Asymmetric cryptography
Cryptographic Engineering

Clément PERNET

M2 Cyber Security,
UFR-IM2AG, Univ. Grenoble-Alpes
ENSIMAG, Grenoble INP

1/51

Introduction
Asymmetric role of the encryption/decryption keys

Public key cryptography

Directory
Bob —> Bob’s public key
Alice Bob

‘ Clear ‘ ‘Encrypted Unsecure Channel Encrypted ‘ ‘Clear ‘

Analogy of the mailbox:
» Anyone can write to Bob
» Only Bob can read the mail

2/51

Outline

One Way functions

3/51

One way functions

» The private key K, is fully determined by the public key K,
=-no randomness involved, no statistical analysis

» But requires a notion of difficulty of computation

4/51

One way functions

» The private key K, is fully determined by the public key K,
=-no randomness involved, no statistical analysis

» But requires a notion of difficulty of computation

One way function

easy

> easy to compute in one way
» hard to invert (other way) ...

4/51

One way functions

» The private key K; is fully determined by the public key K,
=-no randomness involved, no statistical analysis

» But requires a notion of difficulty of computation

One way function

easy

> easy to compute in one way
» hard to invert (other way) ...

> ... unless some trapdoor is
known

4/51

Outline

Two fundamental one-way functions
Discrete Logarithm
Integer factorization

5/51

Outline

Two fundamental one-way functions
Discrete Logarithm

6/51

A one way function: the exponentiation

begin
Problem y=1
. G ke (1G]} fori=1...kdo
ata: x € G agroup ,k € {1.. — X
Result: y = ¥ Ly=y

=0 (k) = O (|G|) operations over G

7/51

A one way function: the exponentiation

begin

Problem y=1
fori=1...kdo

Data: x € G a group ,k € {1..|G| _ .
Result: y = x* el Ly=yxx
=0 (k) = O (|G|) operations over G
begin
if k=0 then
L return 1
Compute recursively
7= xlk2l
if k is even then
| return 7
else
L return z? x x

=0 (log, k) = O (log, |G|) operations over G

7/51

A one way function: the exponentiation

Problem

Data: x € G a group ,k € {1..|G|}
Result: y = x*

begin
if k=0 then
L returnli
Compute recursively
7= xlk2l
if k is even then
| return 72
else
L return 2 x x

begin
y=1
fori=1...kdo
Ly:yxx;

=0 (k) = O (|G|) operations over G
begin
Let k = [k(), e ,k10g2 k] be the
binary representation of k;
h=xy=1;
fori=1...log, kdo
if k; = 1 then
L y=yxh
h=h*;
| returny

=0 (log, k) = O (log, |G|) operations over G

=}

7/51

Reciprocal: the discrete logarithm

Problem
Fromy,x € G, compute k such thaty = x*

» Enumerate every x',fori=1...n =0 (|G|)
> Improvement: BabyStep/GiantStep, Pollard =0 (,/|G|)

> No known algorithm with polynomial time in log |G|

One way function

> Exp,: easy (polynomial time complexity)
» log,: hard (no known polynomial time algorithm)

8/51

Instances of groups
> Multiplicative groups of finite rings: (Z/nZ)*, (F,)*

9/51

Instances of groups
> Multiplicative groups of finite rings: (Z/nZ)*, (F,)*
» Group of points on an elliptic curve.
Elliptic curve arithmetic

(E) :y* =ax* +b mod p
» Additive group structure for the points on (E).

P EARY
SN SN SN

P+ro=0
P+O-R' ZQQ=_3 P+QO=0 2P=0 1

» (p,k) — kP =P+ ---+ Pis easy
N————
k times

> (P,Y) — ks.t. Y =kPis hard.

1CC-BY-SA-3.0, SuperManu at English Wikipedia
9/51

Diffie Hellman key exchange protocol

1. Choose publicly a group G and a

generator g
2. Alice:
Alice Bob
» chooses a secret o Ky = g° Kp = gP
> computes Ky = g°
» sends K4 to Bob
3. Bob: Kpa = K§ Kap = K©

» chooses a secret 3
> computes Kz = g°
> sends Kj to Alice

10/51

Diffie Hellman key exchange protocol

1. Choose publicly a group G and a

generator g
2. Alice:
Alice Bob
» chooses a secret o Ky = g° Kp = gP

> computes Ky = g“

> sends Ks to Bob

> computes Kgs = Ky
3. Bob: jon

» chooses a secret 3
> computes Kz = g°
> sends Kj to Alice

> computes Kz = K

= Kg Kap = K7

10/51

Diffie Hellman key exchange protocol

1. Choose publicly a group G and a
generator g
2. Alice:
» chooses a secret «
> computes Ky = g“
> sends Ks to Bob
> computes Kgs = Ky

Alice Bob
Ky = g® Kp = g°

3. Bob: Kpa = K Kip = KAB
» chooses a secret 3
> computes Kz = g°
> sends Kj to Alice
> computes Kz = K

Property
Kap = Kpy = g°#

=-sharing a key without ever sending «, 5.

10/51

Security of the Diffie-Hellmann protocol

» From g, K4, Kp, Oscar needs to compute a discrete logarithm in
order to know «, (3.

11/51

Security of the Diffie-Hellmann protocol

» From g, K4, Kp, Oscar needs to compute a discrete logarithm in
order to know «, (3.

» Weakness : Man in the middle attack

Alice Oscar Bob
KA=gO‘ [(O:gw KB:gB
Kpa = Kp Kio = Ky Kop = Kg

Kpo = Ky

11/51

Public key cipher: El Gamal

1. Alice:
» chooses G and a generator g
> chooses a secret x [Pubnc key (p, g, h) J
> computes h = g Alice Bob
> Public key: (g, h)

h=g"

12/51

Public key cipher: El Gamal

1. Alice:

» chooses G and a generator g
» chooses a secret x

> computes h = g*

> Public key: (g, h)

2. Bob: wants to send the message
meG
» chooses k randomly
> computes ¢; = gf
> computes c; = mh*
> sends (ci,c2) to Alice

[Public key (p, g, h) J

Alice
h=g'

Bob
Chooses k
=g
¢y = mh*

12/51

Public key cipher: El Gamal

1. Alice:

>

vvyy

| g

chooses G and a generator g
chooses a secret x
computes h = g*

Public key: (g, h)

computes cac; ™

2. Bob: wants to send the message
meG

>
|
>
| 2

chooses k randomly
computes ¢; = g*
computes ¢, = mh*
sends (c1, ¢2) to Alice

[Public key (p, g,h) J

Alice Bob
h=g" Chooses k
(c1,c =g
2 ¢y = mh*
m = cyc; "

12/51

Public key cipher: El Gamal

1. Alice:

>

vvyy

| g

chooses G and a generator g
chooses a secret x
computes h = g*

Public key: (g, h)

computes cac; ™

2. Bob: wants to send the message
meG

>
|
>
| 2

chooses k randomly
computes ¢; = g*
computes ¢, = mh*
sends (c1, ¢2) to Alice

CZC;X _ mhkg—kx _ mgkxg_

[Public key (p, g,h) J

kx

Alice Bob
h=g" Chooses k
(c1,c =g
1,C2 5 = mitk
m = cyc; "
=m

12/51

Outline

Two fundamental one-way functions

Integer factorization

13/51

The RSA code: Rivest Shamir Adelman

Theorem (Rivest Shamir Adelman 78)
Letp,q be primes and n = pq. Then

Va € Z/nZ,Yk € Z. a0~V — g mod n

Proof:
» Ifa =0 mod p, then d**"*!' =0 =g mod p
» Else, a is invertible modulo p and ¢”~! =1 mod p. Thus

dP=D=D+ — 4 mod p

» Similarly mod ¢: ¢*?~DE@D+! =4 mod ¢
» Chinese Remainder Theorem: =11+ — 4 mod pg

14/51

The RSA code

> Lete < ¢(n) coprime with p(n): =3d s.t. ed =1 mod ¢(n)

ed =1+ kp(n)

The RSA code:

> Public key: (e,n), encoding: ¢ = m* mod n
> Private key: (d,n), decoding: ¢ mod n
RSA Theorem: ¢¢ = m* = m't*¢(") = m mod n

Warning:
» ©(n) must remain private (since inverting e mod ¢(n) is easy)
> p,q must remain private

15/51

The RSA code

1. Alice:

» Chooses p, ¢ and computes n = pq [Public key (e,n) J

» Chooses e prime with ¢(n) Alice Bob
> Computes d = e~ mod ¢(n) -
> Public key: (e, n) d=e od ¢(n)

¢ =mf

m; = ¢¢

16/51

The RSA code

1. Alice:

» Chooses p, ¢ and computes n = pq
» Chooses e prime with o(n)

> Computes d = e~ mod ¢(n)

> Public key: (e, n)

2. Bob: wants to send the message m
» splits m = (mi,...,mg) st. mi <n
> For each m;
» sends ¢; = m{ mod n to Alice

[Public key (e, n) J
Alice Bob
d=e"! nlod ¢(n)

¢ =mf

m; = ¢¢

16/51

The RSA code

1. Alice:

» Chooses p, ¢ and computes n = pq
Chooses e prime with ¢(n)
Computes d = e~' mod p(n)
Public key: (e, n)

» Computes m; = ¢! mod n

2. Bob: wants to send the message m
» splits m = (mi,...,me) st. mi <n
> For each m;
» sends ¢; = m{ mod n to Alice

vvyy

[Public key (e, n) J
Alice Bob
d=e""! nlod ¢(n)

¢ =mf

m; = c;

16/51

The RSA code

1. Alice:

» Chooses p, ¢ and computes n = pq [Public key (e,n) J
Chooses e prime with ¢(n) .

Computes d = e~' mod p(n) A"(iel Bob

Public key: (e, n) d=e od ¢(n)

> Computes m; = ¢f mod n

2. Bob: wants to send the message m
» splits m = (mi,...,me) st. mi <n mi = cd
> For each m;
» sends ¢; = m{ mod n to Alice

vvyy

¢ =mf

Not semantically secure: use randomized padding on each block

16/51

Randomized Padding

The OAEP padding?

n-k@

» Works as a Feistel function: inverted without inverting G and H.

2CC-BY-SA-3.0, Ozga at English Wikipedia

17/51

RSA algorithmic

» Computing p, g primes =-prime number generator
» Computing n,o(n) = (p — 1)(¢ — 1) =Int. multiplication O™ (log n)
» Computingd = e~! mod ¢(n) =Ext. Euclidean alg. O (logn)
» Encoding: c =m® mod n =-Modular exponentiation O~ (1og2 n)
» Decoding: m = ¢! mod n =-Modular exponentiation O (1og2 n)
Yet recovering d from e, n is closely related to integer factorisation, a

difficult problem for which no polynomial time algorithm is known.
(see lecture on reductions).

18/51

Chinese Remainder based RSA

Exercise

1. Write a modular exponentiation algorithm computing m¢ mod n
based on the Chinese remainder theorem applied to n = pq.

2. Can it be applied to both the encryption and decryption of RSA?

3. Compute its time complexity (assuming classic integer
mutliplication). How does it compare to the standard modular
exponentiation?

19/51

CRT based RSA decryption

m, d — m® modn

20/51

CRT based RSA decryption

m, d — m® modn
Reduction | Reduction |

m,=m modp, d,=d modp-—1

mg=m modgq, d,=d modgqg-—1

20/51

CRT based RSA decryption

m d — m? modn

Reduction | Reduction |
m,=m modp, d,=d modp—-1 — m,‘f” mod p

mg=m modgqg, d,=d modg—-1 — mgq mod ¢

20/51

CRT based RSA decryption

m7
Reduction |

m, =m mod p,

myg=m mod g,

d
Reduction |

dy=d modp—1
d,=d modgq—1

m* mod n
CRT 7t

dl’
my” mod p

d
my’ mod g

20/51

CRT based RSA decryption

m, d — m? modn
Reduction | Reduction | CRT ©

p

m,=m modp, d,=d modp—-1 — m,‘f mod p

mg=m modgqg, d,=d modg—-1 — mgq mod ¢

Algorithm(s)

! mod p) +

mod ¢g) mod n

c = (g

cp(p™!

20/51

CRT based RSA decryption

m, d — m? modn
Reduction | Reduction | CRT 1
m,=m modp, d,=d modp-—1 L, m,‘f” mod p

mg=m modgqg, d,=d modg—-1 — mgq mod ¢

Algorithm(s)

¢ = cqlg”" modp)+
cp(p™!
1. Precompute:

1.1 a+ q(g~" mod p) mod n
1.2 b+ p(p~" mod ¢q) mod n

mod ¢g) mod n

m, <= m mod p
my <~ m mod ¢
¢, < ExpMod(my,d,,p)
¢q < ExpMod(my,dy, q)

o gk wDd

c < ac bc
P + q 20/51

CRT based RSA decryption

m, d — m? modn
Reduction | Reduction | CRT 1
m,=m modp, d,=d modp-—1 L, m,‘f” mod p

mg=m modgqg, d,=d modg—-1 — mgq mod ¢

Algorithm(s)
_ —i
¢ = oqlq 1 mod p) + ¢ = pp~" modq)(c, —cp) +
cp(p” modg) modn ¢, il
1. Precompute:
1.1 a+ q(g~" mod p) mod n

1.2 b+ p(p~" mod ¢q) mod n
m, <= m mod p

my <~ m mod ¢

¢, < ExpMod(my,d,,p)

¢q < ExpMod(my,dy, q)

o gk wDd

c < ac bc
P + q 20/51

CRT based RSA decryption

m, d
Reduction | Reduction |

— m? modn
CRT 7t

m,=m modp, d,=d modp—-1 — m,‘f” mod p

mg=m modgqg, d,=d modg—-1 — mgq mod ¢

Algorithm(s)

! mod p) +

mod ¢g) mod n

c = oq(q
cqp(p
1. Precompute:

1.1 a+ q(g~" mod p) mod n
1.2 b+ p(p~" mod ¢q) mod n

m, <= m mod p

—1

my <~ m mod ¢
¢, < ExpMod(my,d,,p)
¢q < ExpMod(my,dy, q)

o gk wDd

¢ < ac, + bey

Cc

o0 s W

= P(P_1 mod q)(cq — ¢p) +
¢, modn

. Precompute:

11 a+ p(p~' mod ¢) modn
my, <—m mod p

mgy < m mod g

¢y ExpMod(m,, d,,p)

¢4 < ExpMod(my,dy, q)

¢ my+al(cg—cp)

20/51

CRT based RSA decryption

» Require the knowledge of p and ¢ =-only for decryption

21/51

CRT based RSA decryption

» Require the knowledge of p and ¢ =-only for decryption

Reminder: Modular exponentiation costs: ~ 2loge Mult = 21log* n
» Cost:

T(n) = 2log’ p + 2log® g + 0(log2 n)
= 4log’ v/n+ O(log? n)

1
= 3 log®(n) + O(log® n)

21/51

CRT based RSA decryption

» Require the knowledge of p and ¢ =-only for decryption

Reminder: Modular exponentiation costs: ~ 2loge Mult = 21log* n
» Cost:

T(n) = 2log’ p + 2log® g + 0(log2 n)
= 4log’ v/n+ O(log? n)

1
= 3 log®(n) + O(log® n)
vs 2log® n for the standard modular exponentiation

=-near 4 x speed-up

21/51

Attacks by fault injection on CRT-RSA

» A chip performs authentication by applying a the RSA private key
to a challenge.

» Using a laser, one can flip a bit in a register of the chip at a given
time, thus generating a fault.

Exercise
Suppose one has succesfully managed to generate a fault during one
of the two modular exponentiations in the RSA-CRT encryption
algorithm.
1. Explain how one can recover the private factors p and g from this
faulty signature and a correct one.
2. Explore which part of the algorithm is sensitive to the same
attack

22/51

Fault injection on CRT-RSA

c=ac, +bc, modn, witha=gq(qg~" mod p),b=p(p~" mod q)

1. If only one of ¢, or ¢, is incorrect (say c,) then
> the faulty ¢ still verifies ¢’ = ¢, mod gq.
hence ¢’ — ¢ =0 mod ¢ and ¢ divides ¢’ — ¢

moreover ¢’ — ¢ = a(c, — ¢,) + An.

but ¢ divides a (@ = ¢(¢~" mod p))
Therefore g divides ¢’ — ¢ but p does not.
Thus ged(c’ — ¢,n) = q.

vyvVvyYyyVvVy

23/51

Fault injection on CRT-RSA

c=ac, +bc, modn, witha=gq(qg~" mod p),b=p(p~" mod q)

1. If only one of ¢, or ¢, is incorrect (say c,) then
> the faulty ¢ still verifies ¢’ = ¢, mod gq.
hence ¢’ — ¢ =0 mod ¢ and ¢ divides ¢’ — ¢
moreover ¢’ — ¢ = a(c, — ¢,) + An.
but ¢ divides a (@ = ¢(¢~" mod p))
Therefore g divides ¢’ — ¢ but p does not.
» Thus gcd(c’ — ¢,n) = q.
2. Faults on m, <~ m mod p or m, +— m mod p or loading m to
register for these reductions also lead to the same problem

vVvyyvyy

23/51

Fault injection on CRT-RSA

c=ac, +bc, modn, witha=gq(qg~" mod p),b=p(p~" mod q)

1. If only one of ¢, or ¢, is incorrect (say c,) then
> the faulty ¢ still verifies ¢’ = ¢, mod gq.
hence ¢’ — ¢ =0 mod ¢ and ¢ divides ¢’ — ¢
moreover ¢’ — ¢ = a(c, — ¢,) + An.
but ¢ divides a (@ = ¢(¢~" mod p))
Therefore g divides ¢’ — ¢ but p does not.
» Thus gcd(c’ — ¢,n) = q.
2. Faults on m, <~ m mod p or m, +— m mod p or loading m to
register for these reductions also lead to the same problem

vVvyyvyy

Conter-measures

» physical protections
» perform the signature twice, and compare if they differ
» verification that ¢ mod n = m before answering the challenge

23/51

Other attacks on RSA

Common modulus attack

Alice and Bob have RSA public keys (es,n4) and (eg, ng) with the
same modulus nsy = ng. Suppose that e, and e are co-prime.

» Explain how Eve can easily recover the plain text if she intercepts
the two corresponding ciphertexts encrypted for Alice and for
Bob.

» Conclusion?

24/51

Other attacks on RSA

Common modulus attack

Alice and Bob have RSA public keys (es,n4) and (eg, ng) with the
same modulus nsy = ng. Suppose that e, and e are co-prime.

» Explain how Eve can easily recover the plain text if she intercepts
the two corresponding ciphertexts encrypted for Alice and for
Bob.

» Conclusion?

Diffusion and common small exponent attack

Suppose Jack, William and Avrel have the RSA keys
(3,n5),(3,nw),(3,n4) Joe sends the message m to them using their
respective encryption keys.

» Explain how Lucky-luke can recover the plaintext m from these 3
ciphertexts.

hint: computing [x'/*| can be achieved in 0 (log2 x) bit
operations using Newton’s iteration.

24/51

Other attacks on RSA

Factorial attack
Let B € Z such that (p — 1) divides B!.

o~ 0 Db~

Show that for any prime factor p; of p — 1, p1 < B.

For a € Z show that ¢® =1 mod p.

LetA = a® mod n. Show that p divides A — 1.

How much does the computation of A costs (as a function of n and B)

How can one try to factor n using the above results? Under which
condition does it work?

Contermeasure?

25/51

Other attacks on RSA

Decryption variant

Let’s consider the following variant on RSA: for n = pq with p and ¢ prime
numbers

>

vV v VY

let fu(n) = ©=24=1 where § = ged(p — 1,¢ — 1).

The public key is still a pair (e, n) where e is co-prime with (p — 1)(¢ — 1)
letd’ = e~' mod u(n) so that the private key now becomes (d’, n)
encryption is E(x) = x° mod n

decryption is D(x) = x* mod n

1. Explain why the decryption still works

N

. compute the private keys d and &' for p = 19 and ¢ = 31.
. What do you think of this variant in terms of efficiency and security?

26/51

Outline

Attacking the hard problems
Rho Pollard’s algorithm
Index calculus algorithm
Quadratic sieve

27/51

Attacking the hard problems

> Integer factorization

» Discrete logarithm

» over a finite field
> over elliptic curves

Motivation
Find the best algorithms/implementation attacking those problems to
» estimate the difficulty of practical attacks

> relate the key size to the security parameters
» anticipate the evolution of key sizes

28/51

Outline

Attacking the hard problems
Rho Pollard’s algorithm

29/51

Applied to integer factorization

Problem

1. Decompose n inton =]_[fz] pi*, where p; are prime

2. Weaker formulation: find p > 1 such that p|n
= recursive computation of the factors of n/p.

30/51

Applied to integer factorization

Problem

1. Decompose n inton =]_[fz] pi*, where p; are prime

2. Weaker formulation: find p > 1 such that p|n
= recursive computation of the factors of n/p.

Principle: exploiting a collision

Suppose we found X and Y such that

X = Y modp
X # Y modn

p divides X — Y but n does not.

= GCDX—-Y,n)=p

How to find X and Y ?

30/51

Applied to integer factorization

Problem

1. Decompose n inton =]‘[le pi*, where p; are prime

2. Weaker formulation: find p > 1 such that p|n
= recursive computation of the factors of n/p.

Principle: exploiting a collision
Suppose we found X and Y such that

X = Y modp
X # Y modn

p divides X — Y but n does not.

= GCDX—-Y,n)=p

How to find X and ¥ ? =-recurring sequences

30/51

Collision in a recurring sequence
Principle:

Xo = rand(),
XH—I = f(Xl) mod n
» Finite number of states: ultimately periodic

» Recurring sequence mod n: {

31/51

Collision in a recurring sequence
Principle:

Xo = rand(),
XH—I = f(Xl) mod n
» Finite number of states: ultimately periodic

mod n: period A\, s.t. X4, =X, mod nVt > pu,

» Recurring sequence mod n: {

@ &) @@®
o

o0

modulo 1517 = 41 x 37

31/51

Collision in a recurring sequence

Principle:
Xo = rand(),
Xi+1 = f(Xl) mod n
» Finite number of states: ultimately periodic

mod n: period A\, s.t. X4, =X, mod nVt > pu,
mod p: period A, < A\, s.t. X, =X; mod p Vt > p,

» Recurring sequence mod n: {

(e)@
029)
L 0080
(9 () (=)
= (O
QQ
° modulo 41
modulo 1517 =41 x 37

31/51

Collision in a recurring sequence
Principle:

Xo = rand(),
Xi+1 = f(Xl) mod n
» Finite number of states: ultimately periodic

mod n: period A\, s.t. X4, =X, mod nVt > pu,
mod p: period A, < A\, s.t. X, =X; mod p Vt > p,

» GCD((X;4x — X;),n) =porpg =f X,y — X, #0 modn =getp

@e@@@ SO U
g ’0@0

@) ot
modulo 41

modulo 1517 = 41 x 37

» Recurring sequence mod n: {

31/51

How to detect a collision?
@@)
(1)

modulo 41

modulo 1517 = 41 x 37

Exercise

1. Propose (an) algorithm(s) finding indices i and j of a collision:
such that X; = X; mod p.

2. What is its time and space complexity?

32/51

Floyd’s cycle detection
Let u;11 = f(u;) be the recurring sequence.
Tail length:
Period: A
Uit pt+n = Uiy, Vj > 0.
Iterate through u; with 2 paces:
> X; = u; (by steps of 1)
> Y; = uy; (by steps of 2)

33/51

Floyd’s cycle detection
Let u;11 = f(u;) be the recurring sequence.
Tail length:
Period: A
Uyt n = Ujpp Vj = 0.
Iterate through u; with 2 paces:
> X; = u; (by steps of 1)
> Y; = uy; (by steps of 2)

Lemma

w=uy<=i=kAx>p

33/51

Floyd’s cycle detection
Let u;11 = f(u;) be the recurring sequence.
Tail length:
Period: A
Uyt n = Ujpp Vj = 0.
Iterate through u; with 2 paces:
> X; = u; (by steps of 1)
> Y; = uy; (by steps of 2)

Lemma
ui:uzi@)i:k)\z,u

In particular, the first such i is for k = [£] and satifies
p<i<A+u

33/51

Floyd’s cycle detection
Let u;11 = f(u;) be the recurring sequence.
Tail length:
Period: A
Ujtpyx = Uity V] 2> 0.
Iterate through u; with 2 paces:
> X; = u; (by steps of 1)
> Y; = uy; (by steps of 2)

Lemma
Mizuzi@iZkAZ,u

In particular, the first such i is for k = [£] and satifies
p<i<A+u

Cost
A+ p < p hence ©(4/n) iterations.

33/51

Rho Pollard: illustration

e“”%

Xo < rand(),g < 1,i+ 1;
Yo (—f(X()),
while g =1 do

Xi — f(Xi1);
Yi < f(f(Yiz1));
g+ GCD(Y; — X;,n);

Lo [

/@ return g
./ T 0 GCD(901 — 30,1517) =1

Rho Pollard: illustration

Xo <+ rand(),g < 1,i+ 1;
YO (—f(X()),
while g =1 do
Xi — f(Xiz1);
Yi < f(f(Yim1));
g < GCD(Y; — X;,n);
i< i+1;
return g

GCD(374 —901,1517) =1

Rho Pollard: illustration

Xo <+ rand(),g < 1,i+ 1;
YO (—f(X()),
while g =1 do
Xi — f(Xiz1);
Yi < f(f(Yim1));
g < GCD(Y; — X;,n);
i< i+1;
return g

GCD(882 —207,1517) =1

Rho Pollard: illustration

Xo <+ rand(),g < 1,i+ 1;
YO (—f(X()),
while g =1 do
Xi — f(Xiz1);
Yi < f(f(Yim1));
g < GCD(Y; — X;,n);
i< i+1;
return g

GCD(1148 —347,1517) =1

Rho Pollard: illustration

Xo <+ rand(),g < 1,i+ 1;
YO (—f(X()),
while g =1 do
Xi — f(Xiz1);
Yi < f(f(Yim1));
g < GCD(Y; — X;,n);
i< i+1;
return g

GCD(412 — 313,1517) =1

Rho Pollard: illustration

Xo < rand(),g «+ 1,i < 1;
YO (—f(X()),
while g = 1 do
Xi <+ f(Xi—1);
Yi < f(f(Yie1));
g < GCD(Y; — X;,n);
i< i+1;
return g

GCD(1010 — 882,1517) =1

Rho Pollard: illustration

Xo < rand(),g «+ 1,i < 1;
Yo + f(Xo);
while g =1 do
Xi < f(Xi—1);
Y; <—f(f(1))
geGCD(Y X, n);
i< i+1;
return g

\% GCD(196 — 1221,1517) =

Rho Pollard for the discrete logarithm problem
Solving Discrete logarithm problems

Find x s.t. y = ¢g* over a group G

Recurring function
For a well chosen partition G = S; U S, U S;
y-u; ifu; €8
up = 1 and Uiy :f(u,-) = l/tlz if u; €8,
g-u; ifu; €83
Therefore u; = g%y where ay = by = 1 and
a; if u; € S; b;+1 ifu; €S
a1 = 2a; if u; €S, 7bi+l = 2b; if u; €95,

a; + 1 ifui€S3 b; ifu,-eS3

35/51

Floyd’s cycle detection

At some point

@i a; bi

by
Ui = ui = gy =gly
S ybi*bzi

= ay —a; = (b — by;)log, y

With low probability b; — by; =0

Ay — a4;

bi - b21

= x=log,y =

36/51

Outline

Attacking the hard problems

Index calculus algorithm

37/51

Index calculus
Solving Discrete logarithm problems

Find x s.t. y = g" over (Z/pZ)" or F}.

38/51

Index calculus
Solving Discrete logarithm problems

Find x s.t. y = g" over (Z/pZ)" or Fy.

38/51

Index calculus
Solving Discrete logarithm problems

Find x s.t. y = g" over (Z/pZ)" or Fy.

Idea
If y =p{'py...por then
x =log, y = ejlog, p1 + exlog, pr + - - - + emlog, pm

=log, y is a linear combination of the discrete logs of the p;s.

38/51

Index calculus
Solving Discrete logarithm problems

Find x s.t. y = g" over (Z/pZ)" or Fy.
ldea
If y =p{'p3...por then
X = loggy = eIIOggpl + eZIOggPZ ++ emIOggpm

=log, y is a linear combination of the discrete logs of the p;s.

Outline

1. Select a small subset S C G s.t. significantly many elements of G
factorize in S.

2. Compute the discrete logs of all elements of §
3. Try to express the unknown DLP as a combination of elements in
the database.

38/51

Index calculus for the discrete logarithm over (Z/pZ)*
Ify=pi'p3...pS% then

log, y = eilog, p1 + ezlog, p> + - - - + eplog, pi

Database of discrete logs

> LetS={2,3,5,7,...} the first m primes

39/51

Index calculus for the discrete logarithm over (Z/pZ)*
Ify=pi'p3...pS% then

log, y = eilog, p1 + ezlog, p> + - - - + eplog, pi

Database of discrete logs

> LetS={2,3,5,7,...} the first m primes
» Pick random k and compute y; = g

39/51

Index calculus for the discrete logarithm over (Z/pZ)*
Ify=pi'p3...pS% then

log, y = eilog, p1 + ezlog, p> + - - - + eplog, pi

Database of discrete logs

> LetS={2,3,5,7,...} the first m primes
» Pick random k and compute y; = g
> if y, factorizes in S: y, = [T, pi*"

=k = Z:"zl eky,'log.g pi
=-one linear relation between the log, p;

39/51

Index calculus for the discrete logarithm over (Z/pZ)*
Ify=pi'p3...pS% then

log, y = eilog, p1 + ezlog, p> + - - - + eplog, pi

Database of discrete logs

> LetS={2,3,5,7,...} the first m primes
» Pick random k and compute y; = g
> if y, factorizes in S: y, = [T, pi*"

=k = Z:"zl eky,'log.g pi
=-one linear relation between the log, p;

> |terate until we get m independent equations

39/51

Index calculus for the discrete logarithm over (Z/pZ)*
Ify=pi'p3...pS% then

log, y = eilog, p1 + ezlog, p> + - - - + eplog, pi

Database of discrete logs

> LetS={2,3,5,7,...} the first m primes
» Pick random k and compute y; = g
> if y, factorizes in S: y, = [T, pi*"

=k = Z:"zl eky,'log.g pi
=-one linear relation between the log, p;

> |terate until we get m independent equations
» Solve the linear system

e - eiqm| [logep k1
: = mod p — 1

ekl oo Chym logg DPm km

39/51

Index calculus for the discrete logarithm over (Z/pZ)*

If y=p{'p3...por then

log, y = eilog, p1 + exlog, pr + - -+ + emlog, pm
Problem: y very likely does not factor in S
Recovery of the unkown discrete log

» Pick k at random and compute z = gty
> lterate until z factorizes in S: z = [/, p}
» Then

x=log,y=log,z—k = Zﬁloggpi — k.
i=1

40/51

Index calculus algorithm

» Most work is in the collection of relations
=embarassingly parallel

41/51

Index calculus algorithm

» Most work is in the collection of relations
=embarassingly parallel

» Linear algebra phase: compute modulo composite
k i
p—1=I[, %‘Z

41/51

Index calculus algorithm

» Most work is in the collection of relations
=embarassingly parallel

» Linear algebra phase: compute modulo composite
k é;
p—1= Hi:l q;
> Chinese remainder modulo each ¢

41/51

Index calculus algorithm

» Most work is in the collection of relations
=embarassingly parallel

» Linear algebra phase: compute modulo composite
k Z;
p—1=[l_q
> Chinese remainder modulo each ¢
> p-adic lifting from ¢; to ¢

41/51

Index calculus algorithm

» Most work is in the collection of relations
=embarassingly parallel
» Linear algebra phase: compute modulo composite
p—1= Hf:l ‘Ifi
> Chinese remainder modulo each ¢
> p-adic lifting from ¢; to ¢
» Once a database is collected, attack becomes much cheaper for
each new DLP problem.

41/51

Outline

Attacking the hard problems

Quadratic sieve

42/51

The quadratic sieve

Principle

Find x, y such that
¥ = > modn
X # 4y modn’

Then g = GCD(x —y,n) ¢ {1,n} =-a non-trivial factor of n.

43/51

The quadratic sieve

Principle

Find x, y such that
¥ = 3y modn
X # 4y modn

Then g = GCD(x —y,n) ¢ {1,n} =-a non-trivial factor of n.

Proof.
Since x> —y? = (x —y)(x +y) = kn,
» ifg=nthenx—y=0 modn
> if g = 1then x — ydivides k: k = (x — y)kK/,
andthus x+y=kn=0 mod n

43/51

The quadratic sieve
Example (Factorization of 7429)

872 1 x 7429 + 140 and 140 = 2> x 5 x 7
882 = 1x7429+315and315=3*>x5x7

44/51

The quadratic sieve
Example (Factorization of 7429)

872 1 x 7429 + 140 and 140 = 2> x 5 x 7
882 = 1x7429+315and315=3>x5x%x7

882 x 87> = (2 x 3 x 5% 7)> mod 7429

x = 87 x88=227 mod 7429
2x3%x5x%x7=210 mod 7429

44/51

The quadratic sieve
Example (Factorization of 7429)

872 1 x 7429 + 140 and 140 = 2> x 5 x 7
882 = 1x7429+315and315=3>x5x%x7

882 x 87> = (2 x 3 x 5% 7)> mod 7429

x = 87 x88=227 mod 7429
2x3%x5x%x7=210 mod 7429

GCD(227 — 210,7429) = 17

7429 = 17 x 437

44/51

The quadratic sieve

| Exp. of 2 | Exp. of 3 | Exp of 5 | Exp. of 7 |
| !

832
87?
882

2 3
2 0 1
0 2

45/51

The quadratic sieve

| Exp. of 2 | Exp. of 3 | Exp of 5 | Exp. of 7 |
1 0
1 1
1 1
> 87 x 88 is a square iff L2+L3 is even
» find a vector x € {0, 1} s.t. x'M is even

» find a vector x s.t. x’M =0 mod 2
» find a non-zero left-kernel vector of M in Z/27.

832
87?

2 3
2 0
882 0 2

45/51

The quadratic sieve

Sketch of the algorithm

1.
2.

© 00 N O

Set the factor base as the first 7 primes S = {p1,p2,...,p:}

Pick x at random near [/n] and compute b + x> — n until b
factorizes in S.

. Seta; =xand b; = b and v; = (ey, ..., e) the multiplicities of S'in b

Vi

. Iterate until the collection of relations | : | is large enough

Vi

. Find a non zero x € F¥ such that x’M = 0 mod 2

(e.g. solve x™M = b for b = v' M and v random).

C X [T xia

LW %xTM

LY < TI, Pl

. Return GCD(X — Y, n)

46/51

Exercise
Let n = 23129.

1. Show that the points 153,155 and 197, near /n = 152 have a
smooth square modulo n. Hint: 153> = 280 mod » and
197> = 2% x 5 x 7> mod n and 586 x 197 = 22926.

2. Factorn

47/51

Exercise
Let n = 23129.

1. Show that the points 153,155 and 197, near /n = 152 have a
smooth square modulo n. Hint: 153> = 280 mod » and
197> = 2% x 5 x 7> mod n and 586 x 197 = 22926.

2. Factorn

correction

1. 1532 =280=23x5x7

2. 1552 =(153+2)> =280+ 612 +4 =896 =27 x 7
3. 1972 =2 %« 5% 7% mod n

47/51

Exercise
Let n = 23129.

1. Show that the points 153,155 and 197, near /n = 152 have a
smooth square modulo n. Hint: 153> = 280 mod » and
197> = 2% x 5 x 7> mod n and 586 x 197 = 22926.

2. Factorn

correction

1. 1532 =280=2° x5 x 7
2. 1552 =(153+2)> =280+ 612 +4 =896 =27 x 7
3. 1972 =2 %« 5% 7% mod n
Hence (153 x 155 x 197)? = 295274 = (28 x 5 x 7)> mod n

Therefore GCD(153 x 155 x 197 — 28 x 5 x 7%, n) may be non-trivial.

153 x 155 = 1532 +2 x 153 = 280 + 306 = 586. 586 x 197 = 22926.
28 x 5x 77 =16462. X — Y = 6464 = 64 x 101 and 101 divides n.

47/51

Complexity
The L,[«, c] notation

Ln[Oé,C] _ e(cho(l))(logn)o‘(1Og10gn)l—a

> L,[0,c] = (logn)to) —polynomial in the size logn.
> L,[1,c] = nte()) —exponential in the size logn.

48/51

Complexity
The L,[a, ¢] notation

L,[a, c] = eleto(1))(logn)® (log log n)l—e

> L,[0,c] = (logn)cte(™) —polynomial in the size logn.

> L,[1,c] = nte()) —exponential in the size logn.

Rho pollard: L,[1,1/2] = ©(y/n) exponential time

48/51

Complexity
The L,[a, ¢] notation

L,[a, c] = eleto(1))(logn)® (log log n)l—e

> L,[0,c] = (logn)cte(™) —polynomial in the size logn.

> L,[1,c] = nte()) —exponential in the size logn.

Rho pollard: L,[1,1/2] = ©(y/n) exponential time
Index Calculus: L,[1/2, c] sub-exponential time
Quadratic Sieve: L,[1/2,] sub-exponential time

48/51

Complexity
The L,[a, ¢] notation

L,[a, c] = eleto(1))(logn)® (log log n)l—e

> L,[0,c] = (logn)cte(™) —polynomial in the size logn.

> L,[1,c] = nte()) —exponential in the size logn.

Rho pollard: L,[1,1/2] = ©(y/n) exponential time
Index Calculus: L,[1/2, c] sub-exponential time
Quadratic Sieve: L,[1/2,] sub-exponential time
Number field sieve: L,[1/3, c] sub-exponential time

48/51

Complexity
The L,[a, ¢] notation

L,[a, c] = eleto(1))(logn)® (log log n)l—e

> L,[0,c] = (logn)cte(™) —polynomial in the size logn.
> L,[1,c] = nte()) —exponential in the size logn.

Rho pollard: L,[1,1/2] = ©(y/n) exponential time
Index Calculus: L,[1/2, c] sub-exponential time
Quadratic Sieve: L,[1/2,] sub-exponential time
Number field sieve: L,[1/3, c] sub-exponential time

Factorisation Discrete logarithm

Rho Pollard L,[1,1/2] L,[1,1/2]
Index Calculus N/A L,[1/2,c]
Quadratic Sieve L,[1/2,c] N/A

Number Field Sieve L,[1/3,c] L,[1/3,c]

48/51

Records in practice

DLP over finite fields with Number Field Sieve
Z/pZ:
2014 p = 596 bits in 130 core years

2016 p =~ 768 bits in 6600 core years
GF(q)

2019: GF(2*°™°) in 2908 cores years
2014: GF(2°%*) in 45.66 cores years
2013: GF(2°'%®) in 22.9 cores days

DLP over Elliptic curves

2009: modulo 112 bit prime. Rho on 200 PS3 x 6 months
2016: GF(2!''7-%), Rho on 576 FPGA x 6 months

49/51

Records in practice

Integer factorization with the Number Field Sieve

2005: RSA 640 bits in 4.5 months total

» 36000000 columns
» =~ 7 x 10° non-zero coeffs

2009: RSA 768 bits in = 2 years (> 1500 core year)

» 192796550 columns
> = 27 x 10° non-zero coeffs

50/51

Security parameters and orders of magnitude

From [Lenstra Kleinjung Thomé, 2013]

Security level Symmetric Hash RSA

66 66 132 768
76 76 152 1024

106 106 212 2048

51/51

Security parameters and orders of magnitude

From [Lenstra Kleinjung Thomé, 2013]

8 Security level Symmetric Hash RSA
pool security 65 65 130 745
66 66 132 768
76 76 152 1024
rain security 80 80 160 1130
lake security 90 90 180 1440
sea 105 105 210 1990
106 106 212 2048
global* 114 114 228 2380

Senergy required to put that amount of water into boiling status

4year of solar energy
51/51

Security parameters and orders of magnitude

From [Lenstra Kleinjung Thomé, 2013]

8 Security level Symmetric Hash RSA
pool security 65 65 130 745
66 66 132 768
76 76 152 1024
rain security 80 80 160 1130
lake security 90 90 180 1440
sea 105 105 210 1990
106 106 212 2048
global* 114 114 228 2380

DLP:
» over prime field: ~ RSA security

» over ECC with strong primes: ~ half the bit size. (Rho Pollard)

Senergy required to put that amount of water into boiling status

4year of solar energy

	One Way functions
	Two fundamental one-way functions
	Discrete Logarithm
	Integer factorization

	Attacking the hard problems
	Rho Pollard's algorithm
	Index calculus algorithm
	Quadratic sieve

