Code based cryptography

Cryptographic Engineering

Clément Pernet

M2 Cyber Security,
UFR-IM ${ }^{2}$ AG, Univ. Grenoble-Alpes
ENSIMAG, Grenoble INP

Outline

Motivation

Coding Theory
Introduction
Linear Codes
Reed-Solomon codes

McEliece cryptosystem

Motivation: Post-Quantum Cryptography

Problem (Order finding problem)

Given $a \in \mathbb{Z}_{>0}$ coprime with $N \in \mathbb{Z}_{>0}$ find the smallest $r \in \mathbb{Z}_{>0}$ s.t.

$$
a^{r}=1 \quad \bmod N .
$$

Theorem (Shor's algorithm)

The Order finding problem can be solved by a quantum computer in time $O\left(\log ^{2} N \log \log N\right)$.

Factorization with a quantum computer

Corollary

Integer factorization can be solved by a quantum computer in time $O\left(\log ^{2} N \log \log N\right)$.

Factorization with a quantum computer

Corollary

Integer factorization can be solved by a quantum computer in time $O\left(\log ^{2} N \log \log N\right)$.

Sketch of proof.

1. Do
2. Sample a random a
3. $r \leftarrow \operatorname{Order}(a, N)$
4. While $\left(\operatorname{GCD}\left(a^{r / 2}-1, N\right)=1\right)$

If r is even then $N \mid\left(a^{r / 2}-1\right)\left(a^{r / 2}+1\right)$. But $N \nmid\left(a^{r / 2}-1\right)$.

Factorization with a quantum computer

Corollary

Integer factorization can be solved by a quantum computer in time $O\left(\log ^{2} N \log \log N\right)$.

Sketch of proof.

1. Do
2. Sample a random a
3. $r \leftarrow \operatorname{Order}(a, N)$
4. While $\left(\operatorname{GCD}\left(a^{r / 2}-1, N\right)=1\right)$

If r is even then $N \mid\left(a^{r / 2}-1\right)\left(a^{r / 2}+1\right)$. But $N \nmid\left(a^{r / 2}-1\right)$.

- Either $N \mid a^{r / 2}+1$ (with prob $<1 / 2$) \Rightarrow restart with another a
- Or the $\operatorname{GCD}\left(n, a^{r / 2}-1\right)$ reveals a factor of n.

Discrete Logarithm with a quantum computer

Corollary

The Discrete logarithm problem can be solved by a quantum computer in time $O\left(\log ^{2} N \log \log N\right)$.

Discrete Logarithm with a quantum computer

Corollary

The Discrete logarithm problem can be solved by a quantum computer in time $O\left(\log ^{2} N \log \log N\right)$.

Sketch of proof.

Find x such that $g^{x}=y$ in G of order p. Let
$\begin{array}{cl}f: \mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z} & \rightarrow \quad G \\ (a, b) & \mapsto \\ g^{a} y^{-b}\end{array}$, a group isomorphism.

Discrete Logarithm with a quantum computer

Corollary

The Discrete logarithm problem can be solved by a quantum computer in time $O\left(\log ^{2} N \log \log N\right)$.

Sketch of proof.

Find x such that $g^{x}=y$ in G of order p. Let
$\begin{array}{cl}f: \mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z} & \rightarrow \quad G \\ (a, b) & \mapsto g^{a} y^{-b}\end{array}$, a group isomorphism.
Note: $f^{-1}(1)=\mathbb{Z} / p \mathbb{Z} \times(x, 1)$.
Find $\left(r_{1}, r_{2}\right)$ s.t. $f\left(\left(r_{1}, r_{2}\right) \times(a, b)\right)=1$.

Discrete Logarithm with a quantum computer

Corollary

The Discrete logarithm problem can be solved by a quantum computer in time $O\left(\log ^{2} N \log \log N\right)$.

Sketch of proof.

Find x such that $g^{x}=y$ in G of order p. Let
$\begin{array}{cl}f: \mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z} & \rightarrow \quad G \\ (a, b) & \mapsto g^{a} y^{-b}\end{array}$, a group isomorphism.
Note: $f^{-1}(1)=\mathbb{Z} / p \mathbb{Z} \times(x, 1)$.
Find $\left(r_{1}, r_{2}\right)$ s.t. $f\left(\left(r_{1}, r_{2}\right) \times(a, b)\right)=1$.
Hence $g^{a r_{1}} y^{-r_{2} b}=g^{a r_{1}-x b r_{2}}=1$.

Discrete Logarithm with a quantum computer

Corollary

The Discrete logarithm problem can be solved by a quantum computer in time $O\left(\log ^{2} N \log \log N\right)$.

Sketch of proof.

Find x such that $g^{x}=y$ in G of order p. Let

Note: $f^{-1}(1)=\mathbb{Z} / p \mathbb{Z} \times(x, 1)$.
Find $\left(r_{1}, r_{2}\right)$ s.t. $f\left(\left(r_{1}, r_{2}\right) \times(a, b)\right)=1$.
Hence $g^{a r_{1}} y^{-r_{2} b}=g^{a r_{1}-x b r_{2}}=1$.
\Rightarrow recover x from a, b, r_{1}, r_{2}.

Post-quantum cryptography

Conclusion:

A quantum computer can break all of classical asymmetric crypto (whenever it is capable of dealing with such instances)

Post-quantum cryptography

Conclusion:

A quantum computer can break all of classical asymmetric crypto (whenever it is capable of dealing with such instances)

Still not quite there yet:

- Number of qu-bits available
- Handling noise

Post-quantum cryptography

Conclusion:

A quantum computer can break all of classical asymmetric crypto (whenever it is capable of dealing with such instances)

Still not quite there yet:

- Number of qu-bits available
- Handling noise

But still a threat:

- Fast progresses, huge efforts
- Harvest now, decrypt later already happening
\Rightarrow paradigm of Perfect Forward Secrecy

Post-quantum cryptography

Building new schemes based on other computational hardness assumptions

2016: NIST starts a standardization process calling for proposals for asymetric primitives: signatures and encryption schemes.
2020: 7 finalists of the 1st round +8 alternative candidates
2024: Expected publication of standard
2030: Expected Q-day

Post-quantum cryptography

Building new schemes based on other computational hardness assumptions

2016: NIST starts a standardization process calling for proposals for asymetric primitives: signatures and encryption schemes.
2020: 7 finalists of the 1st round +8 alternative candidates
2024: Expected publication of standard
2030: Expected Q-day

Main fields

Lattices: Kyber (Module learning-with errors), ...
Coding theory: McEliece (Goppa codes)
Multivariate systems: Oil and Vinegar
But also
Isogenies: CSIDH, but no longer SIDH
Hash: SPHINX

Post-quantum cryptography

Building new schemes based on other computational hardness assumptions

2016: NIST starts a standardization process calling for proposals for asymetric primitives: signatures and encryption schemes.
2020: 7 finalists of the 1st round +8 alternative candidates
2024: Expected publication of standard
2030: Expected Q-day

Main fields

Lattices: Kyber (Module learning-with errors), ...
Coding theory: McEliece (Goppa codes)
Multivariate systems: Oil and Vinegar
But also
Isogenies: CSIDH, but no longer SIDH
Hash: SPHINX

Outline

Motivation

Coding Theory
Introduction
Linear Codes
Reed-Solomon codes

McEliece cryptosystem

Outline

Motivation

Coding Theory
Introduction
Linear Codes
Reed-Solomon codes

McEliece cryptosystem

Errors everywhere

Error models

Communication channel

- Radio transmission
- Ethernet, DSL
- CD/DVD Audio/Video/ROM
- RAM
- HDD
electromagnetic interferences
electromagnetic interferences scratches, dust cosmic radiations magnetic field, crash

Error models

Communication channel

- Radio transmission
- Ethernet, DSL
- CD/DVD Audio/Video/ROM
- RAM
- HDD
electromagnetic interferences
electromagnetic interferences scratches, dust cosmic radiations magnetic field, crash

Error models

Communication channel

- Radio transmission
- Ethernet, DSL
- CD/DVD Audio/Video/ROM
- RAM
- HDD
electromagnetic interferences
electromagnetic interferences scratches, dust cosmic radiations magnetic field, crash

Error models

Communication channel

- Radio transmission
electromagnetic interferences
- Ethernet, DSL
electromagnetic interferences scratches, dust
- CD/DVD Audio/Video/ROM
- RAM
- HDD cosmic radiations magnetic field, crash

Generalities on coding theory

Goals:
Detect: require retransmission
(integrity certificate)
Correct: i.e. when no interraction possible
Tool: Adding redundancy

Generalities on coding theory

Goals:
Detect: require retransmission
(integrity certificate)
Correct: i.e. when no interraction possible
Tool: Adding redundancy

Example (NATO phonetic alphabet)

A \rightarrow Alfa, B \rightarrow Bravo, C \rightarrow Charlie, D \rightarrow Delta \ldots
Alpha Bravo India Tango Tango Echo Delta India Oscar Uniform Sierra !

Generalities on coding theory

Goals:
Detect: require retransmission
(integrity certificate)
Correct: i.e. when no interraction possible
Tool: Adding redundancy

Example (NATO phonetic alphabet)

A \rightarrow Alfa, B \rightarrow Bravo, C \rightarrow Charlie, D \rightarrow Delta \ldots
Alpha Bravo India Tango Tango Echo Delta India Oscar Uniform Sierra !
Two categories of codes:
stream codes: online processing of the stream of information
block codes: cutting information in blocks and applying the same treatment to each block

Generalities on coding theory

Goals:
Detect: require retransmission
(integrity certificate)
Correct: i.e. when no interraction possible
Tool: Adding redundancy

Example (NATO phonetic alphabet)

A \rightarrow Alfa, B \rightarrow Bravo, C \rightarrow Charlie, D \rightarrow Delta \ldots
Alpha Bravo India Tango Tango Echo Delta India Oscar Uniform Sierra !
Two categories of codes:
stream codes: online processing of the stream of information
block codes: cutting information in blocks and applying the same treatment to each block

Generalities and terminology

- A code is a sub-set $\mathcal{C} \subset \mathcal{E}$ of a set of possible words.
- Often, \mathcal{E} is built from an alphabet $\Sigma: \mathcal{E}=\Sigma^{n}$.
- Encoding function: $E: \mathcal{S} \rightarrow \mathcal{E}$ such that $E(\mathcal{S})=\mathcal{C}$.
- A code is
- t-detector, if any set error on t symbols can be detected
- t-corrector, if any set error on t symbols can be corrected

Examples

Parity check

$E:\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(x_{1}, x_{2}, x_{3}, s\right)$
with
$s=\sum_{i=1}^{3} x_{i} \bmod 2 \Rightarrow \sum_{i=1}^{3} x_{i}+s=0 \bmod 2$

Examples

Parity check

$E:\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(x_{1}, x_{2}, x_{3}, s\right) \rightarrow\left(x_{1}, x_{2}, x_{3}, s\right) \rightarrow$ Error detected with $s=\sum_{i=1}^{3} x_{i} \bmod 2 \Rightarrow \sum_{i=1}^{3} x_{i}+s=0 \bmod 2$

Examples

Parity check

$E:\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(x_{1}, x_{2}, x_{3}, s\right) \rightarrow\left(x_{1}, x_{2}, x_{3}, s\right) \rightarrow$ Error detected with $s=\sum_{i=1}^{3} x_{i} \bmod 2 \Rightarrow \sum_{i=1}^{3} x_{i}+s=0 \bmod 2$

Repetition code

- "Say that again?"

Examples

Parity check

$E:\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(x_{1}, x_{2}, x_{3}, s\right) \rightarrow\left(x_{1}, x_{2}, x_{3}, s\right) \rightarrow$ Error detected with $s=\sum_{i=1}^{3} x_{i} \bmod 2 \Rightarrow \sum_{i=1}^{3} x_{i}+s=0 \bmod 2$

Repetition code

- "Say that again?"
- "a" \rightarrow "aaa" \rightarrow "aab" \rightarrow "aaa" \rightarrow "a"

Examples

Parity check

$E:\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(x_{1}, x_{2}, x_{3}, s\right) \rightarrow\left(x_{1}, x_{2}, x_{3}, s\right) \rightarrow$ Error detected with $s=\sum_{i=1}^{3} x_{i} \bmod 2 \Rightarrow \sum_{i=1}^{3} x_{i}+s=0 \bmod 2$

Repetition code

- "Say that again?"

$$
\begin{aligned}
\quad \text { "a" } & \rightarrow \text { "aaa" } \rightarrow \text { "aab" } \rightarrow \text { "aaa" } \rightarrow \text { "a" } \\
E: \Sigma & \longrightarrow \Sigma^{r} \\
x & \longmapsto(\underbrace{x, \ldots, x}_{r \text { times }}), \text { and } \mathcal{C}=\operatorname{Im}(E) \subset \Sigma^{r}
\end{aligned}
$$

Outline

Motivation

Coding Theory
Introduction
Linear Codes
Reed-Solomon codes

McEliece cryptosystem

Linear Codes

Linear Codes

Let $\mathcal{E}=V^{n}$ over a finite field V.
A linear code \mathcal{C} is a subspace of \mathcal{E}.

- length: n
- dimension: $k=\operatorname{dim}(\mathcal{C})$
- Rate (of information): k / n

Encoding function: $E: V^{k} \longrightarrow V^{n}$ s.t. $\mathcal{C}=\operatorname{Im}(E) \subset \mathcal{V}^{n}$

Linear Codes

Linear Codes

Let $\mathcal{E}=V^{n}$ over a finite field V.
A linear code \mathcal{C} is a subspace of \mathcal{E}.

- length: n
- dimension: $k=\operatorname{dim}(\mathcal{C})$
- Rate (of information): k / n

Encoding function: $E: V^{k} \longrightarrow V^{n}$ s.t. $\mathcal{C}=\operatorname{Im}(E) \subset \mathcal{V}^{n}$

Example

- Parity code: $k=n-1$
- r-repetition code: $k=r / r=1$

Distance of a code

- Hamming weight: $w_{H}(x)=\left|\left\{i, x_{i} \neq 0\right\}\right|$.

Distance of a code

- Hamming weight: $w_{H}(x)=\left|\left\{i, x_{i} \neq 0\right\}\right|$.
- Hamming distance: $d_{H}(x, y)=w_{H}(x-y)=\left|\left\{i, x_{i} \neq y_{i}\right\}\right|$

Distance of a code

- Hamming weight: $w_{H}(x)=\left|\left\{i, x_{i} \neq 0\right\}\right|$.
- Hamming distance: $d_{H}(x, y)=w_{H}(x-y)=\left|\left\{i, x_{i} \neq y_{i}\right\}\right|$
- Minimum distance of a code $\delta=\min _{x, y \in \mathcal{C}} d_{H}(x, y)$ In a linear code: $\left.\delta=\min _{x \in \mathcal{C} \backslash\{0\}} w_{H}(x)\right)$

Distance of a code

- Hamming weight: $w_{H}(x)=\left|\left\{i, x_{i} \neq 0\right\}\right|$.
- Hamming distance: $d_{H}(x, y)=w_{H}(x-y)=\left|\left\{i, x_{i} \neq y_{i}\right\}\right|$
- Minimum distance of a code $\delta=\min _{x, y \in \mathcal{C}} d_{H}(x, y)$ In a linear code: $\left.\delta=\min _{x \in \mathcal{C} \backslash\{0\}} w_{H}(x)\right)$

\mathcal{C} is t-corrector if
- $\forall x \in \mathcal{E}\left|\left\{c \in \mathcal{C}, d_{H}(x, c) \leq t\right\}\right| \leq 1$

Distance of a code

- Hamming weight: $w_{H}(x)=\left|\left\{i, x_{i} \neq 0\right\}\right|$.
- Hamming distance: $d_{H}(x, y)=w_{H}(x-y)=\left|\left\{i, x_{i} \neq y_{i}\right\}\right|$
- Minimum distance of a code $\delta=\min _{x, y \in \mathcal{C}} d_{H}(x, y)$ In a linear code: $\left.\delta=\min _{x \in \mathcal{C} \backslash\{0\}} w_{H}(x)\right)$

\mathcal{C} is t-corrector if
- $\forall x \in \mathcal{E}\left|\left\{c \in \mathcal{C}, d_{H}(x, c) \leq t\right\}\right| \leq 1$
- $\forall c_{1}, c_{2} \in \mathcal{C} c_{1} \neq c_{2} \Rightarrow d_{H}\left(c_{1}, c_{2}\right)>2 t$

Perfect codes

Definition

A code is perfect if any detected error can be corrected.

Example

- 4-repetition is not perfect
- 3-repetition is perfect

Perfect codes

Definition

A code is perfect if any detected error can be corrected.

Example

- 4-repetition is not perfect
- 3-repetition is perfect

Property

A code is perfect if the balls of radius t around the codewords form a partition of the ambiant space.

Perfect codes

Definition

A code is perfect if any detected error can be corrected.

Example

- 4-repetition is not perfect
- 3-repetition is perfect

Property

A code is perfect if the balls of radius t around the codewords form a partition of the ambiant space.

Remark

Can be corrected into the wrong code-word. For instance $(b, a, b) \rightarrow(b, b, b)$

Generator matrix and parity check matrix

Generator matrix

- The matrix G of the encoding function (depends on a choice of basis):
- Under systematic form: $G=\left[\begin{array}{ccc|c}1 & & 0 & \\ & \ddots & & \bar{G} \\ 0 & & 1 & \end{array}\right]$

Generator matrix and parity check matrix

Generator matrix

- The matrix G of the encoding function (depends on a choice of basis):

$$
E: x^{T} \longrightarrow x^{T} G
$$

- Under systematic form: $G=\left[\begin{array}{ccc|c}1 & & 0 & \\ & \ddots & & \bar{G} \\ 0 & & 1 & \end{array}\right]$

Parity check matrix

1. A matrix $H \in K^{(n-k) \times n}$ such that $\operatorname{ker}(H)=\mathcal{C}$:

$$
c \in \mathcal{C} \Leftrightarrow H c=0
$$

2. A basis of $\operatorname{ker}\left(G^{T}\right): H G^{T}=0$

Generator matrix and parity check matrix

Exercise

Find G and H of the binary parity check and of the k-repetition codes.

Generator matrix and parity check matrix

Exercise

Find G and H of the binary parity check and of the k-repetition codes.

$$
G_{p a r}=\left[\begin{array}{llll}
1 & & & 1 \\
& \ddots & & \vdots \\
& & 1 & 1
\end{array}\right], H_{p a r}=\left[\begin{array}{lll}
1 & \ldots & 1
\end{array}\right]
$$

Generator matrix and parity check matrix

Exercise

Find G and H of the binary parity check and of the k-repetition codes.

$$
\left.\begin{array}{c}
G_{p a r}=\left[\begin{array}{lll}
1 & & \\
& \ddots & \\
& & \\
& & 1
\end{array}\right], H_{p a r}=\left[\begin{array}{lll}
1 & \ldots & 1
\end{array}\right] \\
G_{r e p}=[1 \ldots
\end{array}\right]=H_{p a r}, H_{r e p}=\left[\begin{array}{lll}
1 & & \\
& & \\
& \ddots & \vdots \\
& & 1
\end{array}\right]=G_{p a r} .
$$

The parity check code is the dual of the repetition code

Generator matrix and parity check matrix

Exercise

Find G and H of the binary parity check and of the k-repetition codes.

$$
\left.\begin{array}{c}
G_{p a r}=\left[\begin{array}{lll}
1 & & \\
& \ddots & \\
& & \\
& & 1
\end{array}\right], H_{p a r}=\left[\begin{array}{lll}
1 & \ldots & 1
\end{array}\right] \\
G_{r e p}=[1 \ldots
\end{array}\right]=H_{p a r}, H_{r e p}=\left[\begin{array}{lll}
1 & & \\
& & \\
& \ddots & \vdots \\
& & 1
\end{array}\right]=G_{p a r} .
$$

The parity check code is the dual of the repetition code

Definition

Let \mathcal{C} be a linear code with generating matrix G and parity check matrix H.
The dual code \mathcal{D} of \mathcal{C} is the linear code with generating matrix H and parity check matrix G.

Role of the parity check matrix

$$
c \in \mathcal{C} \Leftrightarrow H c=0
$$

- Certificate for detecting errors
- Syndrom: $s_{x}=H x=H(c+e)=H e$

Role of the parity check matrix

$$
c \in \mathcal{C} \Leftrightarrow H c=0
$$

- Certificate for detecting errors
- Syndrom: $s_{x}=H x=H(c+e)=H e$

A first correction algorithm:

- pre-compute all s_{e} for $w_{H}(e) \leq t$ in a table S
- For x received. If $s_{x} \neq 0$, look for s_{x} in the table S
- return the corresponding codeword

Hamming codes

$$
\text { Let } H=\left[\begin{array}{lllllll}
1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

- Parameters of the corresponding code?
- Generator matrix?
- Minimal distance?
- Is it a perfect code?

Hamming codes

$$
\text { Let } H=\left[\begin{array}{lllllll}
1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

- Parameters of the corresponding code? $(n, k)=(7,4)$
- Generator matrix?
- Minimal distance?
- Is it a perfect code?

Hamming codes

Let $H=\left[\begin{array}{lllllll}1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1\end{array}\right]$

- Parameters of the corresponding code? $(n, k)=(7,4)$
- Generator matrix? $G=\left[\begin{array}{ccccccc}1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1\end{array}\right]$
- Minimal distance?
- Is it a perfect code?

Hamming codes

Let $H=\left[\begin{array}{lllllll}1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1\end{array}\right]$

- Parameters of the corresponding code? $(n, k)=(7,4)$
- Generator matrix? $G=\left[\begin{array}{ccccccc}1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1\end{array}\right]$
- Minimal distance? $\delta \leq 3$.
- If $\delta=1, \exists i, H_{i}=0$
- If $\delta=2, \exists i \neq j, H_{i}=H_{j} \quad \Rightarrow \delta=3$
- Is it a perfect code?

Hamming codes

Let $H=\left[\begin{array}{lllllll}1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1\end{array}\right]$

- Parameters of the corresponding code? $(n, k)=(7,4)$
- Generator matrix? $G=\left[\begin{array}{ccccccc}1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1\end{array}\right]$
- Minimal distance? $\delta \leq 3$.
- If $\delta=1, \exists i, H_{i}=0$
- If $\delta=2, \exists i \neq j, H_{i}=H_{j} \quad \Rightarrow \delta=3$
- Is it a perfect code? $\delta=3 \Rightarrow t=1$ corrector. $|\mathcal{C}|=2^{k} \Rightarrow \#$ of elements in each ball of radius 1 : $2^{k}(1+7)=16 \cdot 8=2^{7}=\left|K^{n}\right| \Rightarrow$ perfect

Hamming codes

$$
\text { Let } H=\left[\begin{array}{lllllll}
1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

- Parameters of the corresponding code? $(n, k)=(7,4)$
- Generator matrix? $G=\left[\begin{array}{ccccccc}1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1\end{array}\right]$
- Minimal distance? $\delta \leq 3$.
- If $\delta=1, \exists i, H_{i}=0$
- If $\delta=2, \exists i \neq j, H_{i}=H_{j} \quad \Rightarrow \delta=3$
- Is it a perfect code? $\delta=3 \Rightarrow t=1$ corrector. $|\mathcal{C}|=2^{k} \Rightarrow \#$ of elements in each ball of radius 1 : $2^{k}(1+7)=16 \cdot 8=2^{7}=\left|K^{n}\right| \Rightarrow$ perfect

Generalization

$\forall \ell: H\left(2^{\ell}-1,2^{\ell}-\ell\right)$, is 1 -corrector, perfect.
Example: Minitel, ECC memory: $\ell=7$

Some bounds

Let \mathcal{C} be a code (n, k, δ) over a field \mathbb{F}_{q} with q elements. k and δ can not be simulatneously large for a given n.
Sphere packing:

$$
q^{k} \sum_{i=0}^{t}\binom{n}{i}(q-1)^{i} \leq q^{n}, \text { with } t=\left\lfloor\frac{\delta-1}{2}\right\rfloor .
$$

Some bounds

Let \mathcal{C} be a code (n, k, δ) over a field \mathbb{F}_{q} with q elements. k and δ can not be simulatneously large for a given n.
Sphere packing:

$$
q^{k} \sum_{i=0}^{t}\binom{n}{i}(q-1)^{i} \leq q^{n}, \text { with } t=\left\lfloor\frac{\delta-1}{2}\right\rfloor .
$$

Singleton bound:

$$
\delta \leq n-k+1
$$

Some bounds

Let \mathcal{C} be a code (n, k, δ) over a field \mathbb{F}_{q} with q elements. k and δ can not be simulatneously large for a given n.
Sphere packing:

$$
q^{k} \sum_{i=0}^{t}\binom{n}{i}(q-1)^{i} \leq q^{n}, \text { with } t=\left\lfloor\frac{\delta-1}{2}\right\rfloor .
$$

Singleton bound:

$$
\delta \leq n-k+1
$$

Sketch of proof:

- Let H be the parity check matrix $(n-k) \times n$.
- δ is the smallest number of linearly dependent cols of H.
- $n-k+1=\operatorname{rank}(H)+1$ cols are always linearly dependent.

Some bounds

Let \mathcal{C} be a code (n, k, δ) over a field \mathbb{F}_{q} with q elements. k and δ can not be simulatneously large for a given n.
Sphere packing:

$$
q^{k} \sum_{i=0}^{t}\binom{n}{i}(q-1)^{i} \leq q^{n}, \text { with } t=\left\lfloor\frac{\delta-1}{2}\right\rfloor .
$$

Singleton bound:

$$
\delta \leq n-k+1
$$

Sketch of proof:

- Let H be the parity check matrix $(n-k) \times n$.
- δ is the smallest number of linearly dependent cols of H.
- $n-k+1=\operatorname{rank}(H)+1$ cols are always linearly dependent.
\Rightarrow How to build codes correcting up to $\frac{n-k}{2}$.

Outline

Motivation

Coding Theory
Introduction
Linear Codes
Reed-Solomon codes

McEliece cryptosystem

Evaluation-interpolation codes

Theorem (Interpolation)

For all x_{1}, \ldots, x_{k}, distincts, and all y_{1}, \ldots, y_{k}, there is a unique polynomial $f=f_{0}+f_{1} x+\ldots f_{k-1} x^{k-1}$ of degree $<k$ such that :

$$
f\left(x_{j}\right)=y_{j}, \quad \text { for all } 1 \leq j \leq k .
$$

Evaluation-interpolation codes

Theorem (Interpolation)

For all x_{1}, \ldots, x_{k}, distincts, and all y_{1}, \ldots, y_{k}, there is a unique polynomial $f=f_{0}+f_{1} x+\ldots f_{k-1} x^{k-1}$ of degree $<k$ such that :

$$
f\left(x_{j}\right)=y_{j}, \quad \text { for all } 1 \leq j \leq k .
$$

Corollary

For some fixed x_{i} 's

- equivalent representation: $\left(y_{1}, \ldots, y_{k}\right) \Leftrightarrow\left(f_{0}, \ldots, f_{k-1}\right)$.
- oversampling: $\left(y_{1}, \ldots, y_{k}, y_{k+1}, \ldots, y_{n}\right) \Leftarrow\left(f_{0}, \ldots, f_{k-1}\right)$.
\Rightarrow adding redundancy

Reed-Solomon codes

Definition (Reed-Solomon codes)

Let K be a finite field, and $x_{1}, \ldots, x_{n} \in K$ distinct elements. The Reed-Solomon code of length n and dimension k is defined by

$$
\mathcal{C}(n, k)=\left\{\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right), f \in K[X] ; \operatorname{deg} f<k\right\}
$$

Reed-Solomon codes

Definition (Reed-Solomon codes)

Let K be a finite field, and $x_{1}, \ldots, x_{n} \in K$ distinct elements. The Reed-Solomon code of length n and dimension k is defined by

$$
\mathcal{C}(n, k)=\left\{\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right), f \in K[X] ; \operatorname{deg} f<k\right\}
$$

Example

$(n, k)=(5,3), f=x^{2}+2 x+1$ over $\mathbb{Z} / 19 \mathbb{Z}$.
$(1,2,1,0,0) \xrightarrow{\text { Eval }}(f(1), f(5), f(8), f(10), f(12))=(4,5,17,5,7,17)$
$(4,17,5,7,17) \xrightarrow{\text { Interp. }}(1,2,1,0,0) \quad x^{2}+2 x+1$
$(4,17,13,7,17) \xrightarrow{\text { Interp. }}(12,8,11,10,1)$

$$
x^{4}+10 x^{3}+11 x^{2}+8 x+12
$$

Minimal distance of Reed-Solomon codes

Property

$\delta=n-k+1$ (Maximum Distance Separable codes)

Minimal distance of Reed-Solomon codes

Property

$\delta=n-k+1$ (Maximum Distance Separable codes)

Proof.

Singeton bound: $\delta \leq n-k+1$

Minimal distance of Reed-Solomon codes

Property

$\delta=n-k+1$ (Maximum Distance Separable codes)

Proof.

Singeton bound: $\delta \leq n-k+1$
Let $f, g \in \mathcal{C}: \operatorname{deg} f, \operatorname{deg} g<k$. If $f\left(x_{i}\right) \neq g\left(x_{i}\right)$ for $d<n-k+1$ values x_{i}, Then $f\left(x_{j}\right)-g\left(x_{j}\right)=0$ for at least $n-d>k-1$ values x_{j}. Now $\operatorname{deg}(f-g)<k$, hence $f=g$.

Minimal distance of Reed-Solomon codes

Property

$\delta=n-k+1$ (Maximum Distance Separable codes)

Proof.

Singeton bound: $\delta \leq n-k+1$
Let $f, g \in \mathcal{C}: \operatorname{deg} f, \operatorname{deg} g<k$. If $f\left(x_{i}\right) \neq g\left(x_{i}\right)$ for $d<n-k+1$ values x_{i}, Then $f\left(x_{j}\right)-g\left(x_{j}\right)=0$ for at least $n-d>k-1$ values x_{j}. Now $\operatorname{deg}(f-g)<k$, hence $f=g$.
\Rightarrow correct up to $\frac{n-k}{2}$ errors.

Decoding via the key equation

Let P be the
interpolant $P\left(x_{i}\right)=y_{i} \quad$ for all $1 \leq i \leq n$.

$$
f\left(x_{i}\right)=P\left(x_{i}\right)
$$

Decoding via the key equation

Let P be the
interpolant $P\left(x_{i}\right)=y_{i} \quad$ for all $1 \leq i \leq n$.

$$
f=P \quad \bmod \prod_{i=1}^{n}\left(x-x_{i}\right)
$$

Decoding via the key equation

Let P be the erroneous interpolant $P\left(x_{i}\right)=y_{i}+e_{i}$ for all $1 \leq i \leq n$.

$$
f=P \quad \bmod \prod_{i \mid e_{i}=0}\left(x-x_{i}\right)
$$

Decoding via the key equation

Let P be the erroneous interpolant $P\left(x_{i}\right)=y_{i}+e_{i}$ for all $1 \leq i \leq n$.

$$
\Lambda f=\Lambda P \quad \bmod \prod_{i=1}^{n}\left(x-x_{i}\right)
$$

and $\Lambda=\prod_{i \mid e_{i} \neq 0}\left(x-x_{i}\right)$

Decoding via the key equation

Let P be the erroneous interpolant $P\left(x_{i}\right)=y_{i}+e_{i}$ for all $1 \leq i \leq n$.

$$
N=\Lambda P \quad \bmod \prod_{i=1}^{n}\left(x-x_{i}\right)
$$

and $\Lambda=\prod_{i \mid e_{i} \neq 0}\left(x-x_{i}\right)$
(Linearization)

Berlekamp-Welch decoding

Find N of degree $<k+t$ and Λ of degree $\leq t$ s.t.

$$
N=\Lambda P \quad \bmod \prod_{i=1}^{n}\left(x-x_{i}\right)
$$

Linear system solving

$N(X)=n_{0}+\ldots n_{k+t-1} X^{k+t-1}$ and $\Lambda(X)=\ell_{0}+\cdots+\ell_{t-1} X^{t-1}+X^{t}$.
Unknonwns: $n_{0}, \ldots n_{k+t-1}, \ell_{0}, \ldots, \ell_{t-1}(k+2 t$ unknowns $)$
Equations: each in x_{i} (n equations)

$$
\left[\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{k+t-1} \\
1 & x_{2} & x_{1}^{2} & \ldots & x_{1}^{k+t-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n} & x_{n}^{2} & \ldots & x_{n}^{k+t-1}
\end{array} \left\lvert\,\left[\begin{array}{llll}
-P\left(x_{1}\right) & & \\
& \ddots & \\
& & -P\left(x_{n}\right)
\end{array}\right]\left[\begin{array}{cccc}
1 & x_{1} & \ldots & x_{1}^{t} \\
\vdots & \vdots & \ddots & \vdots \\
1 & x_{n} & \ldots & x_{n}^{t}
\end{array}\right]\left[\begin{array}{c}
n_{0} \\
\vdots \\
n_{k+t-1} \\
\ell_{0} \\
\ldots \\
\ell_{t-1} \\
\ell_{t}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]\right.\right.
$$

Rational fraction reconstruction

Problem (RFR: Rational Fraction Reconstruction)

Given $A, B \in K[X]$ with $\operatorname{deg} B<\operatorname{deg} A=n$, find $f, g \in K[X]$, such that

$$
\left\{\begin{array}{ll}
f & =g B \bmod A \\
\operatorname{deg} f & \leq d_{F}, \\
\operatorname{deg} g & \leq n-d_{F}-1,
\end{array} .\right.
$$

Theorem

Let $\left(f_{0}=A, f_{1}=B, \ldots, f_{\ell}\right)$ the sequence of remainders of the extended Euclidean algorithm applied on (A, B) and u_{i}, v_{i} the coefficients s.t.
$f_{i}=u_{i} f_{0}+v_{i} f_{1}$. Then, at iteration j s.t. $\operatorname{deg} f_{j} \leq d_{F}<\operatorname{deg} f_{j-1}$,

1. $\left(f_{j}, v_{j}\right)$ is a solution of problem RFR.
2. it is minimal: any other solution (f, g) writes

$$
f=q f_{j}, \quad g=q v_{j} \quad \text { for } q \in K[X] .
$$

Reed-Solomon decoding with Extended Euclidean algorithm

Berlekamp-Welch using extended Euclidean algorithm

- Erroneous interpolant: $P=\operatorname{Interp}\left(\left(y_{i}, x_{i}\right)\right)$
- Error locator polynomial: $\Lambda=\prod_{i \mid y_{i} \text { is erroneous }}\left(X-x_{i}\right)$

Find f with $\operatorname{deg} f \leq d_{F}$ s.t.. f and P match on $\geq n-t$ evaluations x_{i}.

$$
\underbrace{\Lambda f}_{f_{j}}=\underbrace{\Lambda}_{g_{j}} P \bmod \prod_{i=1}^{n}\left(X-x_{i}\right)
$$

and $(\Lambda f, \Lambda)$ is minimal
\Rightarrow computed by extended Euclidean Algorithm

$$
f=f_{j} / g_{j} .
$$

Another decoding algorithm: syndrom based

From now on: $K=\mathbb{F}_{q}, n=q-1, x_{i}=\alpha^{i}$ where α is a primitive n-th root of unity.

$$
E(f)=\left(f\left(\alpha^{0}\right), f\left(\alpha^{1}\right), f\left(\alpha^{2}\right), \ldots, f\left(\alpha^{n-1}\right)\right)=D F T_{\alpha}(f)
$$

Another decoding algorithm: syndrom based

From now on: $K=\mathbb{F}_{q}, n=q-1, x_{i}=\alpha^{i}$ where α is a primitive n-th root of unity.

$$
E(f)=\left(f\left(\alpha^{0}\right), f\left(\alpha^{1}\right), f\left(\alpha^{2}\right), \ldots, f\left(\alpha^{n-1}\right)\right)=D F T_{\alpha}(f)
$$

Linear recurring sequences

Sequences $\left(a_{0}, a_{1}, \ldots, a_{n}, \ldots\right)$ such that

$$
\forall j \geq 0 a_{j+t}=\sum_{i=0}^{t-1} \lambda_{i} a_{i+j}
$$

generator polynomial: $\Lambda(z)=z^{t}-\sum_{i=0}^{t-1} \lambda_{i} z^{i}$
minimal polynomial: $\Lambda(z)$ of minimal degree
linear complexity of $\left(a_{i}\right)_{i}$: degree t of the minimal polynomial Λ
Computing $\Lambda_{\text {min }}$: Berlekamp/Massey algorithm, from $2 t$ consecutive elements, in $O\left(t^{2}\right)$

Blahut theorem

Theorem ([Blahut84], [Prony1795])
The $D F T_{\alpha}$ of a vector of weight t has linear complexity t.

Blahut theorem

Theorem ([Blahut84], [Prony1795])

The $D F T_{\alpha}$ of a vector of weight t has linear complexity t.

Skecth of proof

- Let $v=e_{i}$ be a 1 -weight vector. Then
$\mathrm{DFT}_{\alpha}(v)=\mathrm{Ev}_{\left(\alpha^{0}, \alpha^{1}, \ldots, \alpha^{n}\right)}\left(X^{i}\right)=\left(\left(\alpha^{0}\right)^{i},\left(\alpha^{1}\right)^{i}, \ldots,\left(\alpha^{n-1}\right)^{i}\right)$ is linearly generated by $\Lambda(z)=z-\alpha^{i}$.

Blahut theorem

Theorem ([Blahut84], [Prony1795])

The $D F T_{\alpha}$ of a vector of weight t has linear complexity t.

Skecth of proof

- Let $v=e_{i}$ be a 1 -weight vector. Then
$\mathrm{DFT}_{\alpha}(v)=\operatorname{Ev}_{\left(\alpha^{0}, \alpha^{1}, \ldots, \alpha^{n}\right)}\left(X^{i}\right)=\left(\left(\alpha^{0}\right)^{i},\left(\alpha^{1}\right)^{i}, \ldots,\left(\alpha^{n-1}\right)^{i}\right)$ is linearly generated by $\Lambda(z)=z-\alpha^{i}$.
- For $v=\sum_{j=1}^{t} e_{i j}$, the sequence $\operatorname{DFT}_{\alpha}(v)$ is generated by $\operatorname{ppcm}_{j}\left(z-\alpha^{i_{j}}\right)=\prod_{j=1}^{t}\left(z-\alpha^{i_{j}}\right)$

Blahut theorem

Theorem ([Blahut84], [Prony1795])

The $D F T_{\alpha}$ of a vector of weight t has linear complexity t.

Skecth of proof

- Let $v=e_{i}$ be a 1 -weight vector. Then $\mathrm{DFT}_{\alpha}(v)=\operatorname{Ev}_{\left(\alpha^{0}, \alpha^{1}, \ldots, \alpha^{n}\right)}\left(X^{i}\right)=\left(\left(\alpha^{0}\right)^{i},\left(\alpha^{1}\right)^{i}, \ldots,\left(\alpha^{n-1}\right)^{i}\right)$ is linearly generated by $\Lambda(z)=z-\alpha^{i}$.
- For $v=\sum_{j=1}^{t} e_{i j}$, the sequence $\mathrm{DFT}_{\alpha}(v)$ is generated by $\operatorname{ppcm}_{j}\left(z-\alpha^{i_{j}}\right)=\prod_{j=1}^{t}\left(z-\alpha^{i_{j}}\right)$

Corollary

The roots of Λ localize the non-zero elements of v : $\alpha^{i_{j}}$.
\Rightarrow error locator

Syndrom Decoding of Reed-Solomon codes

Syndrom Decoding of Reed-Solomon codes

Codes derived from Reed Solomon codes

Generalized Reed-Solomon codes

$$
\mathcal{C}_{G R S}(n, k, \mathbf{x}, \mathbf{v})=\left\{\left(v_{1} f\left(x_{1}\right), \ldots, v_{n} f\left(x_{n}\right)\right), f \in K_{<k}[X]\right\}
$$

- Same dimension and minimal distance \Rightarrow MDS
- Existence of a dual GRS code in the same evaluation points: There is a vector \mathbf{w} such that

$$
\mathcal{C}_{G R S}(n, k, \mathbf{x}, \mathbf{v})^{\perp}=\mathcal{C}_{G R S}(n, n-k, \mathbf{x}, \mathbf{w})
$$

i.e.

$$
H_{\mathrm{GRS}}(\mathbf{x}, \mathbf{w}) G_{\mathrm{GRS}}(\mathbf{x}, \mathbf{v})^{T}=0
$$

(Proof in exercise)

Codes derived from Reed-Solomon

Alternant codes

Motivation: workaround the limitatoin of GRS codes: $n \leq q$ \Rightarrow allow for arbitrary length n given a fixed field \mathbb{F}_{q}. Idea: use a GRS over an extension $\mathbb{F}_{q^{m}}$, and restrict to \mathbb{F}_{q}.
Let

- $K=\mathbb{F}_{q}, \bar{K}=\mathbb{F}_{q^{m}}$ and $\mathbf{x} \in \bar{K}^{n}, \mathbf{v} \in\left(\bar{K}^{*}\right)^{n}$
- $\mathcal{C}_{\bar{K}}=\mathcal{C}_{G R S}(n, k, \mathbf{x}, \mathbf{v})$ over \bar{K} with minimum distance $D=n-k+1$

Then

$$
\mathcal{C}_{A l t}=\mathcal{C}_{\bar{K}} \cap \mathbb{F}_{q}^{n}
$$

- Dimension: $\geq n-(D-1) m=n-(n-k) m$
- Minimum distance: $\geq D$ by design
(Proof in exercise)

Codes derived from Reed Solomon codes

Goppa codes

- An instance of a broad class of Algebraic Geometric Codes (AG-codes).
- Can be viewed as an alternant code for some special multiplier vector \mathbf{v}.
Let
- $K=\mathbb{F}_{q}, \bar{K}=\mathbb{F}_{q^{m}}$ and $\mathbf{x} \in \bar{K}^{n}$
- $f \in \mathbb{F}_{q^{m}}[X], \operatorname{deg} f=r$ and $m r<n$
- $\mathbf{v}=\left(\frac{f\left(x_{i}\right)}{\prod_{j \neq i}\left(x_{j}-x_{i}\right)}\right)$
- $\mathcal{C}_{\bar{K}}=\mathcal{C}_{G R S}(n, n-r, \mathbf{x}, \mathbf{v})$ over \bar{K} with parameters $(n, n-r, r+1)$

Then

$$
\mathcal{C}_{\text {Goppa }}=\mathcal{C}_{\bar{K}} \cap \mathbb{F}_{q}^{n}
$$

- Dimension: $\geq n-r m$
- Minimum distance: $\geq r+1$
- Case $q=2^{e}$ (binary Goppa code), with f square free \Rightarrow Minimum distance: $=2 r+1$

Outline

Motivation

Coding Theory
Introduction
Linear Codes
Reed-Solomon codes

McEliece cryptosystem

A code based cryptosystem [Mc Eliece 78]

Designing a one way function with trapdoor

Use the encoder of a linear code:

$$
\text { message } \times[G]+\text { rand. error }=\text { codeword }
$$

Encryption: is easy (matrix-vector product)
Decryption: decoding a received word

- easy for known codes
- NP-complete for random linear codes

Trapdoor: efficient decoding when the code familiy is known

A code based cryptosystem [Mc Eliece 78]

Designing a one way function with trapdoor

Use the encoder of a linear code:

$$
\text { message } \times[G]+\text { rand. error }=\text { codeword }
$$

Encryption: is easy (matrix-vector product)
Decryption: decoding a received word

- easy for known codes
- NP-complete for random linear codes

Trapdoor: efficient decoding when the code familiy is known
\Rightarrow requires a family \mathcal{F} of codes

- indistinguishable from random linear codes
- with fast decoding algorithm

Mc Eliece Cryptosystem

KeyGen

- Select an (n, k) binary linear code $\mathcal{C} \in \mathcal{F}$ correcting t errors, having an efficient decoding algorithm $\mathcal{A}_{\mathcal{C}}$,
- Form $G \in \mathbb{F}_{q}^{k \times n}$, a generator matrix for \mathcal{C}
- Sample uniformly a $k \times k$ non-singular matrix S
- Select uniformly an n-dimensional permutation P.
- $\hat{G}=S G P$

Public key: (\hat{G}, t)
Private key: (S, G, P)

Mc Eliece Cryptosystem

Encrypt

$$
E(\mathbf{m})=\mathbf{m} \hat{G}+\mathbf{e}=\mathbf{m} S G P+\mathbf{e}=\mathbf{y}
$$

where \mathbf{e} is an error vector of Hamming weight at most t.

Decrypt

1. $\mathbf{y}^{\prime}=\mathbf{y} P^{-1}$
$=\mathbf{m} S G+\mathbf{e} P^{-1}$
2. $\mathbf{m}^{\prime}=\mathcal{A}_{\mathcal{C}}\left(\mathbf{y}^{\prime}\right)$
$=\mathbf{m} S$
3. $\mathbf{m}=\mathbf{m}^{\prime} S^{-1}$

Parameters for Mc Eliece in practice

(n, k, d)	Code family	key size	Security	Attack
$(256,128,129)$	Gen. Reed-Solomon	67 ko	2^{95}	$[$ [SS92]

Parameters for Mc Eliece in practice

(n, k, d)	Code family	key size	Security	Attack
$(256,128,129)$	Gen. Reed-Solomon	67 ko	2^{95}	$[$ [SS92]
	subcodes of GRS			$[$ Wie10]

Parameters for Mc Eliece in practice

(n, k, d)	Code family	key size	Security	Attack
$(256,128,129)$	Gen. Reed-Solomon	67 ko	2^{95}	$[$ SS92]
	subcodes of GRS			[Wie10]
$(1024,176,128)$	Reed-Muller codes	22.5 ko	2^{72}	[MS07, CB13]
$(2048,232,256)$	Reed-Muller codes	59.4 ko	2^{93}	[MS07, CB13]

Parameters for Mc Eliece in practice

(n, k, d)	Code family	key size	Security	Attack
$(256,128,129)$	Gen. Reed-Solomon	67 ko	2^{95}	[SS92]
$(1024,176,128)$	subcodes of GRS			Reed-Muller codes
$(2048,232,256)$	Reed-Muller codes	59.4 ko	2^{72}	[MS07, CB13]
$(171,109,61)_{128}$	Alg.-Geom. codes	16ko	2^{96}	[MS07, CB13]
[FM08, CMP14]				

Parameters for Mc Eliece in practice

(n, k, d)	Code family	key size	Security	Attack
$(256,128,129)$	Gen. Reed-Solomon subcodes of GRS	67 ko	2^{95}	[SS92]
$(1024,176,128)$	Reed-Muller codes	22.5ko	2^{72}	[Wie10]
$(2048,232,256)$	Reed-Muller codes	59.4ko	2^{93}	[MS07, CB13]
$(171,109,61)_{128}$	Alg.-Geom. codes	16ko	2^{66}	[FM08, CMP14]
$(1024,524,101)_{2}$	Goppa codes	67 kB	2^{62}	
$(2048,1608,48)_{2}$	Goppa codes	412 kB	2^{96}	
$(6960,5413,239)_{2}$	Goppa codes	8 MB	2^{128}	

Advantages of McEliece cryptosystem

Security

Based on two assumptions:

- decoding a random linear code is hard (NP complete reduction)
- the generator matrix of a Goppa code looks random (indistinguishability)

Pros:

- faster encoding/decoding algorithms than RSA, ECC (for a given security parameter)
- Post quantum security: still robust against quantum computer attacks
Cons:
- harder to use for signature (non determinstic encoding)
- large key size

