Asymmetric cryptography

Cryptographic Engineering

Clément PERNET

M2 Cyber Security, UFR-IM²AG, Univ. Grenoble-Alpes ENSIMAG, Grenoble INP

Introduction

Asymmetric role of the encryption/decryption keys

Analogy of the mailbox:

- Anyone can write to Bob
- Only Bob can read the mail

Outline

One Way functions

Two fundamental one-way functions
Discrete Logarithm
Integer factorization

Attacking the hard problems

Rho Pollard's algorithm Index calculus algorithm Quadratic sieve

One way functions

- The private key K_d is fully determined by the public key K_e \Rightarrow no randomness involved, no statistical analysis
- But requires a notion of difficulty of computation

One way functions

- The private key K_d is fully determined by the public key K_e \Rightarrow no randomness involved, no statistical analysis
- ▶ But requires a notion of difficulty of computation

One way functions

- The private key K_d is fully determined by the public key K_e \Rightarrow no randomness involved, no statistical analysis
- But requires a notion of difficulty of computation

Outline

One Way functions

Two fundamental one-way functions
Discrete Logarithm
Integer factorization

Attacking the hard problems Rho Pollard's algorithm Index calculus algorithm Quadratic sieve

Outline

One Way functions

Two fundamental one-way functions Discrete Logarithm

Integer factorization

Attacking the hard problems

Rho Pollard's algorithm Index calculus algorithm Quadratic sieve

A one way function: the exponentiation

Problem

Data: $x \in G$ a group $k \in \{1..|G|\}$

Result: $y = x^k$

begin

$$y = 1;$$

for $i = 1 \dots k$ do
 $y = y \times x;$

 $\Rightarrow O(k) = O(|G|)$ operations over G

A one way function: the exponentiation

Problem

Data: $x \in G$ a group $k \in \{1..|G|\}$

Result: $y = x^k$

begin

begin

```
y = 1;

for i = 1 \dots k do

y = y \times x;
```

 $\Rightarrow O(k) = O(|G|)$ operations over G

 $\Rightarrow O(\log_2 k) = O(\log_2 |G|)$ operations over G

A one way function: the exponentiation

Problem

Data: $x \in G$ a group $k \in \{1..|G|\}$ **Result:** $y = x^k$

begin

```
if k=0 then

\bot return 1

Compute recursively

z=x^{\lfloor k/2\rfloor};

if k is even then

| return z^2

else

\bot return z^2 \times x
```

 $\Rightarrow O(\log_2 k) = O(\log_2 |G|)$ operations over G

```
begin
   for i = 1 \dots k do
     y = y \times x;
 \Rightarrow O(k) = O(|G|) operations over G
begin
    Let k = [k_0, \dots, k_{\log_2 k}] be the
     binary representation of k;
   h = x, y = 1;
   for i = 1 \dots \log_2 k do
       if k_i = 1 then
       return v
```

Reciprocal: the discrete logarithm

Problem

From $y, x \in G$, compute k such that $y = x^k$

- ► Enumerate every x^i , for $i = 1 ... n \Rightarrow O(|G|)$
- ▶ Improvement: BabyStep/GiantStep, Pollard $\Rightarrow O\left(\sqrt{|G|}\right)$
- lacktriangle No known algorithm with polynomial time in $\log |G|$

One way function

- Exp_x: easy (polynomial time complexity)
- $ightharpoonup \log_x$: hard (no known polynomial time algorithm)

Instances of groups

▶ Multiplicative groups of finite rings: $(\mathbb{Z}/n\mathbb{Z})^*$, $(\mathbb{F}_q)^*$

1

Instances of groups

- ▶ Multiplicative groups of finite rings: $(\mathbb{Z}/n\mathbb{Z})^*$, $(\mathbb{F}_q)^*$
- Group of points on an elliptic curve.

Elliptic curve arithmetic

$$(E): y^2 = ax^3 + b \mod p$$

▶ Additive group structure for the points on (*E*).

$$(p,k) \longrightarrow kP = \underbrace{P + \cdots + P}_{k \text{ times}} \text{ is easy}$$

 \triangleright $(P, Y) \longrightarrow k$ s.t. Y = kP is hard.

¹CC-BY-SA-3.0, SuperManu at English Wikipedia

Diffie Hellman key exchange protocol

- Choose publicly a group G and a generator g
- 2. Alice:
 - chooses a secret α
 - ightharpoonup computes $K_A = g^{\alpha}$
 - ightharpoonup sends K_A to Bob
- 3. Bob:
 - chooses a secret β
 - ightharpoonup computes $K_B = g^{\beta}$
 - sends K_R to Alice

Diffie Hellman key exchange protocol

- 1. Choose publicly a group G and a generator g
- 2. Alice:
 - chooses a secret α
 - ightharpoonup computes $K_A = g^{\alpha}$
 - \triangleright sends K_A to Bob
 - ightharpoonup computes $K_{BA}=K_{R}^{\alpha}$
- 3. Bob:
 - chooses a secret β
 - ightharpoonup computes $K_B = g^{\dot{\beta}}$
 - sends K_R to Alice
 - ightharpoonup computes $K_{AB} = K_A^{\beta}$

Diffie Hellman key exchange protocol

- 1. Choose publicly a group G and a generator g
- 2. Alice:
 - chooses a secret α
 - ightharpoonup computes $K_A = g^{\alpha}$
 - \triangleright sends K_A to Bob
 - ightharpoonup computes $K_{BA}=K_{R}^{\alpha}$
- 3. Bob:
 - chooses a secret β
 - ightharpoonup computes $K_B = g^{\beta}$
 - sends K_R to Alice
 - ightharpoonup computes $K_{AB} = K_A^{\beta}$

Property

$$K_{AB} = K_{BA} = g^{\alpha\beta}$$

 \Rightarrow sharing a key without ever sending α, β .

Security of the Diffie-Hellmann protocol

From g, K_A, K_B , Oscar needs to compute a discrete logarithm in order to know α, β .

Security of the Diffie-Hellmann protocol

- From g, K_A, K_B , Oscar needs to compute a discrete logarithm in order to know α, β .
- Weakness: Man in the middle attack

- chooses G and a generator g
- chooses a secret x
- ightharpoonup computes $h = g^x$
- ▶ Public key: (*g*, *h*)

- chooses G and a generator g
- chooses a secret x
- ightharpoonup computes $h = g^x$
- ▶ Public key: (*g*, *h*)
- 2. Bob: wants to send the message $m \in G$
 - \triangleright chooses k randomly
 - ightharpoonup computes $c_1 = g^k$
 - ightharpoonup computes $c_2 = mh^k$
 - ightharpoonup sends (c_1, c_2) to Alice

- chooses G and a generator g
- chooses a secret x
- ightharpoonup computes $h = g^x$
- ▶ Public key: (g, h)
- ightharpoonup computes $c_2c_1^{-x}$
- 2. Bob: wants to send the message $m \in G$
 - \triangleright chooses k randomly
 - ightharpoonup computes $c_1 = g^k$
 - ightharpoonup computes $c_2 = mh^k$
 - \triangleright sends (c_1, c_2) to Alice

- chooses G and a generator g
- chooses a secret x
- ightharpoonup computes $h = g^x$
- ▶ Public key: (*g*, *h*)
- ightharpoonup computes $c_2c_1^{-x}$
- 2. Bob: wants to send the message $m \in G$
 - \triangleright chooses k randomly
 - ightharpoonup computes $c_1 = g^k$
 - ightharpoonup computes $c_2 = mh^k$
 - \triangleright sends (c_1, c_2) to Alice

$$c_2 c_1^{-x} = m h^k g^{-kx} = m g^{kx} g^{-kx} = m$$

Outline

One Way functions

Two fundamental one-way functions Discrete Logarithm Integer factorization

Attacking the hard problems
Rho Pollard's algorithm
Index calculus algorithm
Quadratic sieve

The RSA code: Rivest Shamir Adelman

Theorem (Rivest Shamir Adelman 78)

Let p, q be primes and n = pq. Then

$$\forall a \in \mathbb{Z}/n\mathbb{Z}, \forall k \in \mathbb{Z} \ a^{1+k(p-1)(q-1)} = a \mod n$$

Proof:

- If $a = 0 \mod p$, then $a^{k\varphi(n)+1} = 0 = a \mod p$
- ▶ Else, *a* is invertible modulo *p* and $a^{p-1} = 1 \mod p$. Thus

$$a^{k(p-1)(q-1)+1} = a \mod p$$

- ► Similarly $\mod q$: $a^{k(p-1)(q-1)+1} = a \mod q$
- ▶ Chinese Remainder Theorem: $a^{k(p-1)(q-1)+1} = a \mod pq$

▶ Let $e < \varphi(n)$ coprime with $\varphi(n)$: $\Rightarrow \exists d$ s.t. $ed = 1 \mod \varphi(n)$

$$ed = 1 + k\varphi(n)$$

The RSA code:

- ▶ Public key: (e, n), encoding: $c = m^e \mod n$
- ▶ Private key: (d, n), decoding: $c^d \mod n$

RSA Theorem: $c^d = m^{ed} = m^{1+k\varphi(n)} = m \mod n$

Warning:

- $ightharpoonup \varphi(n)$ must remain private (since inverting $e \mod \varphi(n)$ is easy)
- p, q must remain private

Alice:

- ▶ Chooses p, q and computes n = pq
- Chooses e prime with $\varphi(n)$
- ightharpoonup Computes $d = e^{-1} \mod \varphi(n)$
- ▶ Public key: (*e*, *n*)

Alice:

- ▶ Chooses p, q and computes n = pq
- ▶ Chooses e prime with $\varphi(n)$
- ▶ Computes $d = e^{-1} \mod \varphi(n)$
- ▶ Public key: (*e*, *n*)

2. Bob: wants to send the message m

- ightharpoonup splits $m = (m_1, \ldots, m_k)$ st. $m_i < n$
- ► For each m_i
- ightharpoonup sends $c_i = m_i^e \mod n$ to Alice

Alice:

- ▶ Chooses p, q and computes n = pq
- ▶ Chooses e prime with $\varphi(n)$
- ▶ Computes $d = e^{-1} \mod \varphi(n)$
- ▶ Public key: (*e*, *n*)
- ightharpoonup Computes $m_i = c_i^d \mod n$
- 2. Bob: wants to send the message m
 - ightharpoonup splits $m = (m_1, \ldots, m_k)$ st. $m_i < n$
 - ► For each m_i
 - ightharpoonup sends $c_i = m_i^e \mod n$ to Alice

1. Alice:

- ▶ Chooses p, q and computes n = pq
- Chooses e prime with $\varphi(n)$
- ▶ Computes $d = e^{-1} \mod \varphi(n)$
- ▶ Public key: (e, n)
- ightharpoonup Computes $m_i = c_i^d \mod n$
- 2. Bob: wants to send the message m
 - ightharpoonup splits $m = (m_1, \ldots, m_k)$ st. $m_i < n$
 - ► For each m_i
 - ightharpoonup sends $c_i = m_i^e \mod n$ to Alice

Public key (e,n)Alice Bob $d=e^{-1} \mod \varphi(n)$ $c_i=m_i^e$

Not semantically secure: use randomized padding on each block

Randomized Padding

The OAEP padding²

lacktriangle Works as a Feistel function: inverted without inverting G and H.

²CC-BY-SA-3.0, Ozga at English Wikipedia

RSA algorithmic

- ► Computing p, q primes \Rightarrow prime number generator
- ▶ Computing $n, \varphi(n) = (p-1)(q-1)$ \Rightarrow Int. multiplication $O^{\sim}(\log n)$
- ▶ Computing $d = e^{-1} \mod \varphi(n)$ ⇒Ext. Euclidean alg. $O^{\tilde{}}(\log n)$
- ► Encoding: $c = m^e \mod n$ \Rightarrow Modular exponentiation $O^{\sim}(\log^2 n)$
- ▶ Decoding: $m = c^d \mod n$ \Rightarrow Modular exponentiation $O^{\sim}(\log^2 n)$

Yet recovering d from e, n is closely related to integer factorisation, a difficult problem for which no polynomial time algorithm is known. (see lecture on reductions).

Chinese Remainder based RSA

Exercise

- 1. Write a modular exponentiation algorithm computing $m^d \mod n$ based on the Chinese remainder theorem applied to n = pq.
- 2. Can it be applied to both the encryption and decryption of RSA?
- 3. Compute its time complexity (assuming classic integer mutliplication). How does it compare to the standard modular exponentiation?

CRT based RSA decryption

 $m, \qquad \qquad d \qquad \longrightarrow m^d \mod n$

CRT based RSA decryption

```
\begin{array}{lll} m, & d & \longrightarrow & m^d \mod n \\ \mathsf{Reduction} \downarrow & \mathsf{Reduction} \downarrow \\ m_p = m \mod p, & d_p = d \mod p - 1 \\ m_q = m \mod q, & d_q = d \mod q - 1 \end{array}
```

CRT based RSA decryption

m,	d	\longrightarrow	m^d	$\mod n$
Reduction ↓	Reduction ↓			
$m_p = m \mod p$,	$d_p = d \mod p - 1$	\xrightarrow{Exp}	$m_p^{d_p}$	$\mod p$
$m_q = m \mod q$,	$d_q = d \mod q - 1$	\xrightarrow{Exp}	$m_q^{d_q}$	$\mod q$

m,	d	\longrightarrow	m^d	$\mod n$
Reduction ↓	Reduction ↓		$CRT\uparrow$	
$m_p = m \mod p$,	$d_p = d \mod p - 1$	\xrightarrow{Exp}	$m_p^{d_p}$	$\mod p$
$m_q = m \mod q$,	$d_q = d \mod q - 1$	\xrightarrow{Exp}	$m_q^{d_q}$	$\mod q$

Algorithm(s)

$$c = c_p q(q^{-1} \mod p) + c_q p(p^{-1} \mod q) \mod n$$

Algorithm(s)

$$c = c_p q(q^{-1} \mod p) +$$

$$c_q p(p^{-1} \mod q) \mod n$$

1. Precompute:

1.1
$$a \leftarrow q(q^{-1} \mod p) \mod n$$

1.2 $b \leftarrow p(p^{-1} \mod q) \mod n$

- **2.** $m_p \leftarrow m \mod p$
- 3. $m_q \leftarrow m \mod q$
- **4.** $c_p \leftarrow \text{ExpMod}(m_p, d_p, p)$
- 5. $c_q \leftarrow \text{ExpMod}(m_q, d_q, q)$
- **6.** $c \leftarrow ac_p + bc_q$

Algorithm(s)

$$c = c_p q(q^{-1} \mod p) + c_q p(p^{-1} \mod q) \mod n$$

$$c = p(p^{-1} \mod q)(c_q - c_p) + c_p \mod n$$

1. Precompute:

1.1
$$a \leftarrow q(q^{-1} \mod p) \mod n$$

1.2 $b \leftarrow p(p^{-1} \mod q) \mod n$

- **2**. $m_p \leftarrow m \mod p$
- 3. $m_q \leftarrow m \mod q$
- **4.** $c_p \leftarrow \text{ExpMod}(m_p, d_p, p)$
- 5. $c_q \leftarrow \text{ExpMod}(m_q, d_q, q)$
- **6.** $c \leftarrow ac_p + bc_q$

Algorithm(s)

$$c = c_p q(q^{-1} \mod p) + c_q p(p^{-1} \mod q) \mod n$$

1. Precompute:

1.1
$$a \leftarrow q(q^{-1} \mod p) \mod n$$

1.2 $b \leftarrow p(p^{-1} \mod q) \mod n$

- **2.** $m_p \leftarrow m \mod p$
- 3. $m_a \leftarrow m \mod q$
- 4. $c_p \leftarrow \text{ExpMod}(m_p, d_p, p)$
- $5. c_q \leftarrow \text{ExpMod}(m_q, d_q, q)$

6.
$$c \leftarrow ac_p + bc_q$$

$$c = p(p^{-1} \mod q)(c_q - c_p) + c_p \mod n$$

1. Precompute:

1.1
$$a \leftarrow p(p^{-1} \mod q) \mod n$$

- 2. $m_p \leftarrow m \mod p$
- 3. $m_q \leftarrow m \mod q$
- **4.** $c_p \leftarrow \text{ExpMod}(m_p, d_p, p)$
- 5. $c_q \leftarrow \text{ExpMod}(m_q, d_q, q)$
- 6. $c \leftarrow m_p + a(c_q c_p)$

▶ Require the knowledge of p and q \Rightarrow only for decryption

▶ Require the knowledge of p and q \Rightarrow only for decryption

Reminder: Modular exponentiation costs: $\approx 2 \log e \text{ Mult} = 2 \log^3 n$

Cost:

$$T(n) = 2\log^{3} p + 2\log^{3} q + O(\log^{2} n)$$

$$= 4\log^{3} \sqrt{n} + O(\log^{2} n)$$

$$= \frac{1}{2}\log^{3}(n) + O(\log^{2} n)$$

▶ Require the knowledge of p and q \Rightarrow only for decryption

Reminder: Modular exponentiation costs: $\approx 2 \log e \text{ Mult} = 2 \log^3 n$

Cost:

$$T(n) = 2\log^{3} p + 2\log^{3} q + O(\log^{2} n)$$

$$= 4\log^{3} \sqrt{n} + O(\log^{2} n)$$

$$= \frac{1}{2}\log^{3}(n) + O(\log^{2} n)$$

vs $2 \log^3 n$ for the standard modular exponentiation \Rightarrow near $4 \times$ speed-up

Attacks by fault injection on CRT-RSA

- A chip performs authentication by applying a the RSA private key to a challenge.
- Using a laser, one can flip a bit in a register of the chip at a given time, thus generating a fault.

Exercise

Suppose one has successfully managed to generate a fault during one of the two modular exponentiations in the RSA-CRT encryption algorithm.

- 1. Explain how one can recover the private factors p and q from this faulty signature and a correct one.
- 2. Explore which part of the algorithm is sensitive to the same attack

Fault injection on CRT-RSA

$$c = ac_p + bc_q \mod n$$
, with $a = q(q^{-1} \mod p), b = p(p^{-1} \mod q)$

- 1. If only one of c_p or c_q is incorrect (say c_p) then
 - ▶ the faulty c' still verifies $c' = c_q \mod q$.
 - hence $c' c = 0 \mod q$ and q divides c' c
 - moreover $c' c = a(c'_p c_p) + \lambda n$.
 - but q divides a ($a = q(q^{-1} \mod p)$)
 - ▶ Therefore q divides c' c but p does not.
 - ▶ Thus gcd(c'-c,n) = q.

Fault injection on CRT-RSA

$$c = ac_p + bc_q \mod n$$
, with $a = q(q^{-1} \mod p), b = p(p^{-1} \mod q)$

- 1. If only one of c_p or c_q is incorrect (say c_p) then
 - ▶ the faulty c' still verifies $c' = c_q \mod q$.
 - hence $c' c = 0 \mod q$ and q divides c' c
 - moreover $c' c = a(c'_p c_p) + \lambda n$.
 - but q divides a ($a = q(q^{-1} \mod p)$)
 - ▶ Therefore q divides c' c but p does not.
 - ▶ Thus gcd(c'-c,n) = q.
- 2. Faults on $m_p \leftarrow m \mod p$ or $m_p \leftarrow m \mod p$ or loading m to register for these reductions also lead to the same problem

Fault injection on CRT-RSA

$$c = ac_p + bc_q \mod n$$
, with $a = q(q^{-1} \mod p), b = p(p^{-1} \mod q)$

- 1. If only one of c_p or c_q is incorrect (say c_p) then
 - the faulty c' still verifies $c' = c_q \mod q$.
 - hence $c' c = 0 \mod q$ and q divides c' c

 - but q divides a ($a = q(q^{-1} \mod p)$)
 - ▶ Therefore q divides c' c but p does not.
 - ► Thus gcd(c'-c,n)=q.
- 2. Faults on $m_p \leftarrow m \mod p$ or $m_p \leftarrow m \mod p$ or loading m to register for these reductions also lead to the same problem

Conter-measures

- physical protections
- perform the signature twice, and compare if they differ
- ightharpoonup verification that $c^e \mod n = m$ before answering the challenge

Common modulus attack

Alice and Bob have RSA public keys (e_A, n_A) and (e_B, n_B) with the same modulus $n_A = n_B$. Suppose that e_A and e_B are co-prime.

- Explain how Eve can easily recover the plain text if she intercepts the two corresponding ciphertexts encrypted for Alice and for Bob.
- Conclusion?

Common modulus attack

Alice and Bob have RSA public keys (e_A, n_A) and (e_B, n_B) with the same modulus $n_A = n_B$. Suppose that e_A and e_B are co-prime.

- Explain how Eve can easily recover the plain text if she intercepts the two corresponding ciphertexts encrypted for Alice and for Bob.
- ► Conclusion?

Diffusion and common small exponent attack

Suppose Jack, William and Avrel have the RSA keys $(3, n_J), (3, n_W), (3, n_A)$ Joe sends the message m to them using their respective encryption keys.

Explain how Lucky-luke can recover the plaintext *m* from these 3 ciphertexts.

hint: computing $\lfloor x^{1/k} \rfloor$ can be achieved in $O^{\sim} \left(\log^2 x\right)$ bit operations using Newton's iteration.

Factorial attack

Let $B \in \mathbb{Z}$ such that (p-1) divides B!.

- 1. Show that for any prime factor p_1 of p-1, $p_1 \le B$.
- 2. For $a \in \mathbb{Z}$ show that $a^{B!} = 1 \mod p$.
- 3. Let $A = a^{B!} \mod n$. Show that p divides A 1.
- 4. How much does the computation of *A* costs (as a function of *n* and *B*)
- 5. How can one try to factor n using the above results? Under which condition does it work?
- 6. Contermeasure?

Decryption variant

Let's consider the following variant on RSA: for n=pq with p and q prime numbers

- let $\mu(n) = \frac{(p-1)(q-1)}{\delta}$ where $\delta = \gcd(p-1,q-1)$.
- ▶ The public key is still a pair (e, n) where e is co-prime with (p 1)(q 1)
- ▶ let $d' = e^{-1} \mod \mu(n)$ so that the private key now becomes (d', n)
- encryption is $E(x) = x^e \mod n$
- decryption is $D(x) = x^{d'} \mod n$
- 1. Explain why the decryption still works
- 2. compute the private keys d and d' for p = 19 and q = 31.
- 3. What do you think of this variant in terms of efficiency and security?

Outline

One Way functions

Two fundamental one-way functions
Discrete Logarithm
Integer factorization

Attacking the hard problems

Rho Pollard's algorithm Index calculus algorithm Quadratic sieve

Attacking the hard problems

- Integer factorization
- Discrete logarithm
 - over a finite field
 - over elliptic curves

Motivation

Find the best algorithms/implementation attacking those problems to

- estimate the difficulty of practical attacks
- relate the key size to the security parameters
- anticipate the evolution of key sizes

Outline

One Way functions

Two fundamental one-way functions
Discrete Logarithm
Integer factorization

Attacking the hard problems
Rho Pollard's algorithm
Index calculus algorithm
Quadratic sieve

Applied to integer factorization

Problem

- 1. Decompose n into $n = \prod_{i=1}^k p_i^{\alpha_i}$, where p_i are prime
- 2. Weaker formulation: find p > 1 such that p|n \Rightarrow recursive computation of the factors of n/p.

Applied to integer factorization

Problem

- 1. Decompose n into $n = \prod_{i=1}^k p_i^{\alpha_i}$, where p_i are prime
- 2. Weaker formulation: find p > 1 such that p|n \Rightarrow recursive computation of the factors of n/p.

Principle: exploiting a collision

Suppose we found *X* and *Y* such that

$$\left\{ \begin{array}{ll} X & = & Y \mod p \\ X & \neq & Y \mod n \end{array} \right.$$

p divides X - Y but n does not.

$$\Rightarrow \mathsf{GCD}(X - Y, n) = p$$

How to find X and Y?

Applied to integer factorization

Problem

- 1. Decompose n into $n = \prod_{i=1}^k p_i^{\alpha_i}$, where p_i are prime
- 2. Weaker formulation: find p > 1 such that p|n \Rightarrow recursive computation of the factors of n/p.

Principle: exploiting a collision

Suppose we found X and Y such that

$$\left\{ \begin{array}{ll} X & = & Y \mod p \\ X & \neq & Y \mod n \end{array} \right.$$

p divides X - Y but n does not.

$$\Rightarrow \mathsf{GCD}(X - Y, n) = p$$

How to find X and Y? \Rightarrow recurring sequences

Principle:

- ▶ Recurring sequence mod n: $\begin{cases} X_0 = \text{rand()}, \\ X_{i+1} = f(X_i) \mod n \end{cases}$
- Finite number of states: ultimately periodic

Principle:

- ▶ Recurring sequence mod n: $\begin{cases} X_0 = \text{rand}(), \\ X_{i+1} = f(X_i) \mod n \end{cases}$
- Finite number of states: ultimately periodic $\mod n$: period λ_n s.t. $X_{t+\lambda_n} = X_t \mod n \ \forall t \geq \mu_n$

Principle:

- ▶ Recurring sequence mod n: $\begin{cases} X_0 = \text{rand()}, \\ X_{i+1} = f(X_i) \mod n \end{cases}$
- Finite number of states: ultimately periodic

$$\begin{array}{ll} \operatorname{mod} n\text{: period } \lambda_n \text{ s.t. } X_{t+\lambda_n} = X_t \mod n \ \forall t \geq \mu_n \\ \operatorname{mod} p\text{: period } \lambda_p \leq \lambda_n \text{ s.t. } X_{t+\lambda_p} = X_t \mod p \ \forall t \geq \mu_p \end{array}$$

modulo 41

Principle:

- ▶ Recurring sequence mod n: $\begin{cases} X_0 = \text{rand}(), \\ X_{i+1} = f(X_i) \mod n \end{cases}$
- Finite number of states: ultimately periodic

```
\begin{array}{ll} \operatorname{mod} n \text{: period } \lambda_n \text{ s.t. } X_{t+\lambda_n} = X_t \mod n \ \forall t \geq \mu_n \\ \operatorname{mod} p \text{: period } \lambda_p \leq \lambda_n \text{ s.t. } X_{t+\lambda_p} = X_t \mod p \ \forall t \geq \mu_p \end{array}
```

► $GCD((X_{t+k} - X_t), n) = p \text{ or } pq \implies \text{If } X_{t+k} - X_t \neq 0 \mod n \implies \text{get } p$

modulo $1517 = 41 \times 37$

modulo 41

How to detect a collision?

Exercise

- 1. Propose (an) algorithm(s) finding indices i and j of a collision: such that $X_i = X_i \mod p$.
- 2. What is its time and space complexity?

Let $u_{i+1} = f(u_i)$ be the recurring sequence.

Tail length: μ

Period: λ

$$u_{j+\mu+\lambda}=u_{j+\mu} \ \forall j\geq 0.$$

Iterate through u_i with 2 paces:

- $ightharpoonup X_i = u_i$ (by steps of 1)
- $ightharpoonup Y_i = u_{2i}$ (by steps of 2)

Let $u_{i+1} = f(u_i)$ be the recurring sequence.

Tail length: μ

Period: λ

$$u_{j+\mu+\lambda}=u_{j+\mu} \ \forall j\geq 0.$$

Iterate through u_i with 2 paces:

- $ightharpoonup X_i = u_i$ (by steps of 1)
- $ightharpoonup Y_i = u_{2i}$ (by steps of 2)

Lemma

$$u_i = u_{2i} \Leftrightarrow i = k\lambda \geq \mu$$

Let $u_{i+1} = f(u_i)$ be the recurring sequence.

Tail length: μ

Period: λ

$$u_{j+\mu+\lambda}=u_{j+\mu} \ \forall j\geq 0.$$

Iterate through u_i with 2 paces:

- $ightharpoonup X_i = u_i$ (by steps of 1)
- $ightharpoonup Y_i = u_{2i}$ (by steps of 2)

Lemma

$$u_i = u_{2i} \Leftrightarrow i = k\lambda \geq \mu$$

In particular, the first such *i* is for $k = \lceil \frac{\mu}{\lambda} \rceil$ and satisfies

$$\mu \le i \le \lambda + \mu$$

Let $u_{i+1} = f(u_i)$ be the recurring sequence.

Tail length: μ

Period: λ

$$u_{j+\mu+\lambda}=u_{j+\mu} \ \forall j\geq 0.$$

Iterate through u_i with 2 paces:

- $ightharpoonup X_i = u_i$ (by steps of 1)
- $ightharpoonup Y_i = u_{2i}$ (by steps of 2)

Lemma

$$u_i = u_{2i} \Leftrightarrow i = k\lambda \geq \mu$$

In particular, the first such i is for $k = \lceil \frac{\mu}{\lambda} \rceil$ and satisfies

$$\mu \le i \le \lambda + \mu$$

Cost

$$\lambda + \mu \le p$$
 hence $\Theta(\sqrt{n})$ iterations.

$$X_0 \leftarrow {\sf rand}(), g \leftarrow 1, i \leftarrow 1;$$

 $Y_0 \leftarrow f(X_0);$
while $g = 1$ **do**

$$\begin{cases} X_i \leftarrow f(X_{i-1}); \\ Y_i \leftarrow f(f(Y_{i-1})); \\ g \leftarrow {\sf GCD}(Y_i - X_i, n); \\ i \leftarrow i + 1; \end{cases}$$
return g

$${\sf GCD}(374 - 901, 1517) = 1$$


```
X_0 \leftarrow {\sf rand}(), g \leftarrow 1, i \leftarrow 1;

Y_0 \leftarrow f(X_0);

while g = 1 do

\begin{cases} X_i \leftarrow f(X_{i-1}); \\ Y_i \leftarrow f(f(Y_{i-1})); \\ g \leftarrow {\sf GCD}(Y_i - X_i, n); \\ i \leftarrow i + 1; \end{cases}
return g

{\sf GCD}(882 - 207, 1517) = 1
```


GCD(1148 - 347, 1517) = 1

GCD(412 - 313, 1517) = 1

Rho Pollard: illustration

Rho Pollard: illustration

GCD(196 - 1221, 1517) = 41

Rho Pollard for the discrete logarithm problem

Solving Discrete logarithm problems

Find x s.t. $y = g^x$ over a group G

Recurring function

For a well chosen partition $G = S_1 \cup S_2 \cup S_3$

$$u_0 = 1 \text{ and } u_{i+1} = f(u_i) = \left\{ \begin{array}{ll} y \cdot u_i & \text{if } u_i \in S_1 \\ u_i^2 & \text{if } u_i \in S_2 \\ g \cdot u_i & \text{if } u_i \in S_3 \end{array} \right.$$

Therefore $u_i = g^{a_i} y^{b_i}$ where $a_0 = b_0 = 1$ and

$$a_{i+1} = \begin{cases} a_i & \text{if } u_i \in S_1 \\ 2a_i & \text{if } u_i \in S_2 \\ a_i + 1 & \text{if } u_i \in S_3 \end{cases}, b_{i+1} = \begin{cases} b_i + 1 & \text{if } u_i \in S_1 \\ 2b_i & \text{if } u_i \in S_2 \\ b_i & \text{if } u_i \in S_3 \end{cases}$$

Floyd's cycle detection

At some point

$$u_{2i} = u_i \quad \Rightarrow \quad g^{a_{2i}} y^{b_{2i}} = g^{a_i} y^{b_i}$$

 $\Rightarrow \quad g^{a_{2i} - a_i} = y^{b_i - b_{2i}}$
 $\Rightarrow \quad a_{2i} - a_i = (b_i - b_{2i}) \log_g y$

With low probability
$$b_i-b_{2i}=0$$

$$\Rightarrow x=\log_g y=\frac{a_{2i}-a_i}{b_i-b_{2i}}.$$

Outline

One Way functions

Two fundamental one-way functions
Discrete Logarithm
Integer factorization

Attacking the hard problems

Index calculus algorithm

Quadratic sieve

Solving Discrete logarithm problems

Find x s.t. $y = g^x$ over $(\mathbb{Z}/p\mathbb{Z})^*$ or \mathbb{F}_q^* .

Solving Discrete logarithm problems

Find x s.t.
$$y = g^x$$
 over $(\mathbb{Z}/p\mathbb{Z})^*$ or \mathbb{F}_q^* .

Solving Discrete logarithm problems

Find x s.t.
$$y = g^x$$
 over $(\mathbb{Z}/p\mathbb{Z})^*$ or \mathbb{F}_q^* .

Idea

If
$$y = p_1^{e_1} p_2^{e_2} \dots p_m^{e_m}$$
 then

$$x = \log_g y = e_1 \log_g p_1 + e_2 \log_g p_2 + \dots + e_m \log_g p_m$$

 $\Rightarrow \log_g y$ is a linear combination of the discrete logs of the p_i 's.

Solving Discrete logarithm problems

Find x s.t.
$$y = g^x$$
 over $(\mathbb{Z}/p\mathbb{Z})^*$ or \mathbb{F}_q^* .

Idea

If
$$y = p_1^{e_1} p_2^{e_2} \dots p_m^{e_m}$$
 then

$$x = \log_g y = e_1 \log_g p_1 + e_2 \log_g p_2 + \dots + e_m \log_g p_m$$

 \Rightarrow log_g y is a linear combination of the discrete logs of the p_i 's.

Outline

- Select a small subset S ⊂ G s.t. significantly many elements of G factorize in S.
- 2. Compute the discrete logs of all elements of S
- 3. Try to express the unknown DLP as a combination of elements in the database.

If
$$y = p_1^{e_1} p_2^{e_2} \dots p_m^{e_m}$$
 then

$$\log_g y = e_1 \log_g p_1 + e_2 \log_g p_2 + \dots + e_m \log_g p_m$$

Database of discrete logs

▶ Let $S = \{2, 3, 5, 7, ...\}$ the first *m* primes

If
$$y = p_1^{e_1} p_2^{e_2} \dots p_m^{e_m}$$
 then

$$\log_g y = e_1 \log_g p_1 + e_2 \log_g p_2 + \dots + e_m \log_g p_m$$

- ▶ Let $S = \{2, 3, 5, 7, ...\}$ the first *m* primes
- ▶ Pick random k and compute $y_k = g^k$

If
$$y = p_1^{e_1} p_2^{e_2} \dots p_m^{e_m}$$
 then

$$\log_g y = e_1 \log_g p_1 + e_2 \log_g p_2 + \dots + e_m \log_g p_m$$

- ▶ Let $S = \{2, 3, 5, 7, ...\}$ the first *m* primes
- Pick random k and compute $y_k = g^k$
- if y_k factorizes in S: $y_k = \prod_{i=1}^m p_i^{e_{k,i}}$
 - $\Rightarrow k = \sum_{i=1}^{m} e_{k,i} \log_{g} p_{i}$
 - \Rightarrow one linear relation between the $\log_g p_i$

If
$$y = p_1^{e_1} p_2^{e_2} \dots p_m^{e_m}$$
 then

$$\log_g y = e_1 \log_g p_1 + e_2 \log_g p_2 + \dots + e_m \log_g p_m$$

- ▶ Let $S = \{2, 3, 5, 7, ...\}$ the first *m* primes
- Pick random k and compute $y_k = g^k$
- ▶ if y_k factorizes in S: $y_k = \prod_{i=1}^m p_i^{e_{k,i}}$ ⇒ $k = \sum_{i=1}^m e_{k,i} \log_g p_i$ ⇒one linear relation between the $\log_g p_i$
- lterate until we get *m* independent equations

If
$$y = p_1^{e_1} p_2^{e_2} \dots p_m^{e_m}$$
 then

$$\log_g y = e_1 \log_g p_1 + e_2 \log_g p_2 + \dots + e_m \log_g p_m$$

- ▶ Let $S = \{2, 3, 5, 7, ...\}$ the first *m* primes
- Pick random k and compute $y_k = g^k$
- ▶ if y_k factorizes in S: $y_k = \prod_{i=1}^m p_i^{e_{k,i}}$ ⇒ $k = \sum_{i=1}^m e_{k,i} \log_g p_i$ ⇒one linear relation between the $\log_g p_i$
- lterate until we get *m* independent equations
- ► Solve the linear system

$$\begin{bmatrix} e_{k_1,1} & \dots & e_{k_1,m} \\ \vdots & & \vdots \\ e_{k_m,1} & \dots & e_{k_m,m} \end{bmatrix} \begin{bmatrix} \log_g p_1 \\ \vdots \\ \log_g p_m \end{bmatrix} = \begin{bmatrix} k_1 \\ \vdots \\ k_m \end{bmatrix} \mod p - 1$$

If
$$y = p_1^{e_1} p_2^{e_2} \dots p_m^{e_m}$$
 then

$$\log_g y = e_1 \log_g p_1 + e_2 \log_g p_2 + \dots + e_m \log_g p_m$$

Problem: y very likely does not factor in S

Recovery of the unkown discrete log

- Pick k at random and compute $z = g^k y$
- ▶ Iterate until z factorizes in S: $z = \prod_{i=1}^{m} p_i^{f_i}$
- ▶ Then

$$x = \log_g y = \log_g z - k = \sum_{i=1}^m f_i \log_g p_i - k.$$

► Most work is in the collection of relations ⇒embarassingly parallel

- ► Most work is in the collection of relations ⇒embarassingly parallel
- Linear algebra phase: compute modulo composite $p-1=\prod_{i=1}^k q_i^{\ell_i}$

- ► Most work is in the collection of relations ⇒embarassingly parallel
- ► Linear algebra phase: compute modulo composite

$$p-1=\prod_{i=1}^k q_i^{\ell_i}$$

lacktriangle Chinese remainder modulo each $q_i^{\ell_i}$

- ► Most work is in the collection of relations ⇒embarassingly parallel
- Linear algebra phase: compute modulo composite

$$p-1=\prod_{i=1}^k q_i^{\ell_i}$$

- ightharpoonup Chinese remainder modulo each $q_i^{\ell_i}$
- ightharpoonup p-adic lifting from q_i to $q_i^{\ell_i}$

- ► Most work is in the collection of relations ⇒embarassingly parallel
- Linear algebra phase: compute modulo composite

$$p-1 = \prod_{i=1}^{k} q_i^{\ell_i}$$

- ightharpoonup Chinese remainder modulo each $q_i^{\ell_i}$
- ightharpoonup p-adic lifting from q_i to $q_i^{\ell_i}$
- Once a database is collected, attack becomes much cheaper for each new DLP problem.

Outline

One Way functions

Two fundamental one-way functions
Discrete Logarithm
Integer factorization

Attacking the hard problems

Rho Pollard's algorithm Index calculus algorithm

Quadratic sieve

Principle

Find x, y such that

$$\begin{cases} x^2 = y^2 \mod n \\ x \neq \pm y \mod n \end{cases}.$$

Then $g = GCD(x - y, n) \notin \{1, n\} \Rightarrow$ a non-trivial factor of n.

Principle

Find x, y such that

$$\begin{cases} x^2 = y^2 \mod n \\ x \neq \pm y \mod n \end{cases}.$$

Then $g = GCD(x - y, n) \notin \{1, n\} \Rightarrow$ a non-trivial factor of n.

Proof.

Since $x^2 - y^2 = (x - y)(x + y) = kn$,

- $if g = n then x y = 0 \mod n$
- if g = 1 then x y divides k: k = (x y)k', and thus $x + y = k'n = 0 \mod n$

Example (Factorization of 7429)

$$87^2 = 1 \times 7429 + 140$$
 and $140 = 2^2 \times 5 \times 7$
 $88^2 = 1 \times 7429 + 315$ and $315 = 3^2 \times 5 \times 7$

Example (Factorization of 7429)

$$87^2 = 1 \times 7429 + 140$$
 and $140 = 2^2 \times 5 \times 7$
 $88^2 = 1 \times 7429 + 315$ and $315 = 3^2 \times 5 \times 7$
 $88^2 \times 87^2 = (2 \times 3 \times 5 \times 7)^2 \mod 7429$
 $x = 87 \times 88 = 227 \mod 7429$
 $y = 2 \times 3 \times 5 \times 7 = 210 \mod 7429$

 \Rightarrow

Example (Factorization of 7429)

$$87^2 = 1 \times 7429 + 140$$
 and $140 = 2^2 \times 5 \times 7$
 $88^2 = 1 \times 7429 + 315$ and $315 = 3^2 \times 5 \times 7$
 $88^2 \times 87^2 = (2 \times 3 \times 5 \times 7)^2 \mod 7429$
 $x = 87 \times 88 = 227 \mod 7429$
 $y = 2 \times 3 \times 5 \times 7 = 210 \mod 7429$
 $GCD(227 - 210, 7429) = 17$
 $7429 = 17 \times 437$

	Exp. of 2	Exp. of 3	Exp of 5	Exp. of 7
83 ²	2	3	1	0
87^{2}	2	0	1	1 1
88^{2}	0	2	1	1

	Exp. of 2	Exp. of 3	Exp of 5	Exp. of 7
83 ²	2	3	1	0
87^{2}	2	0	1	1
88^{2}	0	2	1	1

- ▶ 87 × 88 is a square iff L2+L3 is even
- ▶ find a vector $x \in \{0, 1\}^m$ s.t. x^TM is even
- ightharpoonup find a vector x s.t. $x^T M = 0 \mod 2$
- ▶ find a non-zero left-kernel vector of M in $\mathbb{Z}/2\mathbb{Z}$.

Sketch of the algorithm

- 1. Set the factor base as the first t primes $S = \{p_1, p_2, \dots, p_t\}$
- 2. Pick *x* at random near $\lceil \sqrt{n} \rceil$ and compute $b \leftarrow x^2 n$ until *b* factorizes in S.
- 3. Set $a_i = x$ and $b_i = b$ and $v_i = (e_1, \dots, e_t)$ the multiplicities of S in b
- 4. Iterate until the collection of relations $\begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$ is large enough
- 5. Find a non zero $x \in \mathbb{F}_2^m$ such that $x^T M = 0 \mod 2$ (e.g. solve $x^TM = b$ for $b = v^TM$ and v random).
- 6. $X \leftarrow \prod_{i=0}^m x_i a_i$
- 7. $w \leftarrow \frac{1}{2}x^TM$
- 8. $Y \leftarrow \prod_{i=0}^{m} p_i^{w_i}$
- 9. Return GCD(X Y, n)

Exercise

Let n = 23129.

- 1. Show that the points 153, 155 and 197, near $\sqrt{n} \approx 152$ have a smooth square modulo n. Hint: $153^2 = 280 \mod n$ and $197^2 = 2^6 \times 5 \times 7^2 \mod n$ and $586 \times 197 = 22926$.
- 2. Factor n

Exercise

Let n = 23129.

- 1. Show that the points 153, 155 and 197, near $\sqrt{n} \approx 152$ have a smooth square modulo n. Hint: $153^2 = 280 \mod n$ and $197^2 = 2^6 \times 5 \times 7^2 \mod n$ and $586 \times 197 = 22926$.
- 2. Factor n

correction

- 1. $153^2 = 280 = 2^3 \times 5 \times 7$
- **2.** $155^2 = (153 + 2)^2 = 280 + 612 + 4 = 896 = 2^7 \times 7$
- 3. $197^2 = 2^6 * 5 * 7^2 \mod n$

Exercise

Let n = 23129.

- 1. Show that the points 153, 155 and 197, near $\sqrt{n} \approx 152$ have a smooth square modulo n. Hint: $153^2 = 280 \mod n$ and $197^2 = 2^6 \times 5 \times 7^2 \mod n$ and $586 \times 197 = 22926$.
- 2. Factor *n*

correction

- 1. $153^2 = 280 = 2^3 \times 5 \times 7$
- **2.** $155^2 = (153 + 2)^2 = 280 + 612 + 4 = 896 = 2^7 \times 7$
- 3. $197^2 = 2^6 * 5 * 7^2 \mod n$

Hence $(153 \times 155 \times 197)^2 = 2^{16}5^27^4 = (2^8 \times 5 \times 7)^2 \mod n$ Therefore GCD $(153 \times 155 \times 197 - 2^8 \times 5 \times 7^2, n)$ may be non-trivial. $153 \times 155 = 153^2 + 2 \times 153 = 280 + 306 = 586.\ 586 \times 197 = 22926.$ $2^8 \times 5 \times 7^2 = 16462.\ X - Y = 6464 = 64 \times 101$ and 101 divides n.

The $L_n[\alpha, c]$ notation

$$L_n[\alpha, c] = e^{(c+o(1))(\log n)^{\alpha}(\log\log n)^{1-\alpha}}$$

- ▶ $L_n[0,c] = (\log n)^{(c+o(1))}$ ⇒polynomial in the size $\log n$.
- ▶ $L_n[1,c] = n^{(c+o(1))}$ \Rightarrow exponential in the size $\log n$.

The $L_n[\alpha, c]$ notation

$$L_n[\alpha, c] = e^{(c+o(1))(\log n)^{\alpha}(\log\log n)^{1-\alpha}}$$

- ► $L_n[0,c] = (\log n)^{(c+o(1))}$ \Rightarrow polynomial in the size $\log n$.
- ► $L_n[1,c] = n^{(c+o(1))}$ \Rightarrow exponential in the size $\log n$.

Rho pollard: $L_p[1, 1/2] = \Theta(\sqrt{n})$ exponential time

The $L_n[\alpha, c]$ notation

$$L_n[\alpha, c] = e^{(c+o(1))(\log n)^{\alpha}(\log\log n)^{1-\alpha}}$$

- ► $L_n[0,c] = (\log n)^{(c+o(1))}$ \Rightarrow polynomial in the size $\log n$.
- ► $L_n[1,c] = n^{(c+o(1))}$ \Rightarrow exponential in the size $\log n$.

Rho pollard: $L_p[1, 1/2] = \Theta(\sqrt{n})$ exponential time Index Calculus: $L_p[1/2, c]$ sub-exponential time Quadratic Sieve: $L_p[1/2, c]$ sub-exponential time

The $L_n[\alpha, c]$ notation

$$L_n[\alpha, c] = e^{(c+o(1))(\log n)^{\alpha}(\log\log n)^{1-\alpha}}$$

- ► $L_n[0,c] = (\log n)^{(c+o(1))}$ \Rightarrow polynomial in the size $\log n$.
- ► $L_n[1,c] = n^{(c+o(1))}$ \Rightarrow exponential in the size $\log n$.

Rho pollard: $L_p[1,1/2] = \Theta(\sqrt{n})$ exponential time Index Calculus: $L_p[1/2,c]$ sub-exponential time Quadratic Sieve: $L_p[1/2,c]$ sub-exponential time Number field sieve: $L_p[1/3,c]$ sub-exponential time

The $L_n[\alpha, c]$ notation

$$L_n[\alpha, c] = e^{(c+o(1))(\log n)^{\alpha}(\log\log n)^{1-\alpha}}$$

- ► $L_n[0,c] = (\log n)^{(c+o(1))}$ \Rightarrow polynomial in the size $\log n$.
- ► $L_n[1,c] = n^{(c+o(1))}$ \Rightarrow exponential in the size $\log n$.

Rho pollard: $L_p[1,1/2] = \Theta(\sqrt{n})$ exponential time Index Calculus: $L_p[1/2,c]$ sub-exponential time Quadratic Sieve: $L_p[1/2,c]$ sub-exponential time Number field sieve: $L_p[1/3,c]$ sub-exponential time

	Factorisation	Discrete logarithm
Rho Pollard	$L_p[1, 1/2]$	$L_p[1, 1/2]$
Index Calculus	N/A	$L_p[1/2, c]$
Quadratic Sieve	$L_p[1/2, c]$	N/A
Number Field Sieve	$L_p[1/3, c]$	$L_p[1/3,c]$

Records in practice

DLP over finite fields with Number Field Sieve

```
\mathbb{Z}/p\mathbb{Z}: 2014 p\approx 596 bits in 130 core years 2016 p\approx 768 bits in 6600 core years GF(q) 2019: GF(2^{30750}) in 2908 cores years
```

2014: $GF(2^{9234})$ in 45.66 cores years 2013: $GF(2^{6168})$ in 22.9 cores days

DLP over Elliptic curves

2009: modulo 112 bit prime. Rho on 200 PS3 \times 6 months

2016: $GF(2^{117.35})$, Rho on 576 FPGA × 6 months

Records in practice

Integer factorization with the Number Field Sieve

2005: RSA 640 bits in 4.5 months total

▶ 36 000 000 columns

 $ightharpoonup \approx 7 \times 10^9$ non-zero coeffs

2009: RSA 768 bits in \approx 2 years (> 1500 core year)

▶ 192 796 550 columns

 $ightharpoonup \approx 27 \times 10^9$ non-zero coeffs

Security parameters and orders of magnitude

From [Lenstra Kleinjung Thomé, 2013]

S	ecurity level	Symmetric	Hash	RSA
	66 76	66 76	132 152	768 1024
	106	106	212	2048

3

4

Security parameters and orders of magnitude

From [Lenstra Kleinjung Thomé, 2013]

3	Security level	Symmetric	Hash	RSA
pool security	65	65	130	745
	66	66	132	768
	76	76	152	1024
rain security	80	80	160	1130
lake security	90	90	180	1440
sea	105	105	210	1990
	106	106	212	2048
global ⁴	114	114	228	2380

³energy required to put that amount of water into boiling status

⁴year of solar energy

Security parameters and orders of magnitude

From [Lenstra Kleinjung Thomé, 2013]

3	Security level	Symmetric	Hash	RSA
pool security	65	65	130	745
	66	66	132	768
	76	76	152	1024
rain security	80	80	160	1130
lake security	90	90	180	1440
sea	105	105	210	1990
	106	106	212	2048
global ⁴	114	114	228	2380

DLP:

- ▶ over prime field: ≈ RSA security
- ▶ over ECC with strong primes: ≈ half the bit size. (Rho Pollard)

³energy required to put that amount of water into boiling status

⁴year of solar energy