Complexity theory and reductions Cryptographic Engineering

Clément PERNET

M2 Cyber Security, UFR-IM²AG, Univ. Grenoble-Alpes ENSIMAG, Grenoble INP

Asymmetric cipher and Provable security

Definition: one-way function

A bijection (i.e. one-to-one mapping) f is one-way iff

- (i) It is easy to compute f(x) from x;
- ► (ii) Computation of x = f⁻¹(y) from y = f(x) is intractable, i.e. requires too many operations, e.g. 10¹²⁰ ~ 2⁴⁰⁰

How to prove one-way-ness?

- 1. Analyze the time complexity of an algorithm that computes f.
- 2. Provide a lower bound on the minimum time complexity to compute $x = f^{-1}(y)$ given y
 - very hard to obtain lower bounds in complexity theory
 - it is related both to the problem f^{-1} and the input y (i.e. x)

Provable security [*Contradiction proof, by reduction*] if computation of f^{-1} is not intractable, then a well-studied and presumed intractable problem could be solved.

Outline

P, NP classes and reduction

One way function and asymmetric cryptography

Context: Decision problems (answer \in {YES, NO})

Definition (Class P)

A problem is in the complexity class **P** if there is an algorithm A(x) that solves it on every instance *x* in time polynomial in |x| (the size of *x*).

Context: Decision problems (answer \in {YES, NO})

Definition (Class P)

A problem is in the complexity class **P** if there is an algorithm A(x) that solves it on every instance *x* in time polynomial in |x| (the size of *x*).

- closed under composition and polynomially bounded iterations
- Informally:

 $\mathbf{P} =$ set of problems efficiently solvable.

Definition (Class NP)

A decision problem *F* is in the complexity class **NP** if there is a polynomial time algorithm V(x, y) such that

•
$$F(x) = 1 \Rightarrow \exists z \text{ of size poly in } |x| \text{ s.t. } V(x, z) = 1$$

$$\blacktriangleright F(x) = 0 \Rightarrow \forall y V(x, y) = 0$$

Definition (Class NP)

A decision problem *F* is in the complexity class **NP** if there is a polynomial time algorithm V(x, y) such that

►
$$F(x) = 1 \Rightarrow \exists z \text{ of size poly in } |x| \text{ s.t. } V(x, z) = 1$$

$$\blacktriangleright F(x) = 0 \Rightarrow \forall y V(x, y) = 0$$

- Set of problems which YES answer can be verified in polynomial time
- Informally: NP = Set of pb efficiently verifiable.
- $P \subset NP$ but $NP \subset P$ is a 1M\$ question
- co-NP: class of problems F which complement is in NP

$\text{Example (IS_COMPOSITE(n) \in \textbf{NP})}$

 $IS_COMPOSITE(n)=YES \Leftrightarrow n$ is a composite number

Verification

- certificate: a number $a \notin \{n, 1\}$ such that $a | n \Leftrightarrow n = 0 \mod a$
- $\blacktriangleright V(n,a) \{ return (n \mod a == 0) \}$
- Cost of verification $(n \mod a == 0)$ in time $O(\log_2(n)^2)$

Example (PLOG_G(x,t) \in **NP**)

Over a group G generated by g,

```
\mathsf{PLOG}_G(\mathbf{x}, \mathbf{t}) = \mathsf{YES} \Leftrightarrow \exists i, g^i = x \text{ and } t \leq i < \#G
```

Verification

- certificate: the index *i* such that $g^i = x$
- ► $V(x, t, i) \{ y = g^i ; \text{return } (x = y \& k i \ge t) \}$
- Cost of verification g^i in time $O(\log(|G|)^3)$

P-reduction

Definition (Karp reduction for decision problems)

 $A \leq_{P}^{(Karp)} B$ (A is reducible to B) if there is a polynomial time algorithm transforming an input *x* for *A* into an input *y* for *B* such that A(x) = B(y).

P-reduction

Definition (Karp reduction for decision problems)

 $A \leq_{P}^{(Karp)} B$ (A is reducible to B) if there is a polynomial time algorithm transforming an input *x* for *A* into an input *y* for *B* such that A(x) = B(y).

Oracle: For a problem B, an oracle is a imaginary method returning any answer B(x) in constant time.

Definition (Turing/Cook reduction)

 $A \leq_{P}^{(Turing)} B$ (A is reducible to B) if there is an algorithm computing A(x) in a polynomial number $(|x|^{O(1)})$ of operations and calls to an oracle for *B*.

P-reduction

Definition (Karp reduction for decision problems)

 $A \leq_{P}^{(Karp)} B$ (A is reducible to B) if there is a polynomial time algorithm transforming an input *x* for *A* into an input *y* for *B* such that A(x) = B(y).

Oracle: For a problem B, an oracle is a imaginary method returning any answer B(x) in constant time.

Definition (Turing/Cook reduction)

 $A \leq_{P}^{(Turing)} B$ (A is reducible to B) if there is an algorithm computing A(x) in a polynomial number $(|x|^{O(1)})$ of operations and calls to an oracle for *B*.

Property

If $A \leq B$ Then

- $\blacktriangleright B \in \mathbf{P} \Rightarrow A \in \mathbf{P}.$
- $\blacktriangleright A \notin \mathbf{P} \Rightarrow B \notin \mathbf{P}.$

Property $\leq_P^{(Turing)}$ and $\leq_P^{(Karp)}$ are transitive

Reductions

Example (**PLOG**_G \leq_P **LOG**_G)

Algorithm PLOG_Reduction (G x, int t)

- 1. $\log = OracleLOG(x);$
- 2. return (log $\geq t$);

Since $0 \le t$, $log \le \#G$, and cost of OracleDLOG is constant, cost of PLOG_Reduction is $O(\log \#G)$.

Reductions

Example (**PLOG**_G \leq_P **LOG**_G)

Algorithm PLOG_Reduction (G x, int t)

- 1. $\log = OracleLOG(x);$
- 2. return (log $\geq t$);

Since $0 \le t$, $log \le \#G$, and cost of OracleDLOG is constant, cost of PLOG_Reduction is $O(\log \#G)$.

Example ($\mathbf{LOG}_G \leq_P \mathbf{PLOG}_G$)

Algorithm LOG_Reduction (G x) // Binary search

- 1. min = 0; max =#G;
- 2. while (min < max){
- 3. mid = (min+max)/2;
- 4. If OraclePLOG(x, mid) min = mid; else max = mid; }
- 5. return min;

Cost $O(\log^2 \# G)$

NP hardness NP completeness

Property

NP is closed under $\leq_P^{(Karp)}$:

$$\left\{ egin{array}{ll} A\leq^{(Karp)}_{P}B\ B\in {\it NP} \end{array}
ight. \Rightarrow A\in {\it NP}$$

Definition

A is **NP-hard** if $\forall X \in \mathbf{NP}$ $X \leq_P^{(Karp)} A$

Definition

NP-complete = NP-hard $\bigcap NP$

Theorem (Cook)

NP-complete $\neq \emptyset$ *as* $3 - SAT \in NP$ *-complete*

NP-intermediate

Definition (NP-intermediate)

Problems that are neither in **P** nor in **NP-complete**.

Theorem (Ladner)

If $\mathbf{P} \neq \mathbf{NP}$ then \mathbf{NP} -intermediate $\neq \emptyset$

NP-intermediate

Definition (NP-intermediate)

Problems that are neither in **P** nor in **NP-complete**.

Theorem (Ladner)

If $\mathbf{P} \neq \mathbf{NP}$ then \mathbf{NP} -intermediate $\neq \emptyset$

Examples

Good candidates for NP-intermediate problems:

- Graph isomorphism
- Integer factorization
- Discrete logarithm

Outline

P, NP classes and reduction

One way function and asymmetric cryptography

One way functions

Definition (One way function)

Function $E: \{0,1\}^n \to \{0,1\}^n$ that are

- injective
- easy to compute
- ▶ hard to invert: $x \leftarrow E^{(-1)}(y)$ should be computationnally hard

One way functions

Definition (One way function)

Function $E: \{0,1\}^n \to \{0,1\}^n$ that are

- injective
- easy to compute
- ▶ hard to invert: $x \leftarrow E^{(-1)}(y)$ should be computationnally hard

Remark

- Easy to compute $\Rightarrow E \in \mathbf{P}$
- Therefore $D = E^{-1} \in \mathbf{NP}$
- Hence if one way functions exist then $P \neq NP$

One way functions

Definition (One way function)

Function $E: \{0,1\}^n \to \{0,1\}^n$ that are

- injective
- easy to compute
- ▶ hard to invert: $x \leftarrow E^{(-1)}(y)$ should be computationnally hard

Remark

- Easy to compute $\Rightarrow E \in \mathbf{P}$
- Therefore $D = E^{-1} \in \mathbf{NP}$
- Hence if one way functions exist then $\mathbf{P} \neq \mathbf{NP}$

Design one way functions by basing D on difficult problems in NP:

- NP-complete: subset-sum, knapsack, (Merkle-Hellman, Chor-Rivest)
- NP-intermediate: factorization (RSA), discrete log (EI-Gamal)

One way trapdoor functions

Make deciphering practical: add a parameter (secret key)

Definition

- E is one way
 - E is easy to compute
 - D such that D(E(x)) = x is hard to compute
- but given a trapdoor (secret key), D is easy to compute

Problem (Subset sum \in NP-complete)

Input: (a_1, a_2, \dots, a_n) and *S* integers Output: Yes iff $\exists (x_1, \dots, x_n) \in \{0, 1\}^n, \sum_{i=1}^n x_i a_i = S$

Problem (Subset sum \in NP-complete)

Input: (a_1, a_2, \dots, a_n) and *S* integers Output: Yes iff $\exists (x_1, \dots, x_n) \in \{0, 1\}^n, \sum_{i=1}^n x_i a_i = S$

Idea for encoding: $E(x_1, \ldots, x_n) = \sum_{i=1}^n x_i a_i$

Problem (Subset sum \in NP-complete)

Input: (a_1, a_2, \dots, a_n) and *S* integers Output: Yes iff $\exists (x_1, \dots, x_n) \in \{0, 1\}^n, \sum_{i=1}^n x_i a_i = S$

Idea for encoding: $E(x_1, \ldots, x_n) = \sum_{i=1}^n x_i a_i$

Building a trapdoor function

- ► Easy to solve instance: choose $(a_1, ..., a_n)$ super-increasing i.e. $a_i > \sum_{j=1}^{i-1} a_j$. which algorithm?
- ► Hiding simplicity: $b_i = ta_i \mod m$ with t and m > S secret and coprime

Problem (Subset sum \in NP-complete)

Input: (a_1, a_2, \dots, a_n) and *S* integers Output: Yes iff $\exists (x_1, \dots, x_n) \in \{0, 1\}^n, \sum_{i=1}^n x_i a_i = S$

Idea for encoding: $E(x_1, \ldots, x_n) = \sum_{i=1}^n x_i a_i$

Building a trapdoor function

- ► Easy to solve instance: choose $(a_1, ..., a_n)$ super-increasing i.e. $a_i > \sum_{j=1}^{i-1} a_j$. which algorithm?
- Hiding simplicity: b_i = ta_i mod m with t and m > S secret and coprime

Public key: (b_1, \ldots, b_n) . Encryption: $C = E(x_1, \ldots, x_n) = \sum_{i=1}^n x_i b_i \mod m$ Private key: $(a_1, \ldots, a_n), t, u = t^{-1} \mod m$ Decryption: *C.u* mod *m* and solve the easy problem with the a_i 's.