Code based cryptography Cryptographic Engineering

Clément PERNET

M2 Cyber Security, UFR-IM²AG, Univ. Grenoble-Alpes ENSIMAG, Grenoble INP

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Outline

Motivation

Coding Theory Introduction Linear Codes Reed-Solomon codes

McEliece cryptosystem

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Motivation: Post-Quantum Cryptography

Problem (Order finding problem)

Given $a \in \mathbb{Z}_{>0}$ coprime with $N \in \mathbb{Z}_{>0}$ find the smallest $r \in \mathbb{Z}_{>0}$ s.t.

 $a^r = 1 \mod N.$

Theorem (Shor's algorithm)

The Order finding problem can be solved by a quantum computer in time $O(\log^2 N \log \log N)$.

Factorization with a quantum computer

Corollary

Integer factorization can be solved by a quantum computer in time $O(\log^2 N \log \log N)$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Factorization with a quantum computer

Corollary

Integer factorization can be solved by a quantum computer in time $O(\log^2 N \log \log N)$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Sketch of proof.

- 1. Do
- 2. Sample a random *a*
- **3**. $r \leftarrow \operatorname{Order}(a, N)$

4. While
$$(\text{GCD}(a^{r/2} - 1, N) = 1)$$

If *r* is even then $N|(a^{r/2}-1)(a^{r/2}+1)$. But $N \nmid (a^{r/2}-1)$.

Factorization with a quantum computer

Corollary

Integer factorization can be solved by a quantum computer in time $O(\log^2 N \log \log N)$.

Sketch of proof.

- 1. Do
- 2. Sample a random *a*
- **3**. $r \leftarrow \operatorname{Order}(a, N)$
- 4. While $(\text{GCD}(a^{r/2} 1, N) = 1)$
- If *r* is even then $N|(a^{r/2}-1)(a^{r/2}+1)$. But $N \nmid (a^{r/2}-1)$.
 - ▶ Either $N|a^{r/2} + 1$ (with prob < 1/2) ⇒restart with another *a*
 - Or the $GCD(n, a^{r/2} 1)$ reveals a factor of *n*.

Corollary

The Discrete logarithm problem can be solved by a quantum computer in time $O(\log^2 N \log \log N)$.

Corollary

The Discrete logarithm problem can be solved by a quantum computer in time $O(\log^2 N \log \log N)$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Sketch of proof.

 $\begin{array}{rl} \text{Find } x \text{ such that } g^x = y \text{ in } G \text{ of order } p. \text{ Let} \\ f: & \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z} & \to & G \\ & (a,b) & \mapsto & g^a y^{-b} \end{array}, \text{ a group isomorphism.} \end{array}$

Corollary

The Discrete logarithm problem can be solved by a quantum computer in time $O(\log^2 N \log \log N)$.

Sketch of proof.

 $\begin{array}{ll} \mbox{Find } x \mbox{ such that } g^x = y \mbox{ in } G \mbox{ of order } p. \mbox{ Let } \\ f: & \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z} \ \rightarrow \ G \\ & (a,b) \ \mapsto \ g^a y^{-b} \ , \mbox{ a group isomorphism.} \end{array}$ $\begin{array}{l} \mbox{Note: } f^{-1}(1) = \mathbb{Z}/p\mathbb{Z} \times (x,1). \\ \mbox{Find } (r_1,r_2) \mbox{ s.t. } f((r_1,r_2) \times (a,b)) = 1. \end{array}$

Corollary

The Discrete logarithm problem can be solved by a quantum computer in time $O(\log^2 N \log \log N)$.

Sketch of proof.

 $\begin{array}{ll} \mbox{Find x such that $g^x = y$ in G of order p. Let} \\ f: \ensuremath{\mathbb{Z}}/p\mathbb{Z}\times\mathbb{Z}/p\mathbb{Z} \to \ensuremath{\mathbb{G}} \\ (a,b) &\mapsto \ensuremath{\mathbb{G}}^a y^{-b} \ensuremath{\text{, a group isomorphism.}} \\ \mbox{Note: $f^{-1}(1) = \ensuremath{\mathbb{Z}}/p\mathbb{Z}\times(x,1)$.} \\ \mbox{Find (r_1,r_2) s.t. $f((r_1,r_2)\times(a,b)) = 1$.} \\ \mbox{Hence $g^{ar_1}y^{-r_2b} = g^{ar_1-xbr_2} = 1$.} \end{array}$

Corollary

The Discrete logarithm problem can be solved by a quantum computer in time $O(\log^2 N \log \log N)$.

Sketch of proof.

 $\begin{array}{ll} \mbox{Find } x \mbox{ such that } g^x = y \mbox{ in } G \mbox{ of order } p. \mbox{ Let } \\ f: & \mathbb{Z}/p\mathbb{Z}\times\mathbb{Z}/p\mathbb{Z} \ \rightarrow \ G \\ & (a,b) \ \mapsto \ g^a y^{-b} \ , \mbox{ a group isomorphism.} \end{array}$ $\begin{array}{ll} \mbox{Note: } f^{-1}(1) = \mathbb{Z}/p\mathbb{Z}\times(x,1). \\ \mbox{Find } (r_1,r_2) \mbox{ s.t. } f((r_1,r_2)\times(a,b)) = 1. \\ \mbox{Hence } g^{ar_1}y^{-r_2b} = g^{ar_1-xbr_2} = 1. \\ \mbox{ \Rightarrow recover } x \mbox{ from } a,b,r_1,r_2. \end{array}$

Conclusion:

A quantum computer can break all of classical asymmetric crypto (whenever it is capable of dealing with such instances)

Conclusion:

A quantum computer can break all of classical asymmetric crypto (whenever it is capable of dealing with such instances)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Still not quite there yet:

- Number of qu-bits available
- Handling noise

Conclusion:

A quantum computer can break all of classical asymmetric crypto (whenever it is capable of dealing with such instances)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Still not quite there yet:

- Number of qu-bits available
- Handling noise

But still a threat:

- Fast progresses, huge efforts
- Harvest now, decrypt later already happening
 paradigm of Perfect Forward Secrecy

Building new schemes based on other computational hardness assumptions

- 2016: NIST starts a standardization process calling for proposals for asymetric primitives: signatures and encryption schemes.
- 2020: 7 finalists of the 1st round + 8 alternative candidates

(ロ) (同) (三) (三) (三) (○) (○)

- 2024: Expected publication of standard
- 2030: Expected Q-day

Building new schemes based on other computational hardness assumptions

- 2016: NIST starts a standardization process calling for proposals for asymetric primitives: signatures and encryption schemes.
- 2020: 7 finalists of the 1st round + 8 alternative candidates
- 2024: Expected publication of standard
- 2030: Expected Q-day

Main fields

Lattices: *Kyber* (Module learning-with errors), ... Coding theory: *McEliece* (Goppa codes) Multivariate systems: *Oil and Vinegar* But also Isogenies: *CSIDH*, but no longer *SIDH* Hash: *SPHINX*

Building new schemes based on other computational hardness assumptions

- 2016: NIST starts a standardization process calling for proposals for asymetric primitives: signatures and encryption schemes.
- 2020: 7 finalists of the 1st round + 8 alternative candidates
- 2024: Expected publication of standard
- 2030: Expected Q-day

Main fields

Lattices: *Kyber* (Module learning-with errors), ... Coding theory: *McEliece* (Goppa codes) Multivariate systems: *Oil and Vinegar* But also Isogenies: *CSIDH*, but no longer *SIDH* Hash: *SPHINX*

Outline

Motivation

Coding Theory

Introduction Linear Codes Reed-Solomon codes

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

McEliece cryptosystem

Outline

Motivation

Coding Theory Introduction

Linear Codes Reed-Solomon codes

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

McEliece cryptosystem

Errors everywhere

Communication channel

- Radio transmission
- Ethernet, DSL
- CD/DVD Audio/Video/ROM
- RAM
- HDD

electromagnetic interferences electromagnetic interferences scratches, dust cosmic radiations magnetic field, crash

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Communication channel

- Radio transmission
- ► Ethernet, DSL
- CD/DVD Audio/Video/ROM
- RAM
- HDD

electromagnetic interferences electromagnetic interferences scratches, dust cosmic radiations magnetic field, crash

Communication channel

- Radio transmission
- ► Ethernet, DSL
- CD/DVD Audio/Video/ROM
- RAM
- HDD

electromagnetic interferences electromagnetic interferences scratches, dust cosmic radiations magnetic field, crash

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Communication channel

- Radio transmission
- Ethernet, DSL
- CD/DVD Audio/Video/ROM
- RAM
- HDD

electromagnetic interferences electromagnetic interferences scratches, dust cosmic radiations magnetic field, crash

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Goals:

Detect: require retransmission

(integrity certificate)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Correct: i.e. when no interraction possible

Tool: Adding redundancy

Goals:

Detect: require retransmission (integr

(integrity certificate)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Correct: i.e. when no interraction possible

Tool: Adding redundancy

Example (NATO phonetic alphabet)

 $\label{eq:A} A \to Alfa, \, B \to Bravo, \, C \to Charlie, \, D \to Delta \dots$ Alpha Bravo India Tango Tango Echo Delta India Oscar Uniform Sierra !

Goals:

Detect: require retransmission Correct: i.e. when no interraction possible

Tool: Adding redundancy

Example (NATO phonetic alphabet)

 $\label{eq:A} A \to Alfa, \, B \to Bravo, \, C \to Charlie, \, D \to Delta \dots$ Alpha Bravo India Tango Tango Echo Delta India Oscar Uniform Sierra !

Two categories of codes:

stream codes: online processing of the stream of information block codes: cutting information in blocks and applying the same treatment to each block

(integrity certificate)

Goals:

Detect: require retransmission Correct: i.e. when no interraction possible (integrity certificate)

(ロ) (同) (三) (三) (三) (○) (○)

Tool: Adding redundancy

Example (NATO phonetic alphabet)

 $\label{eq:alpha} \begin{array}{l} A \to Alfa, \, B \to Bravo, \, C \to Charlie, \, D \to Delta \ \ldots \\ \\ Alpha \, Bravo \, India \, Tango \, Tango \, Echo \, Delta \, India \, Oscar \, Uniform \, Sierra \, ! \end{array}$

Two categories of codes:

stream codes: online processing of the stream of information block codes: cutting information in blocks and applying the same treatment to each block

Generalities and terminology

- A code is a sub-set $C \subset E$ of a set of possible words.
- Often, \mathcal{E} is built from an alphabet Σ : $\mathcal{E} = \Sigma^n$.
- Encoding function: $E : S \to \mathcal{E}$ such that $E(S) = \mathcal{C}$.
- A code is
 - t-detector, if any set error on t symbols can be detected
 - t-corrector, if any set error on t symbols can be corrected

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Parity check

$$E: (x_1, x_2, x_3) \to (x_1, x_2, x_3, s)$$
with

$$s = \sum_{i=1}^3 x_i \mod 2 \implies \sum_{i=1}^3 x_i + s = 0 \mod 2$$

Parity check

 $\begin{array}{l} E: (x_1, x_2, x_3) \to (x_1, x_2, x_3, s) \to (x_1, x_2, x_3, s) \to \text{ Error detected with } \\ s = \sum_{i=1}^3 x_i \mod 2 \quad \Longrightarrow \\ \sum_{i=1}^3 x_i + s = 0 \mod 2 \end{array}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Parity check

 $\begin{array}{l} E: (x_1, x_2, x_3) \to (x_1, x_2, x_3, s) \to (x_1, x_2, x_3, s) \to \text{ Error detected with } \\ s = \sum_{i=1}^3 x_i \mod 2 \quad \Longrightarrow \\ \sum_{i=1}^3 x_i + s = 0 \mod 2 \end{array}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Repetition code

Parity check

 $\begin{array}{l} E: (x_1, x_2, x_3) \to (x_1, x_2, x_3, s) \to (x_1, x_2, x_3, s) \to \text{ Error detected with } \\ s = \sum_{i=1}^3 x_i \mod 2 \quad \Longrightarrow \\ \sum_{i=1}^3 x_i + s = 0 \mod 2 \end{array}$

(日) (日) (日) (日) (日) (日) (日)

Repetition code

- "Say that again?"
- $\blacktriangleright \ \ \text{``a"} \rightarrow \text{``aaa"} \rightarrow \text{``aaa"} \rightarrow \text{``aaa"} \rightarrow \text{``a"}$

Parity check

 $\begin{array}{l} E: (x_1, x_2, x_3) \to (x_1, x_2, x_3, s) \to (x_1, x_2, x_3, s) \to \text{ Error detected with } \\ s = \sum_{i=1}^3 x_i \mod 2 \quad \Longrightarrow \\ \sum_{i=1}^3 x_i + s = 0 \mod 2 \end{array}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Repetition code

Outline

Motivation

Coding Theory Introduction Linear Codes Reed-Solomon codes

McEliece cryptosystem

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Linear Codes

Linear Codes

Let $\mathcal{E} = V^n$ over a finite field V. A linear code \mathcal{C} is a subspace of \mathcal{E} .

- ▶ length: *n*
- dimension: $k = \dim(\mathcal{C})$
- Rate (of information): k/n

Encoding function: $E: V^k \longrightarrow V^n$ s.t. $\mathcal{C} = \mathsf{Im}(E) \subset \mathcal{V}^n$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@
Linear Codes

Linear Codes

Let $\mathcal{E} = V^n$ over a finite field V. A linear code \mathcal{C} is a subspace of \mathcal{E} .

- ▶ length: *n*
- dimension: $k = \dim(\mathcal{C})$
- Rate (of information): k/n

Encoding function: $E: V^k \longrightarrow V^n$ s.t. $\mathcal{C} = \mathsf{Im}(E) \subset \mathcal{V}^n$

Example

- Parity code: k = n 1
- *r*-repetition code: k = r/r = 1

1-detector

r-1-detector,

 $\lfloor \frac{r-1}{2} \rfloor$ -corrector

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• Hamming weight: $w_H(x) = |\{i, x_i \neq 0\}|$.

• Hamming weight: $w_H(x) = |\{i, x_i \neq 0\}|$.

► Hamming distance: $d_H(x, y) = w_H(x - y) = |\{i, x_i \neq y_i\}|$

- Hamming weight: $w_H(x) = |\{i, x_i \neq 0\}|$.
- ► Hamming distance: $d_H(x, y) = w_H(x y) = |\{i, x_i \neq y_i\}|$
- Minimum distance of a code δ = min_{x,y∈C} d_H(x, y) In a linear code: δ = min_{x∈C \{0}} w_H(x))

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

- Hamming weight: $w_H(x) = |\{i, x_i \neq 0\}|$.
- ► Hamming distance: $d_H(x, y) = w_H(x y) = |\{i, x_i \neq y_i\}|$
- Minimum distance of a code δ = min_{x,y∈C} d_H(x, y) In a linear code: δ = min_{x∈C \{0}} w_H(x))

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

C is *t*-corrector if

$$\forall x \in \mathcal{E} | \{ c \in \mathcal{C}, d_H(x, c) \le t \} | \le 1$$

- Hamming weight: $w_H(x) = |\{i, x_i \neq 0\}|$.
- ► Hamming distance: $d_H(x, y) = w_H(x y) = |\{i, x_i \neq y_i\}|$
- Minimum distance of a code δ = min_{x,y∈C} d_H(x, y) In a linear code: δ = min_{x∈C \{0}} w_H(x))

C is *t*-corrector if

$$\forall x \in \mathcal{E} | \{ c \in \mathcal{C}, d_H(x, c) \le t \} | \le 1$$

$$\forall c_1, c_2 \in \mathcal{C} \ c_1 \neq c_2 \Rightarrow d_H(c_1, c_2) > 2t$$

Perfect codes

Definition

A code is perfect if any detected error can be corrected.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Example

- 4-repetition is not perfect
- 3-repetition is perfect

Perfect codes

Definition

A code is perfect if any detected error can be corrected.

Example

- 4-repetition is not perfect
- 3-repetition is perfect

Property

A code is perfect if the balls of radius *t* around the codewords form a partition of the ambiant space.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Perfect codes

Definition

A code is perfect if any detected error can be corrected.

Example

- 4-repetition is not perfect
- 3-repetition is perfect

Property

A code is perfect if the balls of radius *t* around the codewords form a partition of the ambiant space.

Remark

Can be corrected into the wrong code-word. For instance $(\mathbf{b}, a, \mathbf{b}) \rightarrow (b, b, b)$

Generator matrix

The matrix G of the encoding function (depends on a choice of basis):

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

$$E: x^T \longrightarrow x^T G$$
Under systematic form: $G = \begin{bmatrix} 1 & 0 \\ & \ddots & \\ 0 & 1 \end{bmatrix} \overline{G}$

Generator matrix

The matrix G of the encoding function (depends on a choice of basis):

$$E: x^T \longrightarrow x^T G$$
• Under systematic form: $G = \begin{bmatrix} 1 & 0 \\ & \ddots & \\ 0 & 1 & \end{bmatrix}$

Parity check matrix

1. A matrix $H \in K^{(n-k) \times n}$ such that ker(H) = C:

$$c \in \mathcal{C} \Leftrightarrow Hc = 0$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

2. A basis of ker (G^T) : $HG^T = 0$

Exercise

Find G and H of the binary parity check and of the k-repetition codes.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Exercise

Find G and H of the binary parity check and of the k-repetition codes.

$$G_{par} = \begin{bmatrix} 1 & 1 \\ \ddots & \vdots \\ & 1 & 1 \end{bmatrix}, H_{par} = \begin{bmatrix} 1 & \dots & 1 \end{bmatrix}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Exercise

Find G and H of the binary parity check and of the k-repetition codes.

$$G_{par} = \begin{bmatrix} 1 & 1 \\ \ddots & \vdots \\ & 1 & 1 \end{bmatrix}, H_{par} = \begin{bmatrix} 1 & \dots & 1 \end{bmatrix}$$
$$G_{rep} = \begin{bmatrix} 1 & \dots & 1 \end{bmatrix} = H_{par}, H_{rep} = \begin{bmatrix} 1 & 1 \\ \ddots & \vdots \\ & 1 & 1 \end{bmatrix} = G_{par}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The parity check code is the **dual** of the repetition code

Exercise

Find G and H of the binary parity check and of the k-repetition codes.

$$G_{par} = \begin{bmatrix} 1 & 1 \\ \ddots & \vdots \\ & 1 & 1 \end{bmatrix}, H_{par} = \begin{bmatrix} 1 & \dots & 1 \end{bmatrix}$$
$$G_{rep} = \begin{bmatrix} 1 & \dots & 1 \end{bmatrix} = H_{par}, H_{rep} = \begin{bmatrix} 1 & & 1 \\ \ddots & & \vdots \\ & & 1 & 1 \end{bmatrix} = G_{par}$$

The parity check code is the **dual** of the repetition code

Definition

Let $\mathcal C$ be a linear code with generating matrix G and parity check matrix H.

The dual code D of C is the linear code with generating matrix H and parity check matrix G.

くロ と (目) く 目 と く 目) く つ く

Role of the parity check matrix

 $c \in \mathcal{C} \Leftrightarrow Hc = 0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Certificate for detecting errors

Syndrom:
$$s_x = Hx = H(c + e) = He$$

Role of the parity check matrix

 $c \in \mathcal{C} \Leftrightarrow Hc = 0$

- Certificate for detecting errors
- Syndrom: $s_x = Hx = H(c + e) = He$

A first correction algorithm:

- ▶ pre-compute all s_e for $w_H(e) \le t$ in a table *S*
- For *x* received. If $s_x \neq 0$, look for s_x in the table *S*
- return the corresponding codeword

$$\operatorname{Let} H = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

Parameters of the corresponding code?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Generator matrix?

Minimal distance?

Is it a perfect code?

$$\operatorname{Let} H = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

▶ Parameters of the corresponding code? (n,k) = (7,4)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

- Generator matrix?
- Minimal distance?

▶ Is it a perfect code?

 $\operatorname{Let} H = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$

▶ Parameters of the corresponding code? (n,k) = (7,4)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• Generator matrix? $G = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$

Minimal distance?

Is it a perfect code?

Let $H = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$ Parameters of the corresponding code? (n,k) = (7,4)Generator matrix? $G = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$ Minimal distance? $\delta \le 3$. If $\delta = 1, \exists i, H_i = 0$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• If
$$\delta = 2$$
, $\exists i \neq j, H_i = H_j \Rightarrow \delta = 3$

Is it a perfect code?

Let $H = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$ Parameters of the corresponding code? (n,k) = (7,4)• Generator matrix? $G = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$ • Minimal distance? $\delta \leq 3$. \blacktriangleright If $\delta = 1, \exists i, H_i = 0$ $\blacktriangleright \text{ If } \delta = 2, \exists i \neq j, H_i = H_i \Rightarrow \delta = 3$ ▶ Is it a perfect code? $\delta = 3 \Rightarrow t = 1$ corrector. $|\mathcal{C}| = 2^k \Rightarrow \#$ of elements in each ball of radius 1:

 $2^{k}(1+7) = 16 \cdot 8 = 2^{7} = |K^{n}| \Rightarrow$ perfect

(日) (日) (日) (日) (日) (日) (日)

Let $H = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$ Parameters of the corresponding code? (n,k) = (7,4)• Generator matrix? $G = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$ • Minimal distance? $\delta < 3$. \blacktriangleright If $\delta = 1, \exists i, H_i = 0$ $\blacktriangleright \text{ If } \delta = 2, \exists i \neq j, H_i = H_i \implies \delta = 3$ ▶ Is it a perfect code? $\delta = 3 \Rightarrow t = 1$ corrector. $|\mathcal{C}| = 2^k \Rightarrow \#$ of elements in each ball of radius 1: $2^{k}(1+7) = 16 \cdot 8 = 2^{7} = |K^{n}| \Rightarrow$ perfect

Generalization

 $\forall \ell: H(2^{\ell} - 1, 2^{\ell} - \ell)$, is 1-corrector, perfect. Example: Minitel, ECC memory: $\ell = 7$

Let C be a code (n, k, δ) over a field \mathbb{F}_q with q elements. k and δ can not be simulatneously large for a given n. Sphere packing:

$$q^k \sum_{i=0}^t {n \choose i} (q-1)^i \le q^n$$
, with $t = \lfloor \frac{\delta - 1}{2} \rfloor$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Let C be a code (n, k, δ) over a field \mathbb{F}_q with q elements. k and δ can not be simulatneously large for a given n. Sphere packing:

$$q^k \sum_{i=0}^t \binom{n}{i} (q-1)^i \le q^n$$
, with $t = \lfloor \frac{\delta - 1}{2} \rfloor$.

Singleton bound:

 $\delta \leq n-k+1$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let C be a code (n, k, δ) over a field \mathbb{F}_q with q elements. k and δ can not be simulatneously large for a given n. Sphere packing:

$$q^k \sum_{i=0}^t \binom{n}{i} (q-1)^i \le q^n$$
, with $t = \lfloor \frac{\delta - 1}{2} \rfloor$.

Singleton bound:

$$\delta \leq n-k+1$$

Sketch of proof:

- Let *H* be the parity check matrix $(n k) \times n$.
- δ is the smallest number of linearly dependent cols of *H*.
- ▶ $n k + 1 = \operatorname{rank}(H) + 1$ cols are always linearly dependent.

Let C be a code (n, k, δ) over a field \mathbb{F}_q with q elements. k and δ can not be simulatneously large for a given n. Sphere packing:

$$q^k \sum_{i=0}^t \binom{n}{i} (q-1)^i \le q^n$$
, with $t = \lfloor \frac{\delta - 1}{2} \rfloor$.

Singleton bound:

$$\delta \leq n-k+1$$

Sketch of proof:

- Let *H* be the parity check matrix $(n k) \times n$.
- δ is the smallest number of linearly dependent cols of *H*.

▶ $n - k + 1 = \operatorname{rank}(H) + 1$ cols are always linearly dependent.

 \Rightarrow How to build codes correcting up to $\frac{n-k}{2}$.

Outline

Motivation

Coding Theory Introduction Linear Codes Reed-Solomon codes

McEliece cryptosystem

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Evaluation-interpolation codes

Theorem (Interpolation)

For all x_1, \ldots, x_k , distincts, and all y_1, \ldots, y_k , there is a unique polynomial $f = f_0 + f_1 x + \ldots + f_{k-1} x^{k-1}$ of degree < k such that :

 $f(x_j) = y_j$, for all $1 \le j \le k$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Evaluation-interpolation codes

Theorem (Interpolation)

For all x_1, \ldots, x_k , distincts, and all y_1, \ldots, y_k , there is a unique polynomial $f = f_0 + f_1 x + \ldots + f_{k-1} x^{k-1}$ of degree < k such that :

 $f(x_j) = y_j$, for all $1 \le j \le k$.

Corollary

For some fixed x_i's

- equivalent representation: $(y_1, \ldots, y_k) \Leftrightarrow (f_0, \ldots, f_{k-1})$.
- oversampling: $(y_1, \ldots, y_k, y_{k+1}, \ldots, y_n) \leftarrow (f_0, \ldots, f_{k-1})$. \Rightarrow adding redundancy

Reed-Solomon codes

Definition (Reed-Solomon codes)

Let *K* be a finite field, and $x_1, \ldots, x_n \in K$ distinct elements. The Reed-Solomon code of length *n* and dimension *k* is defined by

 $\mathcal{C}(n,k) = \{(f(x_1),\ldots,f(x_n)), f \in K[X]; \deg f < k\}$

(ロ) (同) (三) (三) (三) (○) (○)

Reed-Solomon codes

Definition (Reed-Solomon codes)

Let *K* be a finite field, and $x_1, \ldots, x_n \in K$ distinct elements. The Reed-Solomon code of length *n* and dimension *k* is defined by

$$\mathcal{C}(n,k) = \{(f(x_1),\ldots,f(x_n)), f \in K[X]; \deg f < k\}$$

Example

$$\begin{array}{ll} (n,k) = (5,3), f = x^2 + 2x + 1 \text{ over } \mathbb{Z}/19\mathbb{Z}. \\ (1,2,1,0,0) \xrightarrow{Eval} (f(1),f(5),f(8),f(10),f(12)) = (4,5,17,5,7,17) \\ (4,17,5,7,17) \xrightarrow{Interp.} (1,2,1,0,0) \\ (4,17,13,7,17) \xrightarrow{Interp.} (12,8,11,10,1) \\ \end{array} \\ \begin{array}{ll} x^4 + 10x^3 + 11x^2 + 8x + 12 \end{array}$$

Property

 $\delta = n - k + 1$ (Maximum Distance Separable codes)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Property

 $\delta = n - k + 1$ (Maximum Distance Separable codes)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Proof.

Singeton bound: $\delta \leq n - k + 1$

Property

 $\delta = n - k + 1$ (Maximum Distance Separable codes)

Proof.

Singeton bound: $\delta \le n - k + 1$ Let $f, g \in C$: deg f, deg g < k. If $f(x_i) \ne g(x_i)$ for d < n - k + 1 values x_i , Then $f(x_j) - g(x_j) = 0$ for at least n - d > k - 1 values x_j . Now deg(f - g) < k, hence f = g.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Property

 $\delta = n - k + 1$ (Maximum Distance Separable codes)

Proof.

Singeton bound: $\delta \le n - k + 1$ Let $f, g \in C$: deg f, deg g < k. If $f(x_i) \ne g(x_i)$ for d < n - k + 1 values x_i , Then $f(x_j) - g(x_j) = 0$ for at least n - d > k - 1 values x_j . Now deg(f - g) < k, hence f = g.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

 \Rightarrow correct up to $\frac{n-k}{2}$ errors.
Let P be the

interpolant $P(x_i) = y_i$ for all $1 \le i \le n$.

$$f(x_i) = P(x_i)$$

Let P be the

interpolant $P(x_i) = y_i$ for all $1 \le i \le n$. $f = P \mod \prod_{i=1}^{n} (x - x_i)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

i - 1

Let *P* be the erroneous interpolant $P(x_i) = y_i + e_i$ for all $1 \le i \le n$.

$$f = P \mod \prod_{i \mid e_i = 0} (x - x_i)$$

(ロ)、(型)、(E)、(E)、 E) のQの

Let *P* be the erroneous interpolant $P(x_i) = y_i + e_i$ for all $1 \le i \le n$.

$$\Lambda f = \Lambda P \mod \prod_{i=1}^{n} (x - x_i)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

and $\Lambda = \prod_{i \mid e_i \neq 0} (x - x_i)$

Let *P* be the erroneous interpolant $P(x_i) = y_i + e_i$ for all $1 \le i \le n$.

$$N = \Lambda P \mod \prod_{i=1}^{n} (x - x_i)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

and $\Lambda = \prod_{i|e_i \neq 0} (x - x_i)$ (Linearization)

Berlekamp-Welch decoding

Find *N* of degree < k + t and Λ of degree $\leq t$ s.t.

$$N = \Lambda P \mod \prod_{i=1}^{n} (x - x_i)$$

Linear system solving

 $N(X) = n_0 + \dots + n_{k+t-1}X^{k+t-1}$ and $\Lambda(X) = \ell_0 + \dots + \ell_{t-1}X^{t-1} + X^t$. Unknonwns: $n_0, \dots, n_{k+t-1}, \ell_0, \dots, \ell_{t-1}$ (k + 2t unknowns) Equations: each in x_i (n equations)

$$\begin{bmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{k+t-1} \\ 1 & x_2 & x_1^2 & \dots & x_1^{k+t-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{k+t-1} \end{bmatrix} \begin{bmatrix} -P(x_1) & & \\ & \ddots & \\ & & -P(x_n) \end{bmatrix} \begin{bmatrix} 1 & x_1 & \dots & x_1^t \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & \dots & x_n^t \end{bmatrix} \end{bmatrix} \begin{bmatrix} n_0 \\ \vdots \\ n_{k+t-1} \\ \ell_0 \\ \vdots \\ \ell_{t-1} \\ \ell_t \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Rational fraction reconstruction

Problem (RFR: Rational Fraction Reconstruction)

Given $A, B \in K[X]$ with $\deg B < \deg A = n$, find $f, g \in K[X]$, such that

$$\begin{cases} f &= gB \mod A \\ \deg f &\leq d_F, \\ \deg g &\leq n - d_F - 1, \end{cases}$$

Theorem

Let $(f_0 = A, f_1 = B, ..., f_\ell)$ the sequence of remainders of the extended Euclidean algorithm applied on (A, B) and u_i, v_i the coefficients s.t. $f_i = u_i f_0 + v_i f_1$. Then, at iteration j s.t. $\deg f_j \leq d_F < \deg f_{j-1}$,

- 1. (f_j, v_j) is a solution of problem RFR.
- **2**. *it is minimal: any other solution* (f, g) *writes*

$$f = qf_j, g = qv_j$$
 for $q \in K[X]$.

Reed-Solomon decoding with Extended Euclidean algorithm

Berlekamp-Welch using extended Euclidean algorithm

- Erroneous interpolant: $P = \text{Interp}((y_i, x_i))$
- Error locator polynomial: $\Lambda = \prod_{i|y_i| \text{ s erroneous}} (X x_i)$

Find *f* with deg $f \le d_F$ s.t., *f* and *P* match on $\ge n - t$ evaluations x_i .

$$\underbrace{\Lambda_{f}}_{f_{j}} = \underbrace{\Lambda}_{g_{j}} P \mod \prod_{i=1}^{n} (X - x_{i})$$

and $(\Lambda f, \Lambda)$ is minimal \Rightarrow computed by extended Euclidean Algorithm

 $f=f_j/g_j.$

(ロ) (同) (三) (三) (三) (○) (○)

Another decoding algorithm: syndrom based

From now on: $K = \mathbb{F}_q$, n = q - 1, $x_i = \alpha^i$ where α is a primitive *n*-th root of unity.

$$E(f) = (f(\alpha^0), f(\alpha^1), f(\alpha^2), \dots, f(\alpha^{n-1})) = DFT_{\alpha}(f)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Another decoding algorithm: syndrom based

From now on: $K = \mathbb{F}_q$, n = q - 1, $x_i = \alpha^i$ where α is a primitive *n*-th root of unity.

$$E(f) = (f(\alpha^0), f(\alpha^1), f(\alpha^2), \dots, f(\alpha^{n-1})) = DFT_{\alpha}(f)$$

Linear recurring sequences

Sequences $(a_0, a_1, \ldots, a_n, \ldots)$ such that

$$\forall j \ge 0 \ a_{j+t} = \sum_{i=0}^{t-1} \lambda_i a_{i+j}$$

generator polynomial: $\Lambda(z) = z^t - \sum_{i=0}^{t-1} \lambda_i z^i$ minimal polynomial: $\Lambda(z)$ of minimal degree linear complexity of $(a_i)_i$: degree *t* of the minimal polynomial Λ Computing Λ_{\min} : Berlekamp/Massey algorithm, from 2*t* consecutive elements, in $O(t^2)$

Theorem ([Blahut84], [Prony1795])

The DFT_{α} of a vector of weight *t* has linear complexity *t*.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Theorem ([Blahut84], [Prony1795])

The DFT_{α} of a vector of weight *t* has linear complexity *t*.

Skecth of proof

► Let $v = e_i$ be a 1-weight vector. Then $\mathsf{DFT}_{\alpha}(v) = \mathsf{Ev}_{(\alpha^0, \alpha^1, \dots, \alpha^n)}(X^i) = ((\alpha^0)^i, (\alpha^1)^i, \dots, (\alpha^{n-1})^i)$ is linearly generated by $\Lambda(z) = z - \alpha^i$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem ([Blahut84], [Prony1795])

The DFT_{α} of a vector of weight *t* has linear complexity *t*.

Skecth of proof

► Let $v = e_i$ be a 1-weight vector. Then $\mathsf{DFT}_{\alpha}(v) = \mathsf{Ev}_{(\alpha^0, \alpha^1, \dots, \alpha^n)}(X^i) = ((\alpha^0)^i, (\alpha^1)^i, \dots, (\alpha^{n-1})^i)$ is linearly generated by $\Lambda(z) = z - \alpha^i$.

For $v = \sum_{j=1}^{t} e_{i_j}$, the sequence $\mathsf{DFT}_{\alpha}(v)$ is generated by $\mathsf{ppcm}_j(z - \alpha^{i_j}) = \prod_{j=1}^{t} (z - \alpha^{i_j})$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Theorem ([Blahut84], [Prony1795])

The DFT_{α} of a vector of weight *t* has linear complexity *t*.

Skecth of proof

- ► Let $v = e_i$ be a 1-weight vector. Then $\mathsf{DFT}_{\alpha}(v) = \mathsf{Ev}_{(\alpha^0, \alpha^1, \dots, \alpha^n)}(X^i) = ((\alpha^0)^i, (\alpha^1)^i, \dots, (\alpha^{n-1})^i)$ is linearly generated by $\Lambda(z) = z - \alpha^i$.
- For $v = \sum_{j=1}^{t} e_{i_j}$, the sequence $\mathsf{DFT}_{\alpha}(v)$ is generated by $\mathsf{ppcm}_j(z \alpha^{i_j}) = \prod_{j=1}^{t} (z \alpha^{i_j})$

(日) (日) (日) (日) (日) (日) (日)

Corollary

The roots of Λ localize the non-zero elements of $v: \alpha^{i_j}$. \Rightarrow error locator

Syndrom Decoding of Reed-Solomon codes

$$\mathcal{C} = \{(f(x_1), \ldots, f(x_n)) | \deg f < k\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Syndrom Decoding of Reed-Solomon codes

$$\mathcal{C} = \{(f(x_1), \ldots, f(x_n)) | \deg f < k\}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Codes derived from Reed Solomon codes

Generalized Reed-Solomon codes

$$\mathcal{C}_{GRS}(n,k,\mathbf{x},\mathbf{v}) = \{(v_1f(x_1),\ldots,v_nf(x_n)), f \in K_{\leq k}[X]\}$$

- ► Same dimension and minimal distance ⇒MDS
- Existence of a dual GRS code in the same evaluation points: There is a vector w such that

$$\mathcal{C}_{GRS}(n,k,\mathbf{x},\mathbf{v})^{\perp} = \mathcal{C}_{GRS}(n,n-k,\mathbf{x},\mathbf{w})$$

i.e.

$$H_{\text{GRS}}(\mathbf{x}, \mathbf{w}) G_{\text{GRS}}(\mathbf{x}, \mathbf{v})^T = 0$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

(Proof in exercise)

Codes derived from Reed-Solomon

Alternant codes

Motivation: workaround the limitatoin of GRS codes: $n \le q$ \Rightarrow allow for arbitrary length *n* given a fixed field \mathbb{F}_q . Idea: use a GRS over an extension \mathbb{F}_{q^m} , and restrict to \mathbb{F}_q . Let

▶
$$K = \mathbb{F}_q, \overline{K} = \mathbb{F}_{q^m}$$
 and $\mathbf{x} \in \overline{K}^n, \mathbf{v} \in (\overline{K}^*)^n$
▶ $C_{\overline{K}} = C_{GRS}(n, k, \mathbf{x}, \mathbf{v})$ over \overline{K} with minimum distance $D = n - k + 1$
Then

$$\mathcal{C}_{Alt} = \mathcal{C}_{\bar{K}} \cap \mathbb{F}_q^n$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- ▶ Dimension: $\geq n (D 1)m = n (n k)m$
- Minimum distance: $\geq D$ by design

(Proof in exercise)

Codes derived from Reed Solomon codes

Goppa codes

- An instance of a broad class of Algebraic Geometric Codes (AG-codes).
- Can be viewed as an alternant code for some special multiplier vector v.

Let

▶
$$K = \mathbb{F}_q, \overline{K} = \mathbb{F}_{q^m}$$
 and $\mathbf{x} \in \overline{K}^n$
▶ $f \in \mathbb{F}_{q^m}[X], \deg f = r$ and $mr < n$
▶ $\mathbf{v} = \left(\frac{f(x_i)}{\prod_{j \neq i}(x_j - x_i)}\right)$
▶ $C_{\overline{K}} = C_{GRS}(n, n - r, \mathbf{x}, \mathbf{v})$ over \overline{K} with parameters $(n, n - r, r + 1)$
Then

$$\mathcal{C}_{Goppa} = \mathcal{C}_{\bar{K}} \cap \mathbb{F}_q^n$$

- ▶ Dimension: $\geq n rm$
- Minimum distance: $\geq r+1$
- ► Case $q = 2^e$ (binary Goppa code), with f square free ⇒Minimum distance: = 2r + 1

Outline

Motivation

Coding Theory Introduction Linear Codes Reed-Solomon codes

McEliece cryptosystem

- ◆ ロ ▶ ◆ 昼 ▶ ◆ 星 ▶ ● 星 - • • ○ • • •

A code based cryptosystem [Mc Eliece 78]

Designing a one way function with trapdoor

Use the encoder of a linear code:

message \times [G] + rand. error = codeword

Encryption: is easy (matrix-vector product) Decryption: decoding a received word

- easy for known codes
- NP-complete for random linear codes

(ロ) (同) (三) (三) (三) (○) (○)

Trapdoor: efficient decoding when the code familiy is known

A code based cryptosystem [Mc Eliece 78]

Designing a one way function with trapdoor

Use the encoder of a linear code:

message \times [G] + rand. error = codeword

Encryption: is easy (matrix-vector product) Decryption: decoding a received word

- easy for known codes
- NP-complete for random linear codes

Trapdoor: efficient decoding when the code familiy is known

 \Rightarrow requires a family \mathcal{F} of codes

- indistinguishable from random linear codes
- with fast decoding algorithm

Mc Eliece Cryptosystem

KeyGen

Select an (n, k) binary linear code C ∈ F correcting t errors, having an efficient decoding algorithm A_C,

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Form $G \in \mathbb{F}_q^{k \times n}$, a generator matrix for \mathcal{C}
- Sample uniformly a $k \times k$ non-singular matrix S
- Select uniformly an *n*-dimensional permutation *P*.

$$\blacktriangleright \hat{G} = SGP$$

Public key: (\hat{G}, t)

Private key: (S, G, P)

Mc Eliece Cryptosystem

Encrypt

$$E(\mathbf{m}) = \mathbf{m}\hat{G} + \mathbf{e} = \mathbf{m}SGP + \mathbf{e} = \mathbf{y}$$

where e is an error vector of Hamming weight at most t.

Decrypt 1. $\mathbf{y}' = \mathbf{y}P^{-1}$ $= \mathbf{m}SG + \mathbf{e}P^{-1}$ 2. $\mathbf{m}' = \mathcal{A}_{\mathcal{C}}(\mathbf{y}')$ $= \mathbf{m}S$ 3. $\mathbf{m} = \mathbf{m}'S^{-1}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

(n,k,d)	Code family	key size	Security	Attack
(256, 128, 129)	Gen. Reed-Solomon	67ko	2 ⁹⁵	[SS92]

(n, k, d)	Code family	key size	Security	Attack
(256, 128, 129)	Gen. Reed-Solomon subcodes of GRS	67ko	2 ⁹⁵	[SS92] [Wie10]

(n,k,d)	Code family	key size	Security	Attack
(256, 128, 129)	Gen. Reed-Solomon subcodes of GRS	67ko	2 ⁹⁵	[SS92] [Wie10]
(1024, 176, 128) (2048, 232, 256)	Reed-Muller codes Reed-Muller codes	22.5ko 59.4ko	2^{72} 2^{93}	[MS07, CB13] [MS07, CB13]

(n,k,d)	Code family	key size	Security	Attack
(256, 128, 129)	Gen. Reed-Solomon subcodes of GRS	67ko	2 ⁹⁵	[SS92] [Wie10]
(1024, 176, 128)	Reed-Muller codes	22.5ko	2^{72}	[MS07, CB13]
(2048, 232, 256)	Reed-Muller codes	59.4ko	2 ⁹³	[MS07, CB13]
$(171, 109, 61)_{128}$	AlgGeom. codes	16ko	2^{66}	[FM08, CMP14]

(n,k,d)	Code family	key size	Security	Attack
(256, 128, 129)	Gen. Reed-Solomon subcodes of GRS	67ko	2 ⁹⁵	[SS92] [Wie10]
(1024, 176, 128)	Reed-Muller codes	22.5ko	2^{72}	[MS07, CB13]
(2048, 232, 256)	Reed-Muller codes	59.4ko	2 ⁹³	[MS07, CB13]
$(171, 109, 61)_{128}$	AlgGeom. codes	16ko	2^{66}	[FM08, CMP14]
$(1024, 524, 101)_2$	Goppa codes	67kB	2^{62}	
$(2048, 1608, 48)_2$	Goppa codes	412kB	2^{96}	
$(6960, 5413, 239)_2$	Goppa codes	8MB	2^{128}	

Advantages of McEliece cryptosystem

Security

Based on two assumptions:

- decoding a random linear code is hard (NP complete reduction)
- the generator matrix of a Goppa code looks random (indistinguishability)

Pros:

 faster encoding/decoding algorithms than RSA, ECC (for a given security parameter)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 Post quantum security: still robust against quantum computer attacks

Cons:

- harder to use for signature (non determinstic encoding)
- large key size