# Complextiy theory and reductions <br> Cryptographic Engineering 

## Clément Pernet

M2 Cyber Security,
UFR-IM ${ }^{2}$ AG, Univ. Grenoble-Alpes
ENSIMAG, Grenoble INP

## Asymmetric cipher and Provable security

## Definition: one-way function

A bijection (i.e. one-to-one mapping) $f$ is one-way iff

- (i) It is easy to compute $f(x)$ from $x$;
- (ii) Computation of $x=f^{-1}(y)$ from $y=f(x)$ is intractable, i.e. requires too many operations, e.g. $10^{120} \simeq 2^{400}$


## How to prove one-way-ness?

1. Analyze the time complexity of an algorithm that computes $f$.
2. Provide a lower bound on the minimum time complexity to compute $x=f^{-1}(y)$ given $y$

- very hard to obtain lower bounds in complexity theory
- it is related both to the problem $f^{-1}$ and the input $y$ (i.e. $x$ )

Provable security [Contradiction proof, by reduction] if computation of $f^{-1}$ is not intractable, then a well-studied and presumed intractable problem could be solved.

## Outline

P, NP classes and reduction
One way function and asymmetric cryptography

## Definitions: P, NP

Context: Decision problems (answer $\in\{$ YES, NO $\}$ )

## Definition (Class P)

A problem is in the complexity class $\mathbf{P}$ if there is an algorithm $A(x)$ that solves it on every instance $x$ in time polynomial in $|x|$ (the size of $x$ ).

## Definitions : P, NP

Context: Decision problems (answer $\in\{$ YES, NO $\}$ )

## Definition (Class P)

A problem is in the complexity class $\mathbf{P}$ if there is an algorithm $A(x)$ that solves it on every instance $x$ in time polynomial in $|x|$ (the size of $x$ ).

- closed under composition and polynomially bounded iterations
- Informally:
$\mathbf{P}=$ set of problems efficiently solvable.


## Definitions : P, NP

## Definition (Class NP)

A decision problem $F$ is in the complexity class NP if there is a polynomial time algorithm $V(x, y)$ such that

- $F(x)=1 \Rightarrow \exists z$ of size poly in $|x|$ s.t. $V(x, z)=1$
- $F(x)=0 \Rightarrow \forall y V(x, y)=0$


## Definitions : P, NP

## Definition (Class NP)

A decision problem $F$ is in the complexity class NP if there is a polynomial time algorithm $V(x, y)$ such that

- $F(x)=1 \Rightarrow \exists z$ of size poly in $|x|$ s.t. $V(x, z)=1$
- $F(x)=0 \Rightarrow \forall y V(x, y)=0$
- Set of problems which YES answer can be verified in polynomial time
- Informally: NP $=$ Set of pb efficiently verifiable.
- $\mathbf{P} \subset \mathbf{N P}$ but $\mathbf{N P} \subset \mathbf{P}$ is a $1 \mathrm{M} \$$ question
- co-NP: class of problems $F$ which complement is in NP


## Definitions : P, NP

## Example (IS_COMPOSITE (n) $\in \mathbf{N P}$ )

## IS_COMPOSITE $(\mathrm{n})=\mathrm{YES} \Leftrightarrow n$ is a composite number

Verification

- certificate: a number $a \notin\{n, 1\}$ such that $a \mid n \Leftrightarrow n=0 \bmod a$
- $\mathrm{V}(\mathrm{n}, \mathrm{a})\{$ return $(n \bmod a==0)\}$
- Cost of verification $(n \bmod a==0)$ in time $O\left(\log _{2}(n)^{2}\right)$


## Definitions : P, NP

## Example $\left(\mathrm{PLOG}_{G}(\mathrm{x}, \mathrm{t}) \in \mathbf{N P}\right)$

Over a group $G$ generated by $g$,

$$
\mathrm{PLOG}_{G}(\mathrm{x}, \mathrm{t})=\mathrm{YES} \Leftrightarrow \exists i, g^{i}=x \text { and } t \leq i<\# G
$$

Verification

- certificate: the index $i$ such that $g^{i}=x$
- $V(x, t, i)\left\{y=g^{i} ;\right.$ return ( $\left.\left.\mathrm{x}==\mathrm{y} \& \& i \geq t\right)\right\}$
- Cost of verification $g^{i}$ in time $O\left(\log (|G|)^{3}\right)$


## P-reduction

## Definition (Karp reduction for decision problems)

$A \leq_{P}^{(\text {Karp })} B$ ( A is reducible to B ) if there is a polynomial time algorithm transforming an input $x$ for $A$ into an input $y$ for $B$ such that $A(x)=B(y)$.

## P-reduction

## Definition (Karp reduction for decision problems)

$A \leq_{P}^{(\text {Karp })} B$ ( A is reducible to B ) if there is a polynomial time algorithm transforming an input $x$ for $A$ into an input $y$ for $B$ such that $A(x)=B(y)$.

Oracle: For a problem $B$, an oracle is a imaginary method returning any answer $B(x)$ in constant time.

## Definition (Turing/Cook reduction)

$A \leq_{P}^{\text {TTuring }^{\text {I }}} B$ ( A is reducible to B ) if there is an algorithm computing $A(x)$ in a polynomial number $\left(|x|^{O(1)}\right)$ of operations and calls to an oracle for $B$.

## P-reduction

## Definition (Karp reduction for decision problems)

$A \leq_{P}^{(\text {Karp })} B$ ( A is reducible to B ) if there is a polynomial time algorithm transforming an input $x$ for $A$ into an input $y$ for $B$ such that $A(x)=B(y)$.

Oracle: For a problem $B$, an oracle is a imaginary method returning any answer $B(x)$ in constant time.

## Definition (Turing/Cook reduction)

$A \leq_{P}^{(\text {Turing })} B$ ( A is reducible to B ) if there is an algorithm computing $A(x)$ in a polynomial number $\left(|x|^{O(1)}\right)$ of operations and calls to an oracle for $B$.

## Property

$$
\begin{aligned}
& \text { If } A \leq B \text { Then } \\
& \text { - } B \in \mathbf{P} \Rightarrow A \in \mathbf{P} . \\
& -A \notin \mathbf{P} \Rightarrow B \notin \mathbf{P} .
\end{aligned}
$$

Property
$\leq_{P}^{\text {(Turing) }}$ and $\leq_{P}^{(\text {Karp })}$ are transitive

## Reductions

## Example $\left(\mathrm{PLOG}_{G} \leq_{P} \mathbf{L O G}_{G}\right)$

Algorithm PLOG_Reduction ( $\mathrm{G} x$, int $t$ )

1. $\log =\operatorname{OracleLOG}(x)$;
2. return $(\log \geq t)$;

Since $0 \leq t, \log \leq \# G$, and cost of OracleDLOG is constant, cost of PLOG_Reduction is $O(\log \# G)$.

## Reductions

## Example $\left(\mathrm{PLOG}_{G} \leq_{P} \mathbf{L O G}_{G}\right)$

Algorithm PLOG_Reduction ( $\mathrm{G} x$, int $t$ )

1. $\log =\operatorname{OracleLOG}(x)$;
2. return $(\log \geq t)$;

Since $0 \leq t, \log \leq \# G$, and cost of OracleDLOG is constant, cost of PLOG_Reduction is $O(\log \# G)$.

## Example $\left(\mathbf{L O G}_{G} \leq_{P} \mathbf{P L O G}_{G}\right)$

Algorithm LOG_Reduction ( $\mathrm{G} x$ ) // Binary search

1. $\min =0 ; \max =\# G$;
2. while $(\min <\max )$ \{
3. $\quad \operatorname{mid}=(\min +\max ) / 2$;
4. If OraclePLOG(x, mid) $\min =m i d ;$ else $\max =m i d ;\}$
5. return min;

Cost $O\left(\log ^{2} \# G\right)$

## NP hardness NP completeness

## Property

$\mathbf{N P}$ is closed under $\leq_{P}^{(\text {Karp })}$ :

$$
\left\{\begin{array}{l}
A \leq_{P}^{(\text {Karp })} B \\
B \in \mathbf{N} \boldsymbol{P}
\end{array} \Rightarrow A \in \mathbf{N P}\right.
$$

Definition
A is $\mathbf{N P}$-hard if $\forall X \in \mathbf{N P} \quad X \leq_{P}^{(\text {Karp })} A$

## Definition

NP-complete $=$ NP-hard $\cap \mathbf{N P}$
Theorem (Cook)
NP-complete $\neq \emptyset$ as 3 - SAT $\in$ NP-complete

## NP-intermediate

## Definition (NP-intermediate)

Problems that are neither in $\mathbf{P}$ nor in NP-complete.
Theorem (Ladner)
If $\boldsymbol{P} \neq \boldsymbol{N P}$ then $\mathbf{N P}$-intermediate $\neq \emptyset$

## NP-intermediate

## Definition (NP-intermediate)

Problems that are neither in $\mathbf{P}$ nor in NP-complete.
Theorem (Ladner)
If $\boldsymbol{P} \neq \boldsymbol{N P}$ then $\boldsymbol{N P}$-intermediate $\neq \emptyset$

## Examples

Good candidates for NP-intermediate problems:

- Graph isomorphism
- Integer factorization
- Discrete logarithm


## Outline

## P, NP classes and reduction

One way function and asymmetric cryptography

## One way functions

## Definition (One way function)

Function $E:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ that are

- injective
- easy to compute
- hard to invert: $x \leftarrow E^{(-1)}(y)$ should be computationnally hard


## One way functions

## Definition (One way function)

Function $E:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ that are

- injective
- easy to compute
- hard to invert: $x \leftarrow E^{(-1)}(y)$ should be computationnally hard


## Remark

- Easy to compute $\Rightarrow E \in \boldsymbol{P}$
- Therefore $D=E^{-1} \in \mathbf{N P}$
- Hence if one way functions exist then $\mathbf{P} \neq \mathbf{N P}$


## One way functions

## Definition (One way function)

Function $E:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ that are

- injective
- easy to compute
- hard to invert: $x \leftarrow E^{(-1)}(y)$ should be computationnally hard


## Remark

- Easy to compute $\Rightarrow E \in \boldsymbol{P}$
- Therefore $D=E^{-1} \in \mathbf{N P}$
- Hence if one way functions exist then $\mathbf{P} \neq \mathbf{N P}$

Design one way functions by basing $D$ on difficult problems in NP:

- NP-complete: subset-sum, knapsack, (Merkle-Hellman, Chor-Rivest)
- NP-intermediate: factorization (RSA), discrete log (EI-Gamal)


## One way trapdoor functions

Make deciphering practical: add a parameter (secret key)

## Definition

- $E$ is one way
- $E$ is easy to compute
- $D$ such that $D(E(x))=x$ is hard to compute
- but given a trapdoor (secret key), $D$ is easy to compute


## Example: Knapsack [Merkle Hellman 78]

## Problem (Subset sum $\in$ NP-complete)

Input: $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $S$ integers<br>Output: Yes iff $\exists\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{n}, \sum_{i=1}^{n} x_{i} a_{i}=S$

## Example: Knapsack [Merkle Hellman 78]

## Problem (Subset sum $\in$ NP-complete)

$$
\begin{aligned}
& \text { Input: }\left(a_{1}, a_{2}, \ldots, a_{n}\right) \text { and } S \text { integers } \\
& \text { Output: Yes iff } \exists\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{n}, \sum_{i=1}^{n} x_{i} a_{i}=S
\end{aligned}
$$

Idea for encoding: $E\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i} a_{i}$

## Example: Knapsack [Merkle Hellman 78]

## Problem (Subset sum $\in$ NP-complete)

$$
\begin{aligned}
& \text { Input: }\left(a_{1}, a_{2}, \ldots, a_{n}\right) \text { and } S \text { integers } \\
& \text { Output: Yes iff } \exists\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{n}, \sum_{i=1}^{n} x_{i} a_{i}=S
\end{aligned}
$$

Idea for encoding: $E\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i} a_{i}$

## Building a trapdoor function

- Easy to solve instance: choose $\left(a_{1}, \ldots, a_{n}\right)$ super-increasing i.e. $a_{i}>\sum_{j=1}^{i-1} a_{j}$. which algorithm?
- Hiding simplicity: $b_{i}=t a_{i} \bmod m$ with $t$ and $m>S$ secret and coprime


## Example: Knapsack [Merkle Hellman 78]

## Problem (Subset sum $\in$ NP-complete)

$$
\begin{aligned}
& \text { Input: }\left(a_{1}, a_{2}, \ldots, a_{n}\right) \text { and } S \text { integers } \\
& \text { Output: Yes iff } \exists\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{n}, \sum_{i=1}^{n} x_{i} a_{i}=S
\end{aligned}
$$

Idea for encoding: $E\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i} a_{i}$

## Building a trapdoor function

- Easy to solve instance: choose $\left(a_{1}, \ldots, a_{n}\right)$ super-increasing i.e. $a_{i}>\sum_{j=1}^{i-1} a_{j}$.
which algorithm?
- Hiding simplicity: $b_{i}=t a_{i} \bmod m$ with $t$ and $m>S$ secret and coprime

Public key: $\left(b_{1}, \ldots, b_{n}\right)$.
Encryption: $C=E\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i} b_{i} \bmod m$
Private key: $\left(a_{1}, \ldots, a_{n}\right), t, u=t^{-1} \bmod m$
Decryption: $C . u \bmod m$ and solve the easy problem with the $a_{i}$ 's.

