector if
▶ ∀x ∈ E |{c ∈ C, dH(x, c) ≤ t}| ≤ 1

▶ ∀c1, c2 ∈ C c1 ̸= c2 ⇒ dH(c1, c2) > 2t

Distance of a code

▶ Hamming weight: wH(x) = |{i, xi ̸= 0}|.
▶ Hamming distance: dH(x, y) = wH(x− y) = |{i, xi ̸= yi}|
▶ Minimum distance of a code δ = minx,y∈C dH(x, y)

In a linear code: δ = minx∈C\{0} wH(x))

t

δ

C is t-corrector if
▶ ∀x ∈ E |{c ∈ C, dH(x, c) ≤ t}| ≤ 1
▶ ∀c1, c2 ∈ C c1 ̸= c2 ⇒ dH(c1, c2) > 2t

Perfect codes

Definition
A code is perfect if any detected error can be corrected.

Example

▶ 4-repetition is not perfect
▶ 3-repetition is perfect

Property

A code is perfect if the balls of radius t around the codewords form a
partition of the ambiant space.

Remark
Can be corrected into the wrong code-word. For instance
(b, a, b)→ (b, b, b)

Perfect codes

Definition
A code is perfect if any detected error can be corrected.

Example

▶ 4-repetition is not perfect
▶ 3-repetition is perfect

Property

A code is perfect if the balls of radius t around the codewords form a
partition of the ambiant space.

Remark
Can be corrected into the wrong code-word. For instance
(b, a, b)→ (b, b, b)

Perfect codes

Definition
A code is perfect if any detected error can be corrected.

Example

▶ 4-repetition is not perfect
▶ 3-repetition is perfect

Property

A code is perfect if the balls of radius t around the codewords form a
partition of the ambiant space.

Remark
Can be corrected into the wrong code-word. For instance
(b, a, b)→ (b, b, b)

Generator matrix and parity check matrix

Generator matrix
▶ The matrix G of the encoding function (depends on a choice of

basis):
E : xT −→ xTG

▶ Under systematic form: G =

 1 0
. . .

0 1

G



Parity check matrix

1. A matrix H ∈ K(n−k)×n such that ker(H) = C:

c ∈ C ⇔ Hc = 0

2. A basis of ker(GT): HGT = 0

Generator matrix and parity check matrix

Generator matrix
▶ The matrix G of the encoding function (depends on a choice of

basis):
E : xT −→ xTG

▶ Under systematic form: G =

 1 0
. . .

0 1

G



Parity check matrix

1. A matrix H ∈ K(n−k)×n such that ker(H) = C:

c ∈ C ⇔ Hc = 0

2. A basis of ker(GT): HGT = 0

Generator matrix and parity check matrix
Exercise
Find G and H of the binary parity check and of the k-repetition codes.

Gpar =

1 1
. . .

...
1 1

 ,Hpar = [1 . . . 1]

Grep = [1 . . . 1] = Hpar,Hrep =

1 1
. . .

...
1 1

 = Gpar

The parity check code is the dual of the repetition code

Definition
Let C be a linear code with generating matrix G and parity check
matrix H.
The dual code D of C is the linear code with generating matrix H and
parity check matrix G.

Generator matrix and parity check matrix
Exercise
Find G and H of the binary parity check and of the k-repetition codes.

Gpar =

1 1
. . .

...
1 1

 ,Hpar = [1 . . . 1]

Grep = [1 . . . 1] = Hpar,Hrep =

1 1
. . .

...
1 1

 = Gpar

The parity check code is the dual of the repetition code

Definition
Let C be a linear code with generating matrix G and parity check
matrix H.
The dual code D of C is the linear code with generating matrix H and
parity check matrix G.

Generator matrix and parity check matrix
Exercise
Find G and H of the binary parity check and of the k-repetition codes.

Gpar =

1 1
. . .

...
1 1

 ,Hpar = [1 . . . 1]

Grep = [1 . . . 1] = Hpar,Hrep =

1 1
. . .

...
1 1

 = Gpar

The parity check code is the dual of the repetition code

Definition
Let C be a linear code with generating matrix G and parity check
matrix H.
The dual code D of C is the linear code with generating matrix H and
parity check matrix G.

Generator matrix and parity check matrix
Exercise
Find G and H of the binary parity check and of the k-repetition codes.

Gpar =

1 1
. . .

...
1 1

 ,Hpar = [1 . . . 1]

Grep = [1 . . . 1] = Hpar,Hrep =

1 1
. . .

...
1 1

 = Gpar

The parity check code is the dual of the repetition code

Definition
Let C be a linear code with generating matrix G and parity check
matrix H.
The dual code D of C is the linear code with generating matrix H and
parity check matrix G.

Role of the parity check matrix

c ∈ C ⇔ Hc = 0

▶ Certificate for detecting errors
▶ Syndrom: sx = Hx = H(c + e) = He

A first correction algorithm:

▶ pre-compute all se for wH(e) ≤ t in a table S
▶ For x received. If sx ̸= 0, look for sx in the table S
▶ return the corresponding codeword

s=Hxx s==0? Return x
Y

Return c = x−e
s

N

e

Role of the parity check matrix

c ∈ C ⇔ Hc = 0

▶ Certificate for detecting errors
▶ Syndrom: sx = Hx = H(c + e) = He

A first correction algorithm:

▶ pre-compute all se for wH(e) ≤ t in a table S
▶ For x received. If sx ̸= 0, look for sx in the table S
▶ return the corresponding codeword

s=Hxx s==0? Return x
Y

Return c = x−e
s

N

e

Hamming codes

Let H =

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1


▶ Parameters of the corresponding code?

(n, k) = (7, 4)

▶ Generator matrix?

G =


1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 1 0 1 0 1 0
1 1 0 1 0 0 1



▶ Minimal distance?

δ ≤ 3.
▶ If δ = 1, ∃i,Hi = 0
▶ If δ = 2, ∃i ̸= j,Hi = Hj ⇒δ = 3

▶ Is it a perfect code?

δ = 3 ⇒t = 1 corrector.
|C| = 2k ⇒# of elements in each ball of radius 1:
2k(1 + 7) = 16 · 8 = 27 = |Kn| ⇒perfect

Generalization
∀ℓ: H(2ℓ − 1, 2ℓ − ℓ), is 1-corrector, perfect.
Example: Minitel, ECC memory: ℓ = 7

Hamming codes

Let H =

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1


▶ Parameters of the corresponding code? (n, k) = (7, 4)

▶ Generator matrix?

G =


1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 1 0 1 0 1 0
1 1 0 1 0 0 1



▶ Minimal distance?

δ ≤ 3.
▶ If δ = 1, ∃i,Hi = 0
▶ If δ = 2, ∃i ̸= j,Hi = Hj ⇒δ = 3

▶ Is it a perfect code?

δ = 3 ⇒t = 1 corrector.
|C| = 2k ⇒# of elements in each ball of radius 1:
2k(1 + 7) = 16 · 8 = 27 = |Kn| ⇒perfect

Generalization
∀ℓ: H(2ℓ − 1, 2ℓ − ℓ), is 1-corrector, perfect.
Example: Minitel, ECC memory: ℓ = 7

Hamming codes

Let H =

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1


▶ Parameters of the corresponding code? (n, k) = (7, 4)

▶ Generator matrix? G =


1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 1 0 1 0 1 0
1 1 0 1 0 0 1


▶ Minimal distance?

δ ≤ 3.
▶ If δ = 1, ∃i,Hi = 0
▶ If δ = 2, ∃i ̸= j,Hi = Hj ⇒δ = 3

▶ Is it a perfect code?

δ = 3 ⇒t = 1 corrector.
|C| = 2k ⇒# of elements in each ball of radius 1:
2k(1 + 7) = 16 · 8 = 27 = |Kn| ⇒perfect

Generalization
∀ℓ: H(2ℓ − 1, 2ℓ − ℓ), is 1-corrector, perfect.
Example: Minitel, ECC memory: ℓ = 7

Hamming codes

Let H =

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1


▶ Parameters of the corresponding code? (n, k) = (7, 4)

▶ Generator matrix? G =


1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 1 0 1 0 1 0
1 1 0 1 0 0 1


▶ Minimal distance? δ ≤ 3.

▶ If δ = 1, ∃i,Hi = 0
▶ If δ = 2, ∃i ̸= j,Hi = Hj ⇒δ = 3

▶ Is it a perfect code?

δ = 3 ⇒t = 1 corrector.
|C| = 2k ⇒# of elements in each ball of radius 1:
2k(1 + 7) = 16 · 8 = 27 = |Kn| ⇒perfect

Generalization
∀ℓ: H(2ℓ − 1, 2ℓ − ℓ), is 1-corrector, perfect.
Example: Minitel, ECC memory: ℓ = 7

Hamming codes

Let H =

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1


▶ Parameters of the corresponding code? (n, k) = (7, 4)

▶ Generator matrix? G =


1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 1 0 1 0 1 0
1 1 0 1 0 0 1


▶ Minimal distance? δ ≤ 3.

▶ If δ = 1, ∃i,Hi = 0
▶ If δ = 2, ∃i ̸= j,Hi = Hj ⇒δ = 3

▶ Is it a perfect code? δ = 3 ⇒t = 1 corrector.
|C| = 2k ⇒# of elements in each ball of radius 1:
2k(1 + 7) = 16 · 8 = 27 = |Kn| ⇒perfect

Generalization
∀ℓ: H(2ℓ − 1, 2ℓ − ℓ), is 1-corrector, perfect.
Example: Minitel, ECC memory: ℓ = 7

Hamming codes

Let H =

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1


▶ Parameters of the corresponding code? (n, k) = (7, 4)

▶ Generator matrix? G =


1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 1 0 1 0 1 0
1 1 0 1 0 0 1


▶ Minimal distance? δ ≤ 3.

▶ If δ = 1, ∃i,Hi = 0
▶ If δ = 2, ∃i ̸= j,Hi = Hj ⇒δ = 3

▶ Is it a perfect code? δ = 3 ⇒t = 1 corrector.
|C| = 2k ⇒# of elements in each ball of radius 1:
2k(1 + 7) = 16 · 8 = 27 = |Kn| ⇒perfect

Generalization
∀ℓ: H(2ℓ − 1, 2ℓ − ℓ), is 1-corrector, perfect.
Example: Minitel, ECC memory: ℓ = 7

Some bounds

Let C be a code (n, k, δ) over a field Fq with q elements.
k and δ can not be simulatneously large for a given n.
Sphere packing:

qk
t∑

i=0

(
n
i

)
(q− 1)i ≤ qn, with t = ⌊δ − 1

2
⌋.

Singleton bound:
δ ≤ n− k + 1

Sketch of proof:
▶ Let H be the parity check matrix (n− k)× n.
▶ δ is the smallest number of linearly dependent cols of H.
▶ n− k + 1 = rank(H) + 1 cols are always linearly dependent.
⇒How to build codes correcting up to n−k

2 .

Some bounds

Let C be a code (n, k, δ) over a field Fq with q elements.
k and δ can not be simulatneously large for a given n.
Sphere packing:

qk
t∑

i=0

(
n
i

)
(q− 1)i ≤ qn, with t = ⌊δ − 1

2
⌋.

Singleton bound:
δ ≤ n− k + 1

Sketch of proof:
▶ Let H be the parity check matrix (n− k)× n.
▶ δ is the smallest number of linearly dependent cols of H.
▶ n− k + 1 = rank(H) + 1 cols are always linearly dependent.
⇒How to build codes correcting up to n−k

2 .

Some bounds

Let C be a code (n, k, δ) over a field Fq with q elements.
k and δ can not be simulatneously large for a given n.
Sphere packing:

qk
t∑

i=0

(
n
i

)
(q− 1)i ≤ qn, with t = ⌊δ − 1

2
⌋.

Singleton bound:
δ ≤ n− k + 1

Sketch of proof:
▶ Let H be the parity check matrix (n− k)× n.
▶ δ is the smallest number of linearly dependent cols of H.
▶ n− k + 1 = rank(H) + 1 cols are always linearly dependent.

⇒How to build codes correcting up to n−k
2 .

Some bounds

Let C be a code (n, k, δ) over a field Fq with q elements.
k and δ can not be simulatneously large for a given n.
Sphere packing:

qk
t∑

i=0

(
n
i

)
(q− 1)i ≤ qn, with t = ⌊δ − 1

2
⌋.

Singleton bound:
δ ≤ n− k + 1

Sketch of proof:
▶ Let H be the parity check matrix (n− k)× n.
▶ δ is the smallest number of linearly dependent cols of H.
▶ n− k + 1 = rank(H) + 1 cols are always linearly dependent.
⇒How to build codes correcting up to n−k

2 .

Outline

Motivation

Coding Theory
Introduction
Linear Codes
Reed-Solomon codes

McEliece cryptosystem

Evaluation-interpolation codes

Theorem (Interpolation)

For all x1, . . . , xk, distincts, and all y1, . . . , yk, there is a unique
polynomial f = f0 + f1x + . . . fk−1xk−1 of degree < k such that :

f (xj) = yj, for all 1 ≤ j ≤ k.

Corollary

For some fixed xi’s
▶ equivalent representation: (y1, . . . , yk)⇔ (f0, . . . , fk−1).
▶ oversampling: (y1, . . . , yk, yk+1, . . . , yn)⇐ (f0, . . . , fk−1).
⇒adding redundancy

Evaluation-interpolation codes

Theorem (Interpolation)

For all x1, . . . , xk, distincts, and all y1, . . . , yk, there is a unique
polynomial f = f0 + f1x + . . . fk−1xk−1 of degree < k such that :

f (xj) = yj, for all 1 ≤ j ≤ k.

Corollary

For some fixed xi’s
▶ equivalent representation: (y1, . . . , yk)⇔ (f0, . . . , fk−1).
▶ oversampling: (y1, . . . , yk, yk+1, . . . , yn)⇐ (f0, . . . , fk−1).
⇒adding redundancy

Reed-Solomon codes

Definition (Reed-Solomon codes)

Let K be a finite field, and x1, . . . , xn ∈ K distinct elements. The
Reed-Solomon code of length n and dimension k is defined by

C(n, k) = {(f (x1), . . . , f (xn)), f ∈ K[X]; deg f < k}

Example

(n, k) = (5, 3), f = x2 + 2x + 1 over Z/19Z.
(1, 2, 1, 0, 0) Eval−−→ (f (1), f (5), f (8), f (10), f (12)) = (4, 5, 17, 5, 7, 17)

(4, 17, 5, 7, 17)
Interp.−−−→ (1, 2, 1, 0, 0) x2 + 2x + 1

(4, 17, 13, 7, 17)
Interp.−−−→ (12, 8, 11, 10, 1) x4 + 10x3 + 11x2 + 8x + 12

Reed-Solomon codes

Definition (Reed-Solomon codes)

Let K be a finite field, and x1, . . . , xn ∈ K distinct elements. The
Reed-Solomon code of length n and dimension k is defined by

C(n, k) = {(f (x1), . . . , f (xn)), f ∈ K[X]; deg f < k}

Example

(n, k) = (5, 3), f = x2 + 2x + 1 over Z/19Z.
(1, 2, 1, 0, 0) Eval−−→ (f (1), f (5), f (8), f (10), f (12)) = (4, 5, 17, 5, 7, 17)

(4, 17, 5, 7, 17)
Interp.−−−→ (1, 2, 1, 0, 0) x2 + 2x + 1

(4, 17, 13, 7, 17)
Interp.−−−→ (12, 8, 11, 10, 1) x4 + 10x3 + 11x2 + 8x + 12

Minimal distance of Reed-Solomon codes

Property

δ = n− k + 1 (Maximum Distance Separable codes)

Proof.
Singeton bound: δ ≤ n− k + 1

Let f , g ∈ C: deg f ,deg g < k.
If f (xi) ̸= g(xi) for d < n− k + 1 values xi,
Then f (xj)− g(xj) = 0 for at least n− d > k − 1 values xj.
Now deg(f − g) < k, hence f = g.

⇒correct up to n−k
2 errors.

Minimal distance of Reed-Solomon codes

Property

δ = n− k + 1 (Maximum Distance Separable codes)

Proof.
Singeton bound: δ ≤ n− k + 1

Let f , g ∈ C: deg f ,deg g < k.
If f (xi) ̸= g(xi) for d < n− k + 1 values xi,
Then f (xj)− g(xj) = 0 for at least n− d > k − 1 values xj.
Now deg(f − g) < k, hence f = g.

⇒correct up to n−k
2 errors.

Minimal distance of Reed-Solomon codes

Property

δ = n− k + 1 (Maximum Distance Separable codes)

Proof.
Singeton bound: δ ≤ n− k + 1
Let f , g ∈ C: deg f ,deg g < k.
If f (xi) ̸= g(xi) for d < n− k + 1 values xi,
Then f (xj)− g(xj) = 0 for at least n− d > k − 1 values xj.
Now deg(f − g) < k, hence f = g.

⇒correct up to n−k
2 errors.

Minimal distance of Reed-Solomon codes

Property

δ = n− k + 1 (Maximum Distance Separable codes)

Proof.
Singeton bound: δ ≤ n− k + 1
Let f , g ∈ C: deg f ,deg g < k.
If f (xi) ̸= g(xi) for d < n− k + 1 values xi,
Then f (xj)− g(xj) = 0 for at least n− d > k − 1 values xj.
Now deg(f − g) < k, hence f = g.

⇒correct up to n−k
2 errors.

Decoding via the key equation

Let P be the

erroneous

interpolant P(xi) = yi

+ei

for all 1 ≤ i ≤ n.

f (xi) = P(xi)

Decoding via the key equation

Let P be the

erroneous

interpolant P(xi) = yi

+ei

for all 1 ≤ i ≤ n.

f = P mod

n∏
i=1

(x− xi)

Decoding via the key equation

Let P be the erroneous interpolant P(xi) = yi +ei for all 1 ≤ i ≤ n.

f = P mod
∏

i|ei=0

(x− xi)

Decoding via the key equation

Let P be the erroneous interpolant P(xi) = yi +ei for all 1 ≤ i ≤ n.

Λf = ΛP mod

n∏
i=1

(x− xi)

and Λ =
∏

i|ei ̸=0(x− xi)

Decoding via the key equation

Let P be the erroneous interpolant P(xi) = yi +ei for all 1 ≤ i ≤ n.

N = ΛP mod

n∏
i=1

(x− xi)

and Λ =
∏

i|ei ̸=0(x− xi)

(Linearization)

Berlekamp-Welch decoding

Find N of degree < k + t and Λ of degree ≤ t s.t.

N = ΛP mod

n∏
i=1

(x− xi)

Linear system solving

N(X) = n0 + . . . nk+t−1Xk+t−1 and Λ(X) = ℓ0 + · · ·+ ℓt−1Xt−1 + Xt.
Unknonwns: n0, . . . nk+t−1, ℓ0, . . . , ℓt−1 (k + 2t unknowns)

Equations: each in xi (n equations)


1 x1 x2

1 . . . xk+t−1
1


−P(x1)

. . .
−P(xn)




1 x1 . . . xt
1

...
...

. . .
...

1 xn . . . xt
n

1 x2 x2
1 . . . xk+t−1

1
...

...
...

. . .
...

1 xn x2
n . . . xk+t−1

n





n0

...
nk+t−1

ℓ0
. . .
ℓt−1
ℓt


=


0
...
0



Rational fraction reconstruction

Problem (RFR: Rational Fraction Reconstruction)

Given A,B ∈ K[X] with degB < degA = n, find f , g ∈ K[X], such that f = gB mod A
deg f ≤ dF,
deg g ≤ n− dF − 1,

.

Theorem
Let (f0 = A, f1 = B, . . . , fℓ) the sequence of remainders of the extended
Euclidean algorithm applied on (A,B) and ui, vi the coefficients s.t.
fi = uif0 + vif1. Then, at iteration j s.t. deg fj ≤ dF < deg fj−1,

1. (fj, vj) is a solution of problem RFR.
2. it is minimal: any other solution (f , g) writes

f = qfj, g = qvj for q ∈ K[X].

Reed-Solomon decoding with Extended Euclidean
algorithm

Berlekamp-Welch using extended Euclidean algorithm

▶ Erroneous interpolant: P = Interp((yi, xi))

▶ Error locator polynomial: Λ =
∏

i|yi is erroneous(X − xi)

Find f with deg f ≤ dF s.t.. f and P match on ≥ n− t evaluations xi.

Λf︸︷︷︸
fj

= Λ︸︷︷︸
gj

P mod

n∏
i=1

(X − xi)

and (Λf ,Λ) is minimal
⇒computed by extended Euclidean Algorithm

f = fj/gj.

Another decoding algorithm: syndrom based
From now on: K = Fq, n = q− 1, xi = αi where α is a primitive n-th
root of unity.

E(f) = (f (α0), f (α1), f (α2), . . . , f (αn−1)) = DFTα(f)

Linear recurring sequences

Sequences (a0, a1, . . . , an, . . .) such that

∀j ≥ 0 aj+t =
t−1∑
i=0

λiai+j

generator polynomial: Λ(z) = zt −
∑t−1

i=0 λizi

minimal polynomial: Λ(z) of minimal degree
linear complexity of (ai)i: degree t of the minimal polynomial Λ
Computing Λmin: Berlekamp/Massey algorithm, from 2t consecutive

elements, in O
(
t2
)

Another decoding algorithm: syndrom based
From now on: K = Fq, n = q− 1, xi = αi where α is a primitive n-th
root of unity.

E(f) = (f (α0), f (α1), f (α2), . . . , f (αn−1)) = DFTα(f)

Linear recurring sequences

Sequences (a0, a1, . . . , an, . . .) such that

∀j ≥ 0 aj+t =

t−1∑
i=0

λiai+j

generator polynomial: Λ(z) = zt −
∑t−1

i=0 λizi

minimal polynomial: Λ(z) of minimal degree
linear complexity of (ai)i: degree t of the minimal polynomial Λ
Computing Λmin: Berlekamp/Massey algorithm, from 2t consecutive

elements, in O
(
t2
)

Blahut theorem

Theorem ([Blahut84], [Prony1795])

The DFTα of a vector of weight t has linear complexity t.

Skecth of proof

▶ Let v = ei be a 1-weight vector. Then
DFTα(v) = Ev(α0,α1,...,αn)(Xi) = ((α0)i, (α1)i, . . . , (αn−1)i) is
linearly generated by Λ(z) = z− αi.

▶ For v =
∑t

j=1 eij , the sequence DFTα(v) is generated by
ppcmj(z− αij) =

∏t
j=1(z− αij)

Corollary

The roots of Λ localize the non-zero elements of v: αij .
⇒error locator

Blahut theorem

Theorem ([Blahut84], [Prony1795])

The DFTα of a vector of weight t has linear complexity t.

Skecth of proof

▶ Let v = ei be a 1-weight vector. Then
DFTα(v) = Ev(α0,α1,...,αn)(Xi) = ((α0)i, (α1)i, . . . , (αn−1)i) is
linearly generated by Λ(z) = z− αi.

▶ For v =
∑t

j=1 eij , the sequence DFTα(v) is generated by
ppcmj(z− αij) =

∏t
j=1(z− αij)

Corollary

The roots of Λ localize the non-zero elements of v: αij .
⇒error locator

Blahut theorem

Theorem ([Blahut84], [Prony1795])

The DFTα of a vector of weight t has linear complexity t.

Skecth of proof

▶ Let v = ei be a 1-weight vector. Then
DFTα(v) = Ev(α0,α1,...,αn)(Xi) = ((α0)i, (α1)i, . . . , (αn−1)i) is
linearly generated by Λ(z) = z− αi.

▶ For v =
∑t

j=1 eij , the sequence DFTα(v) is generated by
ppcmj(z− αij) =

∏t
j=1(z− αij)

Corollary

The roots of Λ localize the non-zero elements of v: αij .
⇒error locator

Blahut theorem

Theorem ([Blahut84], [Prony1795])

The DFTα of a vector of weight t has linear complexity t.

Skecth of proof

▶ Let v = ei be a 1-weight vector. Then
DFTα(v) = Ev(α0,α1,...,αn)(Xi) = ((α0)i, (α1)i, . . . , (αn−1)i) is
linearly generated by Λ(z) = z− αi.

▶ For v =
∑t

j=1 eij , the sequence DFTα(v) is generated by
ppcmj(z− αij) =

∏t
j=1(z− αij)

Corollary

The roots of Λ localize the non-zero elements of v: αij .
⇒error locator

Syndrom Decoding of Reed-Solomon codes

C = {(f (x1), . . . , f (xn))|deg f < k}

f

error

g

0

=

0

+

f

Evaluation

Interpolation

m = f (x),deg f < k ey = Eval(f), yi = f (xi)

z = y + e

Interp(e)

Syndrom Decoding of Reed-Solomon codes

C = {(f (x1), . . . , f (xn))|deg f < k}

�������������
�������������
�������������

�������������
�������������
�������������

f

error

g

0

=

0

+

f

Evaluation

Interpolation

f

Berlekamp Massey algorithm

m = f (x),deg f < k ey = Eval(f), yi = f (xi)

z = y + e

Interp(e)

Codes derived from Reed Solomon codes

Generalized Reed-Solomon codes

CGRS(n, k, x, v) = {(v1f (x1), . . . , vnf (xn)), f ∈ K<k[X]}

▶ Same dimension and minimal distance ⇒MDS
▶ Existence of a dual GRS code in the same evaluation points:

There is a vector w such that

CGRS(n, k, x, v)⊥ = CGRS(n, n− k, x,w)

i.e.
HGRS(x,w)GGRS(x, v)T = 0

(Proof in exercise)

Codes derived from Reed-Solomon

Alternant codes

Motivation: workaround the limitatoin of GRS codes: n ≤ q
⇒allow for arbitrary length n given a fixed field Fq.

Idea: use a GRS over an extension Fqm , and restrict to Fq.
Let
▶ K = Fq, K̄ = Fqm and x ∈ K̄n,v ∈ (K̄∗)n

▶ CK̄ = CGRS(n, k, x, v) over K̄ with minimum distance D = n− k + 1
Then

CAlt = CK̄ ∩ Fn
q

▶ Dimension: ≥ n− (D− 1)m = n− (n− k)m
▶ Minimum distance: ≥ D by design

(Proof in exercise)

Codes derived from Reed Solomon codes
Goppa codes

▶ An instance of a broad class of Algebraic Geometric Codes
(AG-codes).

▶ Can be viewed as an alternant code for some special multiplier
vector v.

Let
▶ K = Fq, K̄ = Fqm and x ∈ K̄n

▶ f ∈ Fqm [X], deg f = r and mr < n

▶ v = (f (xi)∏
j ̸=i(xj−xi)

)

▶ CK̄ = CGRS(n, n− r, x, v) over K̄ with parameters (n, n− r, r + 1)
Then

CGoppa = CK̄ ∩ Fn
q

▶ Dimension: ≥ n− rm
▶ Minimum distance: ≥ r + 1
▶ Case q = 2e (binary Goppa code), with f square free
⇒Minimum distance: = 2r + 1

Outline

Motivation

Coding Theory
Introduction
Linear Codes
Reed-Solomon codes

McEliece cryptosystem

A code based cryptosystem [Mc Eliece 78]

Designing a one way function with trapdoor

Use the encoder of a linear code:

message×
[
G
]
+ rand. error = codeword

Encryption: is easy (matrix-vector product)
Decryption: decoding a received word

▶ easy for known codes
▶ NP-complete for random linear codes

Trapdoor: efficient decoding when the code familiy is known

⇒requires a family F of codes
▶ indistinguishable from random linear codes
▶ with fast decoding algorithm

A code based cryptosystem [Mc Eliece 78]

Designing a one way function with trapdoor

Use the encoder of a linear code:

message×
[
G
]
+ rand. error = codeword

Encryption: is easy (matrix-vector product)
Decryption: decoding a received word

▶ easy for known codes
▶ NP-complete for random linear codes

Trapdoor: efficient decoding when the code familiy is known

⇒requires a family F of codes
▶ indistinguishable from random linear codes
▶ with fast decoding algorithm

Mc Eliece Cryptosystem

KeyGen

▶ Select an (n, k) binary linear code C ∈ F correcting t errors,
having an efficient decoding algorithm AC ,

▶ Form G ∈ Fk×n
q , a generator matrix for C

▶ Sample uniformly a k × k non-singular matrix S
▶ Select uniformly an n-dimensional permutation P.
▶ Ĝ = SGP

Public key: (Ĝ, t)

Private key: (S,G,P)

Mc Eliece Cryptosystem

Encrypt

E(m) = mĜ + e = mSGP + e = y

where e is an error vector of Hamming weight at most t.

Decrypt

1. y′ = yP−1 = mSG + eP−1

2. m′ = AC(y′) = mS

3. m = m′S−1

Parameters for Mc Eliece in practice

(n, k, d) Code family key size Security Attack

(256, 128, 129) Gen. Reed-Solomon 67ko 295 [SS92]

subcodes of GRS [Wie10]
(1024, 176, 128) Reed-Muller codes 22.5ko 272 [MS07, CB13]
(2048, 232, 256) Reed-Muller codes 59.4ko 293 [MS07, CB13]
(171, 109, 61)128 Alg.-Geom. codes 16ko 266 [FM08, CMP14]
(1024, 524, 101)2 Goppa codes 67kB 262

(2048, 1608, 48)2 Goppa codes 412kB 296

(6960, 5413, 239)2 Goppa codes 8MB 2128

Parameters for Mc Eliece in practice

(n, k, d) Code family key size Security Attack

(256, 128, 129) Gen. Reed-Solomon 67ko 295 [SS92]
subcodes of GRS [Wie10]

(1024, 176, 128) Reed-Muller codes 22.5ko 272 [MS07, CB13]
(2048, 232, 256) Reed-Muller codes 59.4ko 293 [MS07, CB13]
(171, 109, 61)128 Alg.-Geom. codes 16ko 266 [FM08, CMP14]
(1024, 524, 101)2 Goppa codes 67kB 262

(2048, 1608, 48)2 Goppa codes 412kB 296

(6960, 5413, 239)2 Goppa codes 8MB 2128

Parameters for Mc Eliece in practice

(n, k, d) Code family key size Security Attack

(256, 128, 129) Gen. Reed-Solomon 67ko 295 [SS92]
subcodes of GRS [Wie10]

(1024, 176, 128) Reed-Muller codes 22.5ko 272 [MS07, CB13]
(2048, 232, 256) Reed-Muller codes 59.4ko 293 [MS07, CB13]

(171, 109, 61)128 Alg.-Geom. codes 16ko 266 [FM08, CMP14]
(1024, 524, 101)2 Goppa codes 67kB 262

(2048, 1608, 48)2 Goppa codes 412kB 296

(6960, 5413, 239)2 Goppa codes 8MB 2128

Parameters for Mc Eliece in practice

(n, k, d) Code family key size Security Attack

(256, 128, 129) Gen. Reed-Solomon 67ko 295 [SS92]
subcodes of GRS [Wie10]

(1024, 176, 128) Reed-Muller codes 22.5ko 272 [MS07, CB13]
(2048, 232, 256) Reed-Muller codes 59.4ko 293 [MS07, CB13]
(171, 109, 61)128 Alg.-Geom. codes 16ko 266 [FM08, CMP14]

(1024, 524, 101)2 Goppa codes 67kB 262

(2048, 1608, 48)2 Goppa codes 412kB 296

(6960, 5413, 239)2 Goppa codes 8MB 2128

Parameters for Mc Eliece in practice

(n, k, d) Code family key size Security Attack

(256, 128, 129) Gen. Reed-Solomon 67ko 295 [SS92]
subcodes of GRS [Wie10]

(1024, 176, 128) Reed-Muller codes 22.5ko 272 [MS07, CB13]
(2048, 232, 256) Reed-Muller codes 59.4ko 293 [MS07, CB13]
(171, 109, 61)128 Alg.-Geom. codes 16ko 266 [FM08, CMP14]
(1024, 524, 101)2 Goppa codes 67kB 262

(2048, 1608, 48)2 Goppa codes 412kB 296

(6960, 5413, 239)2 Goppa codes 8MB 2128

Advantages of McEliece cryptosystem

Security

Based on two assumptions:
▶ decoding a random linear code is hard (NP complete reduction)
▶ the generator matrix of a Goppa code looks random

(indistinguishability)

Pros:
▶ faster encoding/decoding algorithms than RSA, ECC (for a given

security parameter)
▶ Post quantum security: still robust against quantum computer

attacks
Cons:
▶ harder to use for signature (non determinstic encoding)
▶ large key size

	Motivation
	Coding Theory
	Introduction
	Linear Codes
	Reed-Solomon codes

	McEliece cryptosystem

