
Crypto refresh: Computational Algebra
Cryptographic Engineering

Clément PERNET

M2 Cybersecurity,
UFR-IM2AG, Univ. Grenoble-Alpes

ENSIMAG, Grenoble INP

Outline

Introduction

Computational cost/complexity analysis refresh

Integers and finite fields (a computational point of view)
Arithmetic of integers
Arithemtic of Integers modulo
The Chinese Remainder Theorem

Algebra refresh
Algebraic structures
Finite groups

Galois fields

Introduction

Assessing the security of a cryptosystem:

Information theory: proving that an attacker’s view on the protocol
leaks no information (data is indistinguishable from a
pure random source)
⇒discrete probabilities

Computational complexity: eventhough the attacker knows all
information required to break the system, it would be
computationnaly unfeasable to compute it.
⇒computer algebra
⇒cost analysis
⇒complexity theory and reductions

In practice, combination of both worlds: quantify what statistical
advantage does a given amount of computational work
provide.

Outline

Introduction

Computational cost/complexity analysis refresh

Integers and finite fields (a computational point of view)
Arithmetic of integers
Arithemtic of Integers modulo
The Chinese Remainder Theorem

Algebra refresh
Algebraic structures
Finite groups

Galois fields

Computational cost / complexity

How to guess the cost of the execution of an algorithm on a given
instance?

▶ in time
▶ in space

The cost model (simplifying assumptions)

▶ Define units: which operation has cost 1, which data stores in
space 1.

▶ cost only depends on the input size (or a parameter related to it):
▶ uniform across all instances
▶ worst case analysis

▶ Asymptotic analysis

=

Computational cost / complexity

How to guess the cost of the execution of an algorithm on a given
instance?

▶ in time
▶ in space

The cost model (simplifying assumptions)

▶ Define units: which operation has cost 1, which data stores in
space 1.

▶ cost only depends on the input size (or a parameter related to it):
▶ uniform across all instances
▶ worst case analysis

▶ Asymptotic analysis

=

Computational cost / complexity

How to guess the cost of the execution of an algorithm on a given
instance?

▶ in time
▶ in space

The cost model (simplifying assumptions)

▶ Define units: which operation has cost 1, which data stores in
space 1.

▶ cost only depends on the input size (or a parameter related to it):
▶ uniform across all instances
▶ worst case analysis

▶ Asymptotic analysis

C(n) =

Computational cost / complexity

How to guess the cost of the execution of an algorithm on a given
instance?

▶ in time
▶ in space

The cost model (simplifying assumptions)

▶ Define units: which operation has cost 1, which data stores in
space 1.

▶ cost only depends on the input size (or a parameter related to it):
▶ uniform across all instances
▶ worst case analysis

▶ Asymptotic analysis

C(n) = O(n2)

Asymptotics refresh
Landau notation:
▶ f (n) = O(g(n)) iff f (n) ≤ Kg(n) ∀ n ≥ n0 for some K > 0 and n0 ≥ 0
▶ f (n) = Ω(g(n)) iff g(n) = O (f (n))
▶ f (n) = Θ(g(n)) iff f (n) = O (g(n)) and g(n) = O (f (n))

Equivalently, f (n) = O(g(n)) if f (n)/g(n) is bounded by a constant for
all n sufficiently large.

Example

2n3 − 3n2 log n + 5n + 12 = Θ(n3)

n + 1 = O(
1

1000
n)

n log n = O(n2)

n2 + 100000n1.9 = Ω(n2)

(3n + 1) log2 n ̸= O(n log n)

2n ̸= O(nk) for any k ∈ Z

Asymptotics refresh
Landau notation:
▶ f (n) = O(g(n)) iff f (n) ≤ Kg(n) ∀ n ≥ n0 for some K > 0 and n0 ≥ 0
▶ f (n) = Ω(g(n)) iff g(n) = O (f (n))
▶ f (n) = Θ(g(n)) iff f (n) = O (g(n)) and g(n) = O (f (n))

Equivalently, f (n) = O(g(n)) if f (n)/g(n) is bounded by a constant for
all n sufficiently large.

Example

2n3 − 3n2 log n + 5n + 12 = Θ(n3)

n + 1 = O(
1

1000
n)

n log n = O(n2)

n2 + 100000n1.9 = Ω(n2)

(3n + 1) log2 n ̸= O(n log n)

2n ̸= O(nk) for any k ∈ Z

Asymptotics refresh

poly-logarithmic notations (soft-O)

f (n) = Õ (g(n)) iff f (n) = O (g(n) loge g(n)) for some e > 0

Example

n × log n × log log n = Õ (n)

⇒Quasi-linear cost.

Asymptotics refresh

poly-logarithmic notations (soft-O)

f (n) = Õ (g(n)) iff f (n) = O (g(n) loge g(n)) for some e > 0

Example

n × log n × log log n = Õ (n)

⇒Quasi-linear cost.

Magnitudes

Linear or Exp time ?

Size of an integer n represented in base 2 : s = ⌈log2 n⌉ bits.

n = Θ(2s) = Θ(exp(s))

⇒any algorithm working on an integer n with cost linear in n takes
actually an exponential time in the input size.

Orders of magnitude in practice

Nowadays’ computers are quite fast

Speed of a PC: 3GHz ⇒3 × 109 × 4 × 2 int64_t mult. per sec.
▶ Video projector is at 3m of the screen: 300 000km/s ⇒10−8s
▶ 240 multiplications done before the light reaches the screen

▶ Age of the universe : 15 billion × 365× 24× 3600 ≈ 5.1017s ≈ 259s
▶ Number of electrons in the universe : ≈ 1064 ≈ 2213

▶ Costs for algorithms working with 128 bit integers

Cost s s2 s3 s4 n = 2s

Nb of ops 128 16 384 2 · 106 3 · 108 1039

Time on a 2.5Ghz PC 5.3ns 0.68µs 87.4µs 11.2ms 1.42 · 1028s

⇒1.42 · 1028s ≈ 3 · 1010 times the age of the universe !

Orders of magnitude in practice

Nowadays’ computers are quite fast

Speed of a PC: 3GHz ⇒3 × 109 × 4 × 2 int64_t mult. per sec.
▶ Video projector is at 3m of the screen: 300 000km/s ⇒10−8s
▶ 240 multiplications done before the light reaches the screen

▶ Age of the universe : 15 billion × 365× 24× 3600 ≈ 5.1017s ≈ 259s

▶ Number of electrons in the universe : ≈ 1064 ≈ 2213

▶ Costs for algorithms working with 128 bit integers

Cost s s2 s3 s4 n = 2s

Nb of ops 128 16 384 2 · 106 3 · 108 1039

Time on a 2.5Ghz PC 5.3ns 0.68µs 87.4µs 11.2ms 1.42 · 1028s

⇒1.42 · 1028s ≈ 3 · 1010 times the age of the universe !

Orders of magnitude in practice

Nowadays’ computers are quite fast

Speed of a PC: 3GHz ⇒3 × 109 × 4 × 2 int64_t mult. per sec.
▶ Video projector is at 3m of the screen: 300 000km/s ⇒10−8s
▶ 240 multiplications done before the light reaches the screen

▶ Age of the universe : 15 billion × 365× 24× 3600 ≈ 5.1017s ≈ 259s
▶ Number of electrons in the universe : ≈ 1064 ≈ 2213

▶ Costs for algorithms working with 128 bit integers

Cost s s2 s3 s4 n = 2s

Nb of ops 128 16 384 2 · 106 3 · 108 1039

Time on a 2.5Ghz PC 5.3ns 0.68µs 87.4µs 11.2ms 1.42 · 1028s

⇒1.42 · 1028s ≈ 3 · 1010 times the age of the universe !

Orders of magnitude in practice

Nowadays’ computers are quite fast

Speed of a PC: 3GHz ⇒3 × 109 × 4 × 2 int64_t mult. per sec.
▶ Video projector is at 3m of the screen: 300 000km/s ⇒10−8s
▶ 240 multiplications done before the light reaches the screen

▶ Age of the universe : 15 billion × 365× 24× 3600 ≈ 5.1017s ≈ 259s
▶ Number of electrons in the universe : ≈ 1064 ≈ 2213

▶ Costs for algorithms working with 128 bit integers

Cost s s2 s3 s4 n = 2s

Nb of ops 128 16 384 2 · 106 3 · 108 1039

Time on a 2.5Ghz PC 5.3ns 0.68µs 87.4µs 11.2ms 1.42 · 1028s

⇒1.42 · 1028s ≈ 3 · 1010 times the age of the universe !

Outline

Introduction

Computational cost/complexity analysis refresh

Integers and finite fields (a computational point of view)
Arithmetic of integers
Arithemtic of Integers modulo
The Chinese Remainder Theorem

Algebra refresh
Algebraic structures
Finite groups

Galois fields

Outline

Introduction

Computational cost/complexity analysis refresh

Integers and finite fields (a computational point of view)
Arithmetic of integers
Arithemtic of Integers modulo
The Chinese Remainder Theorem

Algebra refresh
Algebraic structures
Finite groups

Galois fields

The ring of integers Z

Fixed precision 32, 64 bits

(24, 53)

: word size integers

uint32_t: [0..232 − 1]
int32_t: [−231 + 1..231 − 1]

uint64_t: [0..264 − 1]
int64_t: [−263 + 1..263 − 1]

Atomic cost:
▶ add, mul, sub: ≈ 1 clock cycle;
▶ div, mod : ≈ 10 clock cycles

Alternatively, one can store integers on floating point types:
float: [−223 + 1..223 − 1]

double: [−252 + 1..252 − 1]
⇒faster on most CPUs, but slightly smaller representation capacity

⇒used for small integers; small finite fields/rings, ...

The ring of integers Z

Fixed precision 32, 64 bits (24, 53): word size integers

uint32_t: [0..232 − 1]
int32_t: [−231 + 1..231 − 1]

uint64_t: [0..264 − 1]
int64_t: [−263 + 1..263 − 1]

Atomic cost:
▶ add, mul, sub: ≈ 1 clock cycle;
▶ div, mod : ≈ 10 clock cycles

Alternatively, one can store integers on floating point types:
float: [−223 + 1..223 − 1]

double: [−252 + 1..252 − 1]
⇒faster on most CPUs, but slightly smaller representation capacity

⇒used for small integers; small finite fields/rings, ...

The ring of integers Z

Fixed precision 32, 64 bits (24, 53): word size integers

uint32_t: [0..232 − 1]
int32_t: [−231 + 1..231 − 1]

uint64_t: [0..264 − 1]
int64_t: [−263 + 1..263 − 1]

Atomic cost:
▶ add, mul, sub: ≈ 1 clock cycle;
▶ div, mod : ≈ 10 clock cycles

Alternatively, one can store integers on floating point types:
float: [−223 + 1..223 − 1]

double: [−252 + 1..252 − 1]
⇒faster on most CPUs, but slightly smaller representation capacity

⇒used for small integers; small finite fields/rings, ...

The ring of integers Z

Multi-precision

▶ No native hardware support
▶ Software emulation: C/C++ libraries GMP/MPIR:

⇒vectors of 64 bits unsigned words
Basic arithmetic no longer have unit cost: depend on s = log64 n

Addition O (s)

Multip.

Classic s < 32 words O
(
s2)

Karatsuba 32 < s < 256 O
(
s1.585)

Toom-Cook O
(
s1.465)

FFT s > 10000 words O (s log s) = Õ (s)

Division O (M(s)) = Õ (s)

GCD Euclidean Alg. O
(
s2)

Fast Euclid. Alg. O (M(s) log s) = Õ (s)

Integer multiplication via evaluation/interpolation
From integer to polynomial multiplication

c = a × b
⌈log2 a⌉⌈log2 b⌉∑

i=0

ci(264)i = (

⌈log2 a⌉∑
i=0

ai(264)i)× (

⌈log2 b⌉∑
i=0

bi(264)i)

dA+dB∑
i=0

ciXi = (

dA∑
i=0

aiXi)× (

dB∑
i=0

biXi)

Evaluation-Interpolation

A(X) × B(X) = C(X)
↓ ↓ ↑

(A(x1), . . .A(xn))
⊙

(B(x1), . . .B(xn)) = (C(x1), . . .C(xn))

if n ≥ dA + dB + 1

Integer multiplication via evaluation/interpolation
From integer to polynomial multiplication

c = a × b
⌈log2 a⌉⌈log2 b⌉∑

i=0

ci(264)i = (

⌈log2 a⌉∑
i=0

ai(264)i)× (

⌈log2 b⌉∑
i=0

bi(264)i)

dA+dB∑
i=0

ciXi = (

dA∑
i=0

aiXi)× (

dB∑
i=0

biXi)

Evaluation-Interpolation

A(X) × B(X) = C(X)
↓ ↓ ↑

(A(x1), . . .A(xn))
⊙

(B(x1), . . .B(xn)) = (C(x1), . . .C(xn))

if n ≥ dA + dB + 1

FFT based integer multiplication

Polynomial Multiplication

1. Multipoint evaluation of A: (A(x1), . . . ,A(xn))

2. Multipoint evaluation of B: (B(x1), . . . ,B(xn))

3. Pointwise products: C(xi) = A(xi)B(xi)

4. Interpolation of the C(xi)’s into C(X)

Property

If xi = ξi where ξ is an n-th root of unity, then
▶ multipoint evaluation can be computed with FFT ⇒O (n log n)
▶ interpolation is a multipoint evaluation in ξ−1 ⇒O (n log n)

FFT based integer multiplication

Polynomial Multiplication

1. Multipoint evaluation of A: (A(x1), . . . ,A(xn))

2. Multipoint evaluation of B: (B(x1), . . . ,B(xn))

3. Pointwise products: C(xi) = A(xi)B(xi)

4. Interpolation of the C(xi)’s into C(X)

Property

If xi = ξi where ξ is an n-th root of unity, then
▶ multipoint evaluation can be computed with FFT ⇒O (n log n)
▶ interpolation is a multipoint evaluation in ξ−1 ⇒O (n log n)

GCD and Euclidean Algorithm

Definition (GCD = Greatest Common Divisor)

The GCD of a and b is the greatest integer g dividing both a and b

Example

▶ GCD(12, 16) = 4
▶ GCD(12, 17) = 1 ⇒12 and 17 are coprime

GCD and Euclidean Algorithm

Bezout relation
If g = GCD(a, b), then there exist u, v ∈ Z, coprime such that

g = ua + vb

Property

▶ GCD(a, b) = GCD(a, a − b))
▶ GCD(a, b) = GCD(a, a mod b))

GCD and Euclidean Algorithm

Problem
Given a, b ∈ Z, find g = GCD(a, b)

begin
r0 = a;
r1 = b;
while ri ̸= 0 do

ri+1 = ri−1 mod ri ; /* ri−1 = riqi + ri+1 */
i = i + 1;

▶ The last ri ̸= 0 is the gcd of a and b

▶ invariant uia + vib = ri for all i ⇒Bezout coefficients

GCD and Euclidean Algorithm

Problem
Given a, b ∈ Z, find g = GCD(a, b) and u, v coprime s.t. ua + vb = g

begin
r0 = a;
r1 = b;
u0 = 1, v0 = 0;
u1 = 0, v1 = 1;
while ri ̸= 0 do

ri+1 = ri−1 mod ri ; /* ri−1 = riqi + ri+1 */
ui+1 = ui−1 − qiui;
vi+1 = vi−1 − qivi;
i = i + 1;

▶ The last ri ̸= 0 is the gcd of a and b
▶ invariant uia + vib = ri for all i ⇒Bezout coefficients

Outline

Introduction

Computational cost/complexity analysis refresh

Integers and finite fields (a computational point of view)
Arithmetic of integers
Arithemtic of Integers modulo
The Chinese Remainder Theorem

Algebra refresh
Algebraic structures
Finite groups

Galois fields

Finite ring and fields: Z/nZ

Integers modulo n

Z/nZ = {0, 1, . . . , n − 1} equiped with addition et mult. modulo n.
▶ use integer arithmetic
▶ reduce the results mod n

Addition c = a + b;
if (c >= n) c = c - n;

Opposé c = n- b;

Multiplication c = a * b;
if (c >= n) c = c % n; // c modulo n

Inverse . . .

Finite ring and fields: Z/nZ

Integers modulo n

Z/nZ = {0, 1, . . . , n − 1} equiped with addition et mult. modulo n.
▶ use integer arithmetic
▶ reduce the results mod n

Addition c = a + b;
if (c >= n) c = c - n;

Opposé c = n- b;

Multiplication c = a * b;
if (c >= n) c = c % n; // c modulo n

Inverse . . .

Modular Inverse

Modulo n any non-zero element does not necessarily have an
inverse: 2−1 mod 4

Computing the modular inverse a−1 mod n

PGCD(a, n) = 1 ⇔ ua + vn = 1 ⇔ ua = 1 mod n ⇔ a−1 = u mod n.

Corollary

Z/pZ is a field iff p is prime

Corollary

All finite fields are either equivalent to
▶ Z/pZ for a prime p or
▶ Z/pZ[X]/(Q) where Q ∈ Z/pZ[X] is irreducible

Outline

Introduction

Computational cost/complexity analysis refresh

Integers and finite fields (a computational point of view)
Arithmetic of integers
Arithemtic of Integers modulo
The Chinese Remainder Theorem

Algebra refresh
Algebraic structures
Finite groups

Galois fields

The Chinese remainder theorem

Problem (Sunzi Suanjing)

Find n knowing that

 n mod 3 = 2,
n mod 5 = 3,
n mod 7 = 2

⇒n = 23 + 105k for k ∈ Z.
⇒unique integer between 0 and 104

Theorem
If p, q are coprime and x, y are residues modulo p and q. Then
∃!A < pq, such that A = x mod p and A = y mod q.

The Chinese remainder theorem

Problem (Sunzi Suanjing)

Find n knowing that

 n mod 3 = 2,
n mod 5 = 3,
n mod 7 = 2

⇒n = 23 + 105k for k ∈ Z.
⇒unique integer between 0 and 104

Theorem
If p, q are coprime and x, y are residues modulo p and q. Then
∃!A < pq, such that A = x mod p and A = y mod q.

The Chinese remainder theorem

Theorem (Alternative formulation)

If p, q are coprime,

Z/pZ× Z/qZ ≡ Z/(pq)Z.

Isomorphism:

f : Z/(pq)Z → Z/pZ× Z/qZ
n 7→ (n mod p, n mod q)

f −1 : Z/pZ× Z/qZ → Z/(pq)Z
(x, y) 7→ xq(q−1 mod p) + yp(p−1 mod q) mod pq

The Chinese remainder theorem

Theorem (Alternative formulation)

If p, q are coprime,

Z/pZ× Z/qZ ≡ Z/(pq)Z.

Isomorphism:

f : Z/(pq)Z → Z/pZ× Z/qZ
n 7→ (n mod p, n mod q)

f −1 : Z/pZ× Z/qZ → Z/(pq)Z
(x, y) 7→ xq(q−1 mod p) + yp(p−1 mod q) mod pq

The Chinese remainder theorem
Theorem
If m1, . . . ,mk are pairwise relatively prime,

Z/m1Z× · · · × Z/mkZ ≡ Z/(m1 . . .mk)Z.

Isomorphism:

f : Z/(m1 . . .mk)Z → Z/m1Z× · · · × Z/mkZ
n 7→ (n mod m1, . . . ,m mod mk)

f −1 : Z/m1Z× · · · × Z/mkZ → Z/(m1 . . .mk)Z
(x1, . . . , xk) 7→

∑k
i=1 xiΠiYi mod Π

where

 Π =
∏k

i=1 mi

Πi = Π/mi

Yi = Π−1
i mod mi

Theorem (Alternative formulation)

If m1, . . . ,mk are pairwise relatively prime and a1, . . . , ak are residues
modulo resp. m1, . . . ,mk. Then ∃!A ∈ Z+,A <

∏k
i=1 mi, such that

A = ai[mi] for i = 1 . . . k.

The Chinese remainder theorem
Theorem
If m1, . . . ,mk are pairwise relatively prime,

Z/m1Z× · · · × Z/mkZ ≡ Z/(m1 . . .mk)Z.

Isomorphism:

f : Z/(m1 . . .mk)Z → Z/m1Z× · · · × Z/mkZ
n 7→ (n mod m1, . . . ,m mod mk)

f −1 : Z/m1Z× · · · × Z/mkZ → Z/(m1 . . .mk)Z
(x1, . . . , xk) 7→

∑k
i=1 xiΠiYi mod Π

where

 Π =
∏k

i=1 mi

Πi = Π/mi

Yi = Π−1
i mod mi

Theorem (Alternative formulation)

If m1, . . . ,mk are pairwise relatively prime and a1, . . . , ak are residues
modulo resp. m1, . . . ,mk. Then ∃!A ∈ Z+,A <

∏k
i=1 mi, such that

A = ai[mi] for i = 1 . . . k.

Analogy with the polynomials

Over the ring of polynomials K[X] (for any field K),

P(a) = P mod (X − a)

Evaluate P in a ↔ Reduce P modulo X − a

Polynomials Integers

Evaluation:
y = P mod (X − a) y = N mod m
y = P(a) y = “Evaluation” of N in m

Interpolation:
P =

∑k
i=1 yi

∏
j̸=i(X−aj)∏
j ̸=i(ai−aj)

N =
∑k

i=1 yi
∏

j ̸=i mj(
∏

j ̸=i mj)
−1[mi]

Analogy with the polynomials

Over the ring of polynomials K[X] (for any field K),

P(a) = P mod (X − a)

Evaluate P in a ↔ Reduce P modulo X − a

Polynomials Integers

Evaluation:
y = P mod (X − a) y = N mod m
y = P(a) y = “Evaluation” of N in m

Interpolation:
P =

∑k
i=1 yi

∏
j ̸=i(X−aj)∏
j ̸=i(ai−aj)

N =
∑k

i=1 yi
∏

j ̸=i mj(
∏

j ̸=i mj)
−1[mi]

Outline

Introduction

Computational cost/complexity analysis refresh

Integers and finite fields (a computational point of view)
Arithmetic of integers
Arithemtic of Integers modulo
The Chinese Remainder Theorem

Algebra refresh
Algebraic structures
Finite groups

Galois fields

Outline

Introduction

Computational cost/complexity analysis refresh

Integers and finite fields (a computational point of view)
Arithmetic of integers
Arithemtic of Integers modulo
The Chinese Remainder Theorem

Algebra refresh
Algebraic structures
Finite groups

Galois fields

Groups, Rings, Fields

Definition (informally)

A group (G, ∗, 1): is a set G with an associative law ∗ such that
▶ 1 is a neutral element x ∗ 1 = 1 ∗ x = x
▶ every element of G is invertible: ∀x∃y, xy = yx = 1
▶ Examples: (Z,+, 0); (Q \ {0},×, 1)

A ring (R,+,×, 0, 1) is
▶ a group (R,+, 0)
▶ with an associative law × with neutral element 1.
▶ such that 0 × x = 0
▶ Examples: (Z/nZ,+,×, 0, 1); (Z[X],+,×, 0, 1)

A field (F,+,×, 0, 1) is
▶ a ring (F,+,×, 0, 1)
▶ where every element except 0 has an inverse for ×
▶ equivalently such that (F \ {0},×, 1) is a group.
▶ Examples: (Q,+,×, 0, 1); (Z/pZ,+,×, 0, 1) for p

prime

Groups, Rings, Fields

Definition (informally)

A group (G, ∗, 1): is a set G with an associative law ∗ such that
▶ 1 is a neutral element x ∗ 1 = 1 ∗ x = x
▶ every element of G is invertible: ∀x∃y, xy = yx = 1
▶ Examples: (Z,+, 0); (Q \ {0},×, 1)

A ring (R,+,×, 0, 1) is
▶ a group (R,+, 0)
▶ with an associative law × with neutral element 1.
▶ such that 0 × x = 0
▶ Examples: (Z/nZ,+,×, 0, 1); (Z[X],+,×, 0, 1)

A field (F,+,×, 0, 1) is
▶ a ring (F,+,×, 0, 1)
▶ where every element except 0 has an inverse for ×
▶ equivalently such that (F \ {0},×, 1) is a group.
▶ Examples: (Q,+,×, 0, 1); (Z/pZ,+,×, 0, 1) for p

prime

Groups, Rings, Fields

Definition (informally)

A group (G, ∗, 1): is a set G with an associative law ∗ such that
▶ 1 is a neutral element x ∗ 1 = 1 ∗ x = x
▶ every element of G is invertible: ∀x∃y, xy = yx = 1
▶ Examples: (Z,+, 0); (Q \ {0},×, 1)

A ring (R,+,×, 0, 1) is
▶ a group (R,+, 0)
▶ with an associative law × with neutral element 1.
▶ such that 0 × x = 0
▶ Examples: (Z/nZ,+,×, 0, 1); (Z[X],+,×, 0, 1)

A field (F,+,×, 0, 1) is
▶ a ring (F,+,×, 0, 1)
▶ where every element except 0 has an inverse for ×
▶ equivalently such that (F \ {0},×, 1) is a group.
▶ Examples: (Q,+,×, 0, 1); (Z/pZ,+,×, 0, 1) for p

prime

An example of finite ring: Z/nZ

Z/nZ = {0, 1, . . . , n − 1} equiped with addition and mult. modulo n.

▶ (Z/nZ,+,×, 0, 1) is a ring
▶ not necessarily a field: e.g. n = pq

⇒pq = 0 mod n
⇒if p is invertible, then p−1pq = q = 0 mod n
⇒neither p nor q have an inverse mod n

Theorem
(Z/nZ,+,×, 0, 1) is a field iff n is prime.

Constructive proof.

By the Extended Euclidean Algorithm

An example of finite ring: Z/nZ

Z/nZ = {0, 1, . . . , n − 1} equiped with addition and mult. modulo n.

▶ (Z/nZ,+,×, 0, 1) is a ring
▶ not necessarily a field: e.g. n = pq

⇒pq = 0 mod n
⇒if p is invertible, then p−1pq = q = 0 mod n
⇒neither p nor q have an inverse mod n

Theorem
(Z/nZ,+,×, 0, 1) is a field iff n is prime.

Constructive proof.

By the Extended Euclidean Algorithm

Multiplicative group of a ring

If (R,+,×, 0, 1) is a ring, not all elements of R are invertible for ×.

Definition (Multiplicative group of a ring R)

The subset of its elements that are invertible for ×. Denoted by R∗

▶ If R is a field, all non-zero element is invertible, ⇒R∗ = R \ {0}
▶ (Z/nZ)∗ = {x ∈ Z/nZ s.t. GCD(x, n) = 1}

Outline

Introduction

Computational cost/complexity analysis refresh

Integers and finite fields (a computational point of view)
Arithmetic of integers
Arithemtic of Integers modulo
The Chinese Remainder Theorem

Algebra refresh
Algebraic structures
Finite groups

Galois fields

Lagrange, Euler, Fermat
Definition

finite group: un groupe ayant un nombre fini d’éléments
order of an element x: #{xi, i ∈ Z}
cyclic group: a finite group generated by a unique element

Theorem (Lagrange)

For a finite group (G, 1) and a ∈ G, a#G = 1.

Corollary

The order of any element divides that of the its group:∀a ∈ G, o(a)|#G

Theorem (Lagrange-v2)

If H est is a sub-group of G, then #H|#G

Property

Any sub-group H of a cyclic group G is cyclic.

Lagrange, Euler, Fermat
Definition

finite group: un groupe ayant un nombre fini d’éléments
order of an element x: #{xi, i ∈ Z}
cyclic group: a finite group generated by a unique element

Theorem (Lagrange)

For a finite group (G, 1) and a ∈ G, a#G = 1.

Corollary

The order of any element divides that of the its group:∀a ∈ G, o(a)|#G

Theorem (Lagrange-v2)

If H est is a sub-group of G, then #H|#G

Property

Any sub-group H of a cyclic group G is cyclic.

Lagrange, Euler, Fermat
Definition

finite group: un groupe ayant un nombre fini d’éléments
order of an element x: #{xi, i ∈ Z}
cyclic group: a finite group generated by a unique element

Theorem (Lagrange)

For a finite group (G, 1) and a ∈ G, a#G = 1.

Corollary

The order of any element divides that of the its group:∀a ∈ G, o(a)|#G

Theorem (Lagrange-v2)

If H est is a sub-group of G, then #H|#G

Property

Any sub-group H of a cyclic group G is cyclic.

Lagrange, Euler, Fermat
Definition

finite group: un groupe ayant un nombre fini d’éléments
order of an element x: #{xi, i ∈ Z}
cyclic group: a finite group generated by a unique element

Theorem (Lagrange)

For a finite group (G, 1) and a ∈ G, a#G = 1.

Corollary

The order of any element divides that of the its group:∀a ∈ G, o(a)|#G

Theorem (Lagrange-v2)

If H est is a sub-group of G, then #H|#G

Property

Any sub-group H of a cyclic group G is cyclic.

Euler totient function
Definition
▶ Multiplicative subgroup of Z/nZ: (Z/nZ)∗ = {x ∈ Z/nZ,GCD(x, n) = 1}
▶ Euler Totient: φ(n) = #(Z/nZ)∗

Property

▶ φ(p) = (p − 1) for p prime
▶ φ(pk) = (p − 1)pk−1 for p prime
▶ φ(mn) = φ(m)φ(n) for GCD(m, n) = 1

Example: n =
∏k

i=1 pαi
i (prime factor decomposition)

φ(n) =
k∏

i=1

pαi−1
i (pi − 1)

Property

The number of generators in a cylcic group of order n is φ(n)

Euler totient function
Definition
▶ Multiplicative subgroup of Z/nZ: (Z/nZ)∗ = {x ∈ Z/nZ,GCD(x, n) = 1}
▶ Euler Totient: φ(n) = #(Z/nZ)∗

Property

▶ φ(p) = (p − 1) for p prime
▶ φ(pk) = (p − 1)pk−1 for p prime
▶ φ(mn) = φ(m)φ(n) for GCD(m, n) = 1

Example: n =
∏k

i=1 pαi
i (prime factor decomposition)

φ(n) =
k∏

i=1

pαi−1
i (pi − 1)

Property

The number of generators in a cylcic group of order n is φ(n)

Euler totient function
Definition
▶ Multiplicative subgroup of Z/nZ: (Z/nZ)∗ = {x ∈ Z/nZ,GCD(x, n) = 1}
▶ Euler Totient: φ(n) = #(Z/nZ)∗

Property

▶ φ(p) = (p − 1) for p prime
▶ φ(pk) = (p − 1)pk−1 for p prime
▶ φ(mn) = φ(m)φ(n) for GCD(m, n) = 1

Example: n =
∏k

i=1 pαi
i (prime factor decomposition)

φ(n) =
k∏

i=1

pαi−1
i (pi − 1)

Property

The number of generators in a cylcic group of order n is φ(n)

Euler totient function
Definition
▶ Multiplicative subgroup of Z/nZ: (Z/nZ)∗ = {x ∈ Z/nZ,GCD(x, n) = 1}
▶ Euler Totient: φ(n) = #(Z/nZ)∗

Property

▶ φ(p) = (p − 1) for p prime
▶ φ(pk) = (p − 1)pk−1 for p prime
▶ φ(mn) = φ(m)φ(n) for GCD(m, n) = 1

Example: n =
∏k

i=1 pαi
i (prime factor decomposition)

φ(n) =
k∏

i=1

pαi−1
i (pi − 1)

Property

The number of generators in a cylcic group of order n is φ(n)

Euler, Fermat

Theorem (Euler)

Let a, n ∈ Z. If GCD(a, n) = 1, then aφ(n) = 1 mod n.

Theorem (Fermat)

If p is prime, then ap = a mod p ∀a ∈ Z/pZ.

Outline

Introduction

Computational cost/complexity analysis refresh

Integers and finite fields (a computational point of view)
Arithmetic of integers
Arithemtic of Integers modulo
The Chinese Remainder Theorem

Algebra refresh
Algebraic structures
Finite groups

Galois fields

Extension fields
Algebraic extensions

Consider a field (K,+,×), and a polynomial P ∈ K[X] of degree d.
▶ We denote by K[X]/(P) the set of equivalence classes of K[X]

modulo P.
▶ This is the set of the P ∈ K[X] with degree < d equipped with the

following laws
Addition: S + T = S(X) +K[X] T(X) mod P

Multiplication: S × T = S(X)×K[X] T(X) mod P
▶ (K[X]/(P),+,×) is thus a commutative ring, called the quotient

ring of K[X] by P.

Property

K[X]/(P) is a field iff P is irreducible over K[X].

Proof.
For all S ∈ K[X]/(P), GCD(S,P) = 1 hence ∃U,V,US + VP = 1 thus S
is invertible and U = S−1 mod P.

Extension fields
Algebraic extensions

Consider a field (K,+,×), and a polynomial P ∈ K[X] of degree d.
▶ We denote by K[X]/(P) the set of equivalence classes of K[X]

modulo P.
▶ This is the set of the P ∈ K[X] with degree < d equipped with the

following laws
Addition: S + T = S(X) +K[X] T(X) mod P

Multiplication: S × T = S(X)×K[X] T(X) mod P
▶ (K[X]/(P),+,×) is thus a commutative ring, called the quotient

ring of K[X] by P.

Property

K[X]/(P) is a field iff P is irreducible over K[X].

Proof.
For all S ∈ K[X]/(P), GCD(S,P) = 1 hence ∃U,V,US + VP = 1 thus S
is invertible and U = S−1 mod P.

Extension fields
Algebraic extensions

Consider a field (K,+,×), and a polynomial P ∈ K[X] of degree d.
▶ We denote by K[X]/(P) the set of equivalence classes of K[X]

modulo P.
▶ This is the set of the P ∈ K[X] with degree < d equipped with the

following laws
Addition: S + T = S(X) +K[X] T(X) mod P

Multiplication: S × T = S(X)×K[X] T(X) mod P
▶ (K[X]/(P),+,×) is thus a commutative ring, called the quotient

ring of K[X] by P.

Property

K[X]/(P) is a field iff P is irreducible over K[X].

Proof.
For all S ∈ K[X]/(P), GCD(S,P) = 1 hence ∃U,V,US + VP = 1 thus S
is invertible and U = S−1 mod P.

Extension fields

Example

Over (Z/2Z)[X], let P = (X + 1)(X2 + X + 1) (non-irreducible).
▶ Then (Z/2Z)[X]/(P) is not a field: X + 1 is not invertible since

(X + 1)(X2 + X + 1) = 0

▶ But (Z/2Z)[X]/(X2 + X + 1) is a field since X2 + X + 1 is
irreducible. Its elements are {0, 1,X,X + 1}

Remark
This is a new finite field, with 4 elements (not of the form Z/pZ since
p = 4 is not prime)

Extension fields

Example

Over (Z/2Z)[X], let P = (X + 1)(X2 + X + 1) (non-irreducible).
▶ Then (Z/2Z)[X]/(P) is not a field: X + 1 is not invertible since

(X + 1)(X2 + X + 1) = 0
▶ But (Z/2Z)[X]/(X2 + X + 1) is a field since X2 + X + 1 is

irreducible. Its elements are {0, 1,X,X + 1}

Remark
This is a new finite field, with 4 elements (not of the form Z/pZ since
p = 4 is not prime)

Extension fields

Example

Over (Z/2Z)[X], let P = (X + 1)(X2 + X + 1) (non-irreducible).
▶ Then (Z/2Z)[X]/(P) is not a field: X + 1 is not invertible since

(X + 1)(X2 + X + 1) = 0
▶ But (Z/2Z)[X]/(X2 + X + 1) is a field since X2 + X + 1 is

irreducible. Its elements are {0, 1,X,X + 1}

Remark
This is a new finite field, with 4 elements (not of the form Z/pZ since
p = 4 is not prime)

Finite fields

Property

Any finite field has a cardinality of the form pk where p is prime and
k ∈ Z>0.
p is called the characteristic of the field.

Up to an isomorphism, all the finite fields are thus
▶ either the Fp = Z/pZ with p a prime number
▶ or the Fpk = Fp[x]/(Q) with p a prime number and Q an irreducible

polynomial of degree k over Fp[X].

Finite fields

Property

Any finite field has a cardinality of the form pk where p is prime and
k ∈ Z>0.
p is called the characteristic of the field.

Up to an isomorphism, all the finite fields are thus
▶ either the Fp = Z/pZ with p a prime number
▶ or the Fpk = Fp[x]/(Q) with p a prime number and Q an irreducible

polynomial of degree k over Fp[X].

Multiplicative group of a finite field

Property

The multiplicative group G = (Fpk)∗ is cyclic

Proof.
Let q = pk. Let e, be the smallest positive integer s.t. ∀x ∈ G xe = 1.
Thus Xe − 1 has q − 1 roots in Fpk .
Thus e ≥ q − 1.
Hence there exists an element g ∈ G of order e generating all
elements of G.

▶ The elements of (Fpk)∗ of order pk − 1 are called primitive.
▶ they are primitive (pk − 1)-th root of unity
▶ Fpk correspond to Fp to which one primitive (pk − 1)-th root of

unity has been added (and all elements induced by the + and ×
laws)

Multiplicative group of a finite field

Property

The multiplicative group G = (Fpk)∗ is cyclic

Proof.
Let q = pk. Let e, be the smallest positive integer s.t. ∀x ∈ G xe = 1.
Thus Xe − 1 has q − 1 roots in Fpk .
Thus e ≥ q − 1.
Hence there exists an element g ∈ G of order e generating all
elements of G.

▶ The elements of (Fpk)∗ of order pk − 1 are called primitive.
▶ they are primitive (pk − 1)-th root of unity
▶ Fpk correspond to Fp to which one primitive (pk − 1)-th root of

unity has been added (and all elements induced by the + and ×
laws)

Multiplicative group of a finite field

Property

The multiplicative group G = (Fpk)∗ is cyclic

Proof.
Let q = pk. Let e, be the smallest positive integer s.t. ∀x ∈ G xe = 1.
Thus Xe − 1 has q − 1 roots in Fpk .
Thus e ≥ q − 1.
Hence there exists an element g ∈ G of order e generating all
elements of G.

▶ The elements of (Fpk)∗ of order pk − 1 are called primitive.
▶ they are primitive (pk − 1)-th root of unity
▶ Fpk correspond to Fp to which one primitive (pk − 1)-th root of

unity has been added (and all elements induced by the + and ×
laws)

Primitive elements and polynomials

▶ The elements α of (Fpk)∗ or order pk − 1 are called primitives.
▶ they are primitives (pk − 1)-th root of unity

▶ Fpk corresponds to Fp adjoint with a primitive (pk − 1)-th root of
unity (and with all elements that this induces by applying the +
and ×) laws. Denoted by Fp(α).

▶ Fp(α) ≡ Fp[X]/f où f ∈ Fp[X] is the minimal polynomial of α, i.e:
αk = pk−1α

k−1 + · · ·+ p0 définit f = Xk − pk−1 − · · · − p0.
▶ Reciprocally, all construction of the form Fpk ≡ Fp[X]/f does not

necessarily imply that X generates (Fpk)∗.
▶ Those f which satisfy this property are called primitive

polynomials

Example

Build F8 using a primitive polynomial

Primitive elements and polynomials

▶ The elements α of (Fpk)∗ or order pk − 1 are called primitives.
▶ they are primitives (pk − 1)-th root of unity
▶ Fpk corresponds to Fp adjoint with a primitive (pk − 1)-th root of

unity (and with all elements that this induces by applying the +
and ×) laws. Denoted by Fp(α).

▶ Fp(α) ≡ Fp[X]/f où f ∈ Fp[X] is the minimal polynomial of α, i.e:
αk = pk−1α

k−1 + · · ·+ p0 définit f = Xk − pk−1 − · · · − p0.
▶ Reciprocally, all construction of the form Fpk ≡ Fp[X]/f does not

necessarily imply that X generates (Fpk)∗.
▶ Those f which satisfy this property are called primitive

polynomials

Example

Build F8 using a primitive polynomial

Primitive elements and polynomials

▶ The elements α of (Fpk)∗ or order pk − 1 are called primitives.
▶ they are primitives (pk − 1)-th root of unity
▶ Fpk corresponds to Fp adjoint with a primitive (pk − 1)-th root of

unity (and with all elements that this induces by applying the +
and ×) laws. Denoted by Fp(α).

▶ Fp(α) ≡ Fp[X]/f où f ∈ Fp[X] is the minimal polynomial of α, i.e:
αk = pk−1α

k−1 + · · ·+ p0 définit f = Xk − pk−1 − · · · − p0.

▶ Reciprocally, all construction of the form Fpk ≡ Fp[X]/f does not
necessarily imply that X generates (Fpk)∗.

▶ Those f which satisfy this property are called primitive
polynomials

Example

Build F8 using a primitive polynomial

Primitive elements and polynomials

▶ The elements α of (Fpk)∗ or order pk − 1 are called primitives.
▶ they are primitives (pk − 1)-th root of unity
▶ Fpk corresponds to Fp adjoint with a primitive (pk − 1)-th root of

unity (and with all elements that this induces by applying the +
and ×) laws. Denoted by Fp(α).

▶ Fp(α) ≡ Fp[X]/f où f ∈ Fp[X] is the minimal polynomial of α, i.e:
αk = pk−1α

k−1 + · · ·+ p0 définit f = Xk − pk−1 − · · · − p0.
▶ Reciprocally, all construction of the form Fpk ≡ Fp[X]/f does not

necessarily imply that X generates (Fpk)∗.

▶ Those f which satisfy this property are called primitive
polynomials

Example

Build F8 using a primitive polynomial

Primitive elements and polynomials

▶ The elements α of (Fpk)∗ or order pk − 1 are called primitives.
▶ they are primitives (pk − 1)-th root of unity
▶ Fpk corresponds to Fp adjoint with a primitive (pk − 1)-th root of

unity (and with all elements that this induces by applying the +
and ×) laws. Denoted by Fp(α).

▶ Fp(α) ≡ Fp[X]/f où f ∈ Fp[X] is the minimal polynomial of α, i.e:
αk = pk−1α

k−1 + · · ·+ p0 définit f = Xk − pk−1 − · · · − p0.
▶ Reciprocally, all construction of the form Fpk ≡ Fp[X]/f does not

necessarily imply that X generates (Fpk)∗.
▶ Those f which satisfy this property are called primitive

polynomials

Example

Build F8 using a primitive polynomial

Primitive elements and polynomials

▶ The elements α of (Fpk)∗ or order pk − 1 are called primitives.
▶ they are primitives (pk − 1)-th root of unity
▶ Fpk corresponds to Fp adjoint with a primitive (pk − 1)-th root of

unity (and with all elements that this induces by applying the +
and ×) laws. Denoted by Fp(α).

▶ Fp(α) ≡ Fp[X]/f où f ∈ Fp[X] is the minimal polynomial of α, i.e:
αk = pk−1α

k−1 + · · ·+ p0 définit f = Xk − pk−1 − · · · − p0.
▶ Reciprocally, all construction of the form Fpk ≡ Fp[X]/f does not

necessarily imply that X generates (Fpk)∗.
▶ Those f which satisfy this property are called primitive

polynomials

Example

Build F8 using a primitive polynomial

The non prime fields in practice

Essentially 2 types of implementations:
▶ polynomial
▶ logarithmic

The polynomial representation

Simply using the arithmetic of Fp[X] modulo Q:
▶ Every element is a polynomial of degree < k with coeffs over Fp

⇒array of size k of elements of Z/pZ
▶ see representation of Z/pZ for the type of the coefficients

(uint64_t, float, double, ...)
▶ Case of p = 2: bit-packing technique (see next slide)

▶ Addition: remains of degree < k ⇒just arithmetic over Z/pZ
▶ Mutliplication: S × T mod Q ⇒euclidean division by Q.

The non prime fields in practice

Essentially 2 types of implementations:
▶ polynomial
▶ logarithmic

The polynomial representation

Simply using the arithmetic of Fp[X] modulo Q:
▶ Every element is a polynomial of degree < k with coeffs over Fp

⇒array of size k of elements of Z/pZ
▶ see representation of Z/pZ for the type of the coefficients

(uint64_t, float, double, ...)
▶ Case of p = 2: bit-packing technique (see next slide)

▶ Addition: remains of degree < k ⇒just arithmetic over Z/pZ
▶ Mutliplication: S × T mod Q ⇒euclidean division by Q.

Bit-packing for binary fields
If p = 2:
▶ 1 bit = F2
▶ 1 byte = (F2)

8 ≡ F28

▶ 1 uint64_t = (F2)
64 ≡ F264 , etc

For instance F28

▶ char a: the binary representation of a is the vector of
the coefficients of a polynomial P of degree ≤ 7 such that P(2) = a

a 0 1 2 3 4 5 . . .

in binary 000000000 000000001 00000010 00000011 00000100 00000101 . . .

represents 0 1 x x + 1 x2 x2 + 1 . . .

▶ addition: bitwise XOR: a ∧ b

▶ mult: iterated application of mulByX

char mulByX (char a){
char b = a<<1;
if (a & 128) b ^= 29
return b;

}

here X8 mod X8 + X4 + X3 + X2 + 1 = X4 + X3 + X2 + 1 ≡ 29

Bit-packing for binary fields
If p = 2:
▶ 1 bit = F2
▶ 1 byte = (F2)

8 ≡ F28

▶ 1 uint64_t = (F2)
64 ≡ F264 , etc

For instance F28

▶ char a: the binary representation of a is the vector of
the coefficients of a polynomial P of degree ≤ 7 such that P(2) = a

a 0 1 2 3 4 5 . . .

in binary 000000000 000000001 00000010 00000011 00000100 00000101 . . .

represents 0 1 x x + 1 x2 x2 + 1 . . .

▶ addition: bitwise XOR: a ∧ b

▶ mult: iterated application of mulByX

char mulByX (char a){
char b = a<<1;
if (a & 128) b ^= 29
return b;

}

here X8 mod X8 + X4 + X3 + X2 + 1 = X4 + X3 + X2 + 1 ≡ 29

Bit-packing for binary fields
If p = 2:
▶ 1 bit = F2
▶ 1 byte = (F2)

8 ≡ F28

▶ 1 uint64_t = (F2)
64 ≡ F264 , etc

For instance F28

▶ char a: the binary representation of a is the vector of
the coefficients of a polynomial P of degree ≤ 7 such that P(2) = a

a 0 1 2 3 4 5 . . .

in binary 000000000 000000001 00000010 00000011 00000100 00000101 . . .

represents 0 1 x x + 1 x2 x2 + 1 . . .

▶ addition: bitwise XOR: a ∧ b

▶ mult: iterated application of mulByX

char mulByX (char a){
char b = a<<1;
if (a & 128) b ^= 29
return b;

}

here X8 mod X8 + X4 + X3 + X2 + 1 = X4 + X3 + X2 + 1 ≡ 29

Bit-packing for binary fields
If p = 2:
▶ 1 bit = F2
▶ 1 byte = (F2)

8 ≡ F28

▶ 1 uint64_t = (F2)
64 ≡ F264 , etc

For instance F28

▶ char a: the binary representation of a is the vector of
the coefficients of a polynomial P of degree ≤ 7 such that P(2) = a

a 0 1 2 3 4 5 . . .

in binary 000000000 000000001 00000010 00000011 00000100 00000101 . . .

represents 0 1 x x + 1 x2 x2 + 1 . . .

▶ addition: bitwise XOR: a ∧ b

▶ mult: iterated application of mulByX

char mulByX (char a){
char b = a<<1;
if (a & 128) b ^= 29
return b;

}

here X8 mod X8 + X4 + X3 + X2 + 1 = X4 + X3 + X2 + 1 ≡ 29

Logarithmic representation (Zech-log)

▶ Choose a generator g of (Fq)
∗

▶ Each element a ̸= 0 is represented by its discrete log. i s.t.:
a = gi.

▶ a = 0 is represented by a special value (e.g. q − 1)
▶ multiplication: a × b = gi × gj = gi+j ⇒addition of the indices

mod q − 1
▶ addition: gi + gj = gi × (1 + gj−i)

Exercise
Write the algorithm for the addition, using a precomputed table

Choosing a good generator

X is a simpler generator to compute with.
⇒the polynomials Q such that (Fp[X]/(Q))∗ is generated by X are

called primitive polynomials

Logarithmic representation (Zech-log)

▶ Choose a generator g of (Fq)
∗

▶ Each element a ̸= 0 is represented by its discrete log. i s.t.:
a = gi.

▶ a = 0 is represented by a special value (e.g. q − 1)
▶ multiplication: a × b = gi × gj = gi+j ⇒addition of the indices

mod q − 1
▶ addition: gi + gj = gi × (1 + gj−i)

Exercise
Write the algorithm for the addition, using a precomputed table

Choosing a good generator

X is a simpler generator to compute with.
⇒the polynomials Q such that (Fp[X]/(Q))∗ is generated by X are

called primitive polynomials

Logarithmic representation (Zech-log)

▶ Choose a generator g of (Fq)
∗

▶ Each element a ̸= 0 is represented by its discrete log. i s.t.:
a = gi.

▶ a = 0 is represented by a special value (e.g. q − 1)
▶ multiplication: a × b = gi × gj = gi+j ⇒addition of the indices

mod q − 1
▶ addition: gi + gj = gi × (1 + gj−i)

Exercise
Write the algorithm for the addition, using a precomputed table

Choosing a good generator

X is a simpler generator to compute with.
⇒the polynomials Q such that (Fp[X]/(Q))∗ is generated by X are

called primitive polynomials

	Introduction
	Computational cost/complexity analysis refresh
	Integers and finite fields (a computational point of view)
	Arithmetic of integers
	Arithemtic of Integers modulo
	The Chinese Remainder Theorem

	Algebra refresh
	Algebraic structures
	Finite groups

	Galois fields

