
Complextiy theory and reductions
Cryptographic Engineering

Clément PERNET

M2 Cyber Security,
UFR-IM2AG, Univ. Grenoble-Alpes

ENSIMAG, Grenoble INP

1 / 14

Asymmetric cipher and Provable security

Definition: one-way function

A bijection (i.e. one-to-one mapping) f is one-way iff
▶ (i) It is easy to compute f (x) from x;
▶ (ii) Computation of x = f−1(y) from y = f (x) is intractable,

i.e. requires too many operations, e.g. 10120 ≃ 2400

How to prove one-way -ness?

1. Analyze the time complexity of an algorithm that computes f .
2. Provide a lower bound on the minimum time complexity to

compute x = f−1(y) given y
▶ very hard to obtain lower bounds in complexity theory
▶ it is related both to the problem f −1 and the input y (i.e. x)

Provable security [Contradiction proof, by reduction] if computation
of f−1 is not intractable, then a well-studied and presumed intractable
problem could be solved.

2 / 14

Outline

P, NP classes and reduction
One way function and asymmetric cryptography

3 / 14

Definitions : P, NP

Context: Decision problems (answer ∈ {YES,NO})

Definition (Class P)

A problem is in the complexity class P if there is an algorithm A(x) that
solves it on every instance x in time polynomial in |x| (the size of x).

▶ closed under composition and polynomially bounded iterations
▶ Informally:

P = set of problems efficiently solvable.

4 / 14

Definitions : P, NP

Context: Decision problems (answer ∈ {YES,NO})

Definition (Class P)

A problem is in the complexity class P if there is an algorithm A(x) that
solves it on every instance x in time polynomial in |x| (the size of x).

▶ closed under composition and polynomially bounded iterations
▶ Informally:

P = set of problems efficiently solvable.

4 / 14

Definitions : P, NP

Definition (Class NP)

A decision problem F is in the complexity class NP if there is a
polynomial time algorithm V(x, y) such that
▶ F(x) = 1⇒ ∃z of size poly in |x| s.t. V(x, z) = 1
▶ F(x) = 0⇒ ∀yV(x, y) = 0

▶ Set of problems which YES answer can be verified in polynomial
time

▶ Informally: NP = Set of pb efficiently verifiable.
▶ P ⊂ NP but NP ⊂ P is a 1M$ question
▶ co-NP: class of problems F which complement is in NP

5 / 14

Definitions : P, NP

Definition (Class NP)

A decision problem F is in the complexity class NP if there is a
polynomial time algorithm V(x, y) such that
▶ F(x) = 1⇒ ∃z of size poly in |x| s.t. V(x, z) = 1
▶ F(x) = 0⇒ ∀yV(x, y) = 0

▶ Set of problems which YES answer can be verified in polynomial
time

▶ Informally: NP = Set of pb efficiently verifiable.
▶ P ⊂ NP but NP ⊂ P is a 1M$ question
▶ co-NP: class of problems F which complement is in NP

5 / 14

Definitions : P, NP

Example (IS_COMPOSITE(n) ∈ NP)

IS_COMPOSITE(n)=YES⇔ n is a composite number

Verification
▶ certificate: a number a /∈ {n, 1} such that a|n⇔ n = 0 mod a
▶ V(n,a){ return (n mod a == 0)}
▶ Cost of verification (n mod a == 0) in time O(log2(n)

2)

6 / 14

Definitions : P, NP

Example (PLOGG(x,t) ∈ NP)

Over a group G generated by g,

PLOGG(x,t)=YES⇔ ∃i, gi = x and t ≤ i < #G

Verification
▶ certificate: the index i such that gi = x
▶ V(x, t, i){y = gi ; return (x==y && i ≥ t)}
▶ Cost of verification gi in time O(log(|G|)3)

6 / 14

P-reduction
Definition (Karp reduction for decision problems)

A ≤(Karp)
P B (A is reducible to B) if there is a polynomial time algorithm

transforming an input x for A into an input y for B such that A(x) = B(y).

Oracle: For a problem B, an oracle is a imaginary method
returning any answer B(x) in constant time.

Definition (Turing/Cook reduction)

A ≤(Turing)
P B (A is reducible to B) if there is an algorithm computing

A(x) in a polynomial number (|x|O(1)) of operations and calls to an
oracle for B.

Property

If A ≤ B Then
▶ B ∈ P⇒ A ∈ P.
▶ A /∈ P⇒ B /∈ P.

Property

≤(Turing)
P and ≤(Karp)

P are transitive

7 / 14

P-reduction
Definition (Karp reduction for decision problems)

A ≤(Karp)
P B (A is reducible to B) if there is a polynomial time algorithm

transforming an input x for A into an input y for B such that A(x) = B(y).

Oracle: For a problem B, an oracle is a imaginary method
returning any answer B(x) in constant time.

Definition (Turing/Cook reduction)

A ≤(Turing)
P B (A is reducible to B) if there is an algorithm computing

A(x) in a polynomial number (|x|O(1)) of operations and calls to an
oracle for B.

Property

If A ≤ B Then
▶ B ∈ P⇒ A ∈ P.
▶ A /∈ P⇒ B /∈ P.

Property

≤(Turing)
P and ≤(Karp)

P are transitive

7 / 14

P-reduction
Definition (Karp reduction for decision problems)

A ≤(Karp)
P B (A is reducible to B) if there is a polynomial time algorithm

transforming an input x for A into an input y for B such that A(x) = B(y).

Oracle: For a problem B, an oracle is a imaginary method
returning any answer B(x) in constant time.

Definition (Turing/Cook reduction)

A ≤(Turing)
P B (A is reducible to B) if there is an algorithm computing

A(x) in a polynomial number (|x|O(1)) of operations and calls to an
oracle for B.

Property

If A ≤ B Then
▶ B ∈ P⇒ A ∈ P.
▶ A /∈ P⇒ B /∈ P.

Property

≤(Turing)
P and ≤(Karp)

P are transitive

7 / 14

Reductions
Example (PLOGG ≤P LOGG)

Algorithm PLOG_Reduction (G x, int t)
1. log = OracleLOG(x);
2. return (log ≥ t);

Since 0 ≤ t, log ≤ #G, and cost of OracleDLOG is constant,
cost of PLOG_Reduction is O(log#G).

Example (LOGG ≤P PLOGG)

Algorithm LOG_Reduction (G x) // Binary search
1. min = 0; max =#G;
2. while (min < max){
3. mid = (min+max)/2;
4. If OraclePLOG(x, mid) min = mid; else max = mid; }
5. return min;

Cost O(log2 #G)

8 / 14

Reductions
Example (PLOGG ≤P LOGG)

Algorithm PLOG_Reduction (G x, int t)
1. log = OracleLOG(x);
2. return (log ≥ t);

Since 0 ≤ t, log ≤ #G, and cost of OracleDLOG is constant,
cost of PLOG_Reduction is O(log#G).

Example (LOGG ≤P PLOGG)

Algorithm LOG_Reduction (G x) // Binary search
1. min = 0; max =#G;
2. while (min < max){
3. mid = (min+max)/2;
4. If OraclePLOG(x, mid) min = mid; else max = mid; }
5. return min;

Cost O(log2 #G)

8 / 14

NP hardness NP completeness

Property

NP is closed under ≤(Karp)
P :{

A ≤(Karp)
P B

B ∈ NP
⇒ A ∈ NP.

Definition
A is NP-hard if ∀X ∈ NP X ≤(Karp)

P A

Definition
NP-complete = NP-hard

⋂
NP

Theorem (Cook)

NP-complete ̸= ∅ as 3− SAT ∈ NP-complete

9 / 14

NP-intermediate

Definition (NP-intermediate)

Problems that are neither in P nor in NP-complete.

Theorem (Ladner)

If P ̸= NP then NP-intermediate ̸= ∅

Examples

Good candidates for NP-intermediate problems:
▶ Graph isomorphism
▶ Integer factorization
▶ Discrete logarithm

10 / 14

NP-intermediate

Definition (NP-intermediate)

Problems that are neither in P nor in NP-complete.

Theorem (Ladner)

If P ̸= NP then NP-intermediate ̸= ∅

Examples

Good candidates for NP-intermediate problems:
▶ Graph isomorphism
▶ Integer factorization
▶ Discrete logarithm

10 / 14

Outline

P, NP classes and reduction
One way function and asymmetric cryptography

11 / 14

One way functions

Definition (One way function)

Function E : {0, 1}n → {0, 1}n that are
▶ injective
▶ easy to compute
▶ hard to invert: x← E(−1)(y) should be computationnally hard

Remark
▶ Easy to compute⇒ E ∈ P
▶ Therefore D = E−1 ∈ NP
▶ Hence if one way functions exist then P ̸= NP

Design one way functions by basing D on difficult problems in NP:
▶ NP-complete: subset-sum, knapsack, (Merkle-Hellman,

Chor-Rivest)
▶ NP-intermediate: factorization (RSA), discrete log (El-Gamal)

12 / 14

One way functions

Definition (One way function)

Function E : {0, 1}n → {0, 1}n that are
▶ injective
▶ easy to compute
▶ hard to invert: x← E(−1)(y) should be computationnally hard

Remark
▶ Easy to compute⇒ E ∈ P
▶ Therefore D = E−1 ∈ NP
▶ Hence if one way functions exist then P ̸= NP

Design one way functions by basing D on difficult problems in NP:
▶ NP-complete: subset-sum, knapsack, (Merkle-Hellman,

Chor-Rivest)
▶ NP-intermediate: factorization (RSA), discrete log (El-Gamal)

12 / 14

One way functions

Definition (One way function)

Function E : {0, 1}n → {0, 1}n that are
▶ injective
▶ easy to compute
▶ hard to invert: x← E(−1)(y) should be computationnally hard

Remark
▶ Easy to compute⇒ E ∈ P
▶ Therefore D = E−1 ∈ NP
▶ Hence if one way functions exist then P ̸= NP

Design one way functions by basing D on difficult problems in NP:
▶ NP-complete: subset-sum, knapsack, (Merkle-Hellman,

Chor-Rivest)
▶ NP-intermediate: factorization (RSA), discrete log (El-Gamal)

12 / 14

One way trapdoor functions

Make deciphering practical: add a parameter (secret key)

Definition
▶ E is one way

▶ E is easy to compute
▶ D such that D(E(x)) = x is hard to compute

▶ but given a trapdoor (secret key), D is easy to compute

13 / 14

Example: Knapsack [Merkle Hellman 78]
Problem (Subset sum ∈ NP-complete)

Input: (a1, a2, . . . , an) and S integers
Output: Yes iff ∃(x1, . . . , xn) ∈ {0, 1}n,

∑n
i=1 xiai = S

Idea for encoding: E(x1, . . . , xn) =
∑n

i=1 xiai

Building a trapdoor function

▶ Easy to solve instance: choose (a1, . . . , an) super-increasing
i.e. ai >

∑i−1
j=1 aj. which algorithm?

▶ Hiding simplicity: bi = tai mod m with t and m > S secret and
coprime

Public key: (b1, . . . , bn).
Encryption: C = E(x1, . . . , xn) =

∑n
i=1 xibi mod m

Private key: (a1, . . . , an), t, u = t−1 mod m

Decryption: C.u mod m and solve the easy problem with the ai’s.

14 / 14

Example: Knapsack [Merkle Hellman 78]
Problem (Subset sum ∈ NP-complete)

Input: (a1, a2, . . . , an) and S integers
Output: Yes iff ∃(x1, . . . , xn) ∈ {0, 1}n,

∑n
i=1 xiai = S

Idea for encoding: E(x1, . . . , xn) =
∑n

i=1 xiai

Building a trapdoor function

▶ Easy to solve instance: choose (a1, . . . , an) super-increasing
i.e. ai >

∑i−1
j=1 aj. which algorithm?

▶ Hiding simplicity: bi = tai mod m with t and m > S secret and
coprime

Public key: (b1, . . . , bn).
Encryption: C = E(x1, . . . , xn) =

∑n
i=1 xibi mod m

Private key: (a1, . . . , an), t, u = t−1 mod m

Decryption: C.u mod m and solve the easy problem with the ai’s.

14 / 14

Example: Knapsack [Merkle Hellman 78]
Problem (Subset sum ∈ NP-complete)

Input: (a1, a2, . . . , an) and S integers
Output: Yes iff ∃(x1, . . . , xn) ∈ {0, 1}n,

∑n
i=1 xiai = S

Idea for encoding: E(x1, . . . , xn) =
∑n

i=1 xiai

Building a trapdoor function

▶ Easy to solve instance: choose (a1, . . . , an) super-increasing
i.e. ai >

∑i−1
j=1 aj. which algorithm?

▶ Hiding simplicity: bi = tai mod m with t and m > S secret and
coprime

Public key: (b1, . . . , bn).
Encryption: C = E(x1, . . . , xn) =

∑n
i=1 xibi mod m

Private key: (a1, . . . , an), t, u = t−1 mod m

Decryption: C.u mod m and solve the easy problem with the ai’s.

14 / 14

Example: Knapsack [Merkle Hellman 78]
Problem (Subset sum ∈ NP-complete)

Input: (a1, a2, . . . , an) and S integers
Output: Yes iff ∃(x1, . . . , xn) ∈ {0, 1}n,

∑n
i=1 xiai = S

Idea for encoding: E(x1, . . . , xn) =
∑n

i=1 xiai

Building a trapdoor function

▶ Easy to solve instance: choose (a1, . . . , an) super-increasing
i.e. ai >

∑i−1
j=1 aj. which algorithm?

▶ Hiding simplicity: bi = tai mod m with t and m > S secret and
coprime

Public key: (b1, . . . , bn).
Encryption: C = E(x1, . . . , xn) =

∑n
i=1 xibi mod m

Private key: (a1, . . . , an), t, u = t−1 mod m

Decryption: C.u mod m and solve the easy problem with the ai’s.

14 / 14

	P, NP classes and reduction
	One way function and asymmetric cryptography

