Crypto refresh: Computational Algebra

Cryptographic Engineering

Clément Pernet

M2 Cybersecurity,
UFR-IM ${ }^{2}$ AG, Univ. Grenoble-Alpes
ENSIMAG, Grenoble INP

Outline

Introduction

Computational cost/complexity analysis refresh

Integers and finite fields (a computational point of view)
Arithmetic of integers
Arithemtic of Integers modulo
The Chinese Remainder Theorem

Algebra refresh
Algebraic structures
Finite groups

Galois fields

Introduction

Assessing the security of a cryptosystem:

Information theory: proving that an attacker's view on the protocol leaks no information (data is indistinguishable from a pure random source)
\Rightarrow discrete probabilities
Computational complexity: eventhough the attacker knows all information required to break the system, it would be computationnaly unfeasable to compute it.
\Rightarrow computer algebra
\Rightarrow cost analysis
\Rightarrow complexity theory and reductions
In practice, combination of both worlds: quantify what statistical advantage does a given amount of computational work provide.

Outline

Introduction

Computational cost/complexity analysis refresh

```
Integers and finite fields (a computational point of view)
    Arithmetic of integers
    Arithemtic of Integers modulo
    The Chinese Remainder Theorem
```

Algebra refresh
Algebraic structures
Finite groups

Galois fields

Computational cost / complexity

How to guess the cost of the execution of an algorithm on a given instance?

- in time
- in space

Computational cost / complexity

How to guess the cost of the execution of an algorithm on a given instance?

- in time
- in space

The cost model (simplifying assumptions)

- Define units: which operation has cost 1, which data stores in space 1.

Computational cost / complexity

How to guess the cost of the execution of an algorithm on a given instance?

- in time
- in space

The cost model (simplifying assumptions)

- Define units: which operation has cost 1 , which data stores in space 1.
- cost only depends on the input size (or a parameter related to it):
- uniform across all instances
- worst case analysis

$$
C(n)=
$$

Computational cost / complexity

How to guess the cost of the execution of an algorithm on a given instance?

- in time
- in space

The cost model (simplifying assumptions)

- Define units: which operation has cost 1, which data stores in space 1.
- cost only depends on the input size (or a parameter related to it):
- uniform across all instances
- worst case analysis
- Asymptotic analysis

$$
C(n)=O\left(n^{2}\right)
$$

Asymptotics refresh

Landau notation:

- $f(n)=O(g(n))$ iff $f(n) \leq K g(n) \forall n \geq n_{0}$ for some $K>0$ and $n_{0} \geq 0$
- $f(n)=\Omega(g(n))$ iff $g(n)=O(f(n))$
- $f(n)=\Theta(g(n))$ iff $f(n)=O(g(n))$ and $g(n)=O(f(n))$

Equivalently, $f(n)=O(g(n))$ if $f(n) / g(n)$ is bounded by a constant for all n sufficiently large.

Asymptotics refresh

Landau notation:

- $f(n)=O(g(n))$ iff $f(n) \leq K g(n) \forall n \geq n_{0}$ for some $K>0$ and $n_{0} \geq 0$
- $f(n)=\Omega(g(n))$ iff $g(n)=O(f(n))$
- $f(n)=\Theta(g(n))$ iff $f(n)=O(g(n))$ and $g(n)=O(f(n))$

Equivalently, $f(n)=O(g(n))$ if $f(n) / g(n)$ is bounded by a constant for all n sufficiently large.

Example

$$
\begin{aligned}
2 n^{3}-3 n^{2} \log n+5 n+12 & =\Theta\left(n^{3}\right) \\
n+1 & =O\left(\frac{1}{1000} n\right) \\
n \log n & =O\left(n^{2}\right) \\
n^{2}+100000 n^{1.9} & =\Omega\left(n^{2}\right) \\
(3 n+1) \log ^{2} n & \neq O(n \log n) \\
2^{n} & \neq O\left(n^{k}\right) \text { for any } k \in \mathbb{Z}
\end{aligned}
$$

Asymptotics refresh

poly-logarithmic notations (soft-O)
$f(n)=O^{\sim}(g(n))$ iff $f(n)=O\left(g(n) \log ^{e} g(n)\right)$ for some $e>0$

Asymptotics refresh

poly-logarithmic notations (soft-O)
$f(n)=O^{\sim}(g(n))$ iff $f(n)=O\left(g(n) \log ^{e} g(n)\right)$ for some $e>0$

Example

$$
n \times \log n \times \log \log n=O^{\sim}(n)
$$

\Rightarrow Quasi-linear cost.

Magnitudes

Linear or Exp time?

Size of an integer n represented in base $2: s=\left\lceil\log _{2} n\right\rceil$ bits.

$$
n=\Theta\left(2^{s}\right)=\Theta(\exp (s))
$$

\Rightarrow any algorithm working on an integer n with cost linear in n takes actually an exponential time in the input size.

Orders of magnitude in practice

Nowadays' computers are quite fast
Speed of a PC: $3 \mathrm{GHz} \Rightarrow 3 \times 10^{9} \times 4 \times 2$ int 64_t mult. per sec.

- Video projector is at 3 m of the screen: $300000 \mathrm{~km} / \mathrm{s} \Rightarrow 10^{-8} \mathrm{~s}$
- 240 multiplications done before the light reaches the screen

Orders of magnitude in practice

Nowadays' computers are quite fast
Speed of a PC: $3 \mathrm{GHz} \Rightarrow 3 \times 10^{9} \times 4 \times 2$ int 64_t mult. per sec.

- Video projector is at 3 m of the screen: $300000 \mathrm{~km} / \mathrm{s} \Rightarrow 10^{-8} \mathrm{~s}$
- 240 multiplications done before the light reaches the screen
- Age of the universe : 15 billion $\times 365 \times 24 \times 3600 \approx 5.10^{17} s \approx 2^{59} s$

Orders of magnitude in practice

Nowadays' computers are quite fast

Speed of a PC: $3 G H z \Rightarrow 3 \times 10^{9} \times 4 \times 2$ int $64 _t$ mult. per sec.

- Video projector is at 3 m of the screen: $300000 \mathrm{~km} / \mathrm{s} \Rightarrow 10^{-8} \mathrm{~s}$
- 240 multiplications done before the light reaches the screen
- Age of the universe : 15 billion $\times 365 \times 24 \times 3600 \approx 5.10^{17} s \approx 2^{59} s$
- Number of electrons in the universe : $\approx 10^{64} \approx 2^{213}$

Orders of magnitude in practice

Nowadays' computers are quite fast

Speed of a PC: $3 \mathrm{GHz} \Rightarrow 3 \times 10^{9} \times 4 \times 2$ int $64 _t$ mult. per sec.

- Video projector is at 3 m of the screen: $300000 \mathrm{~km} / \mathrm{s} \Rightarrow 10^{-8} \mathrm{~s}$
- 240 multiplications done before the light reaches the screen
- Age of the universe : 15 billion $\times 365 \times 24 \times 3600 \approx 5.10^{17} s \approx 2^{59} s$
- Number of electrons in the universe : $\approx 10^{64} \approx 2^{213}$
- Costs for algorithms working with 128 bit integers

Cost	s	s^{2}	s^{3}	s^{4}	$n=2^{s}$
Nb of ops	128	16384	$2 \cdot 10^{6}$	$3 \cdot 10^{8}$	10^{39}
Time on a 2.5Ghz PC	$5.3 n s$	$0.68 \mu \mathrm{~s}$	$87.4 \mu \mathrm{~s}$	$11.2 m s$	$1.42 \cdot 10^{28} s$

$\Rightarrow 1.42 \cdot 10^{28} s \approx 3 \cdot 10^{10}$ times the age of the universe !

Outline

Introduction

Computational cost/complexity analysis refresh

Integers and finite fields (a computational point of view)
Arithmetic of integers
Arithemtic of Integers modulo
The Chinese Remainder Theorem

Algebra refresh
Algebraic structures
Finite groups

Galois fields

Outline

Introduction

Computational cost/complexity analysis refresh

Integers and finite fields (a computational point of view)
Arithmetic of integers
Arithemtic of Integers modulo
The Chinese Remainder Theorem

Algebra refresh
Algebraic structures
Finite groups

Galois fields

The ring of integers \mathbb{Z}

Fixed precision 32, 64 bits

$$
\begin{aligned}
\text { uint } 32 _t: & {\left[0 . .2^{32}-1\right] } \\
\text { int } 32 _t: & {\left[-2^{31}+1 . .2^{31}-1\right] } \\
\text { uint } 64 _t: & {\left[0 . .2^{64}-1\right] } \\
\text { int } 64 _t: & {\left[-2^{63}+1 . .2^{63}-1\right] }
\end{aligned}
$$

Atomic cost:

- add, mul, sub: ≈ 1 clock cycle;
\rightarrow div, mod : ≈ 10 clock cycles

The ring of integers \mathbb{Z}

Fixed precision 32,64 bits $(24,53)$: word size integers

$$
\begin{aligned}
\text { uint } 32 _t: & {\left[0 . .2^{32}-1\right] } \\
\text { int } 32 _t: & {\left[-2^{31}+1 . .2^{31}-1\right] } \\
\text { uint } 64 _t: & {\left[0 . .2^{64}-1\right] } \\
\text { int } 64 _t: & {\left[-2^{63}+1 . .2^{63}-1\right] }
\end{aligned}
$$

Atomic cost:

- add, mul, sub: ≈ 1 clock cycle;
- div, mod : ≈ 10 clock cycles

Alternatively, one can store integers on floating point types:

$$
\begin{array}{r}
\text { float: }\left[-2^{23}+1 . .2^{23}-1\right] \\
\text { double: }\left[-2^{52}+1 . .2^{52}-1\right]
\end{array}
$$

\Rightarrow faster on most CPUs, but slightly smaller representation capacity

The ring of integers \mathbb{Z}

Fixed precision 32,64 bits $(24,53)$: word size integers

$$
\begin{aligned}
\text { uint } 32 _t: & {\left[0 . .2^{32}-1\right] } \\
\text { int } 32 _t: & {\left[-2^{31}+1 . .2^{31}-1\right] } \\
\text { uint } 64 _t: & {\left[0 . .2^{64}-1\right] } \\
\text { int } 64 _t: & {\left[-2^{63}+1 . .2^{63}-1\right] }
\end{aligned}
$$

Atomic cost:

- add, mul, sub: ≈ 1 clock cycle;
- div, mod : ≈ 10 clock cycles

Alternatively, one can store integers on floating point types:

$$
\begin{array}{r}
\text { float: }\left[-2^{23}+1 . .2^{23}-1\right] \\
\text { double: }\left[-2^{52}+1 . .2^{52}-1\right]
\end{array}
$$

\Rightarrow faster on most CPUs, but slightly smaller representation capacity
\Rightarrow used for small integers; small finite fields/rings, ...

The ring of integers \mathbb{Z}

Multi-precision

- No native hardware support
- Software emulation: C/C++ libraries GMP/MPIR:
\Rightarrow vectors of 64 bits unsigned words
$\underline{\text { Basic arithmetic no longer have unit cost: depend on } s=\log _{64} n}$

Addition			$O(s)$
	Classic	$s<32$ words	$O\left(s^{2}\right)$
Multip.	Karatsuba	$32<s<256$	$O\left(s^{1.555}\right)$
	Toom-Cook		$O\left(s^{1.465}\right)$
	FFT	$s>10000$ words	$O(s \log s)=O^{\sim}(s)$
Division			$O(M(s))=O^{\sim}(s)$
GCD	Euclidean Alg.	$O\left(s^{2}\right)$	
	Fast Euclid. Alg.	$O(M(s) \log s)=O^{\sim}(s)$	

Integer multiplication via evaluation/interpolation

From integer to polynomial multiplication

$$
\begin{aligned}
c & =a \times b \\
\sum_{i=0}^{\left\lceil\log _{2} a\right\rceil\left\lceil\log _{2} b\right\rceil} c_{i}\left(2^{64}\right)^{i} & =\left(\sum_{i=0}^{\left\lceil\log _{2} a\right\rceil} a_{i}\left(2^{64}\right)^{i}\right) \times\left(\sum_{i=0}^{\left\lceil\log _{2} b\right\rceil} b_{i}\left(2^{64}\right)^{i}\right) \\
\sum_{i=0}^{d_{A}+d_{B}} c_{i} X^{i} & =\left(\sum_{i=0}^{d_{A}} a_{i} X^{i}\right) \times\left(\sum_{i=0}^{d_{B}} b_{i} X^{i}\right)
\end{aligned}
$$

Integer multiplication via evaluation/interpolation

From integer to polynomial multiplication

$$
\begin{aligned}
c & =a \times b \\
\sum_{i=0}^{\left\lceil\log _{2} a\right\rceil\left\lceil\log _{2} b\right\rceil} c_{i}\left(2^{64}\right)^{i} & =\left(\sum_{i=0}^{\left\lceil\log _{2} a\right\rceil} a_{i}\left(2^{64}\right)^{i}\right) \times\left(\sum_{i=0}^{\left\lceil\log _{2} b\right\rceil} b_{i}\left(2^{64}\right)^{i}\right) \\
\sum_{i=0}^{d_{A}+d_{B}} c_{i} X^{i} & =\left(\sum_{i=0}^{d_{A}} a_{i} X^{i}\right) \times\left(\sum_{i=0}^{d_{B}} b_{i} X^{i}\right)
\end{aligned}
$$

Evaluation-Interpolation

if $n \geq d_{A}+d_{B}+1$

FFT based integer multiplication

Polynomial Multiplication

1. Multipoint evaluation of $A:\left(A\left(x_{1}\right), \ldots, A\left(x_{n}\right)\right)$
2. Multipoint evaluation of $B:\left(B\left(x_{1}\right), \ldots, B\left(x_{n}\right)\right)$
3. Pointwise products: $C\left(x_{i}\right)=A\left(x_{i}\right) B\left(x_{i}\right)$
4. Interpolation of the $C\left(x_{i}\right)$'s into $C(X)$

FFT based integer multiplication

Polynomial Multiplication

1. Multipoint evaluation of $A:\left(A\left(x_{1}\right), \ldots, A\left(x_{n}\right)\right)$
2. Multipoint evaluation of $B:\left(B\left(x_{1}\right), \ldots, B\left(x_{n}\right)\right)$
3. Pointwise products: $C\left(x_{i}\right)=A\left(x_{i}\right) B\left(x_{i}\right)$
4. Interpolation of the $C\left(x_{i}\right)$'s into $C(X)$

Property

If $x_{i}=\xi^{i}$ where ξ is an n-th root of unity, then

- multipoint evaluation can be computed with FFT $\Rightarrow O(n \log n)$
- interpolation is a multipoint evaluation in $\xi^{-1} \Rightarrow O(n \log n)$

GCD and Euclidean Algorithm

Definition (GCD = Greatest Common Divisor)

The GCD of a and b is the greatest integer g dividing both a and b

Example

- $\operatorname{GCD}(12,16)=4$
- $\operatorname{GCD}(12,17)=1 \Rightarrow 12$ and 17 are coprime

GCD and Euclidean Algorithm

Bezout relation

If $g=\operatorname{GCD}(a, b)$, then there exist $u, v \in \mathbb{Z}$, coprime such that

$$
g=u a+v b
$$

Property

- $\operatorname{GCD}(a, b)=\operatorname{GCD}(a, a-b))$
- $\operatorname{GCD}(a, b)=\operatorname{GCD}(a, a \bmod b))$

GCD and Euclidean Algorithm

Problem

Given $a, b \in \mathbb{Z}$, find $g=\operatorname{GCD}(a, b)$

begin

$$
\begin{aligned}
& r_{0}=a ; \\
& r_{1}=b ; \\
& \text { while } r_{i} \neq 0 \text { do } \\
& \qquad \begin{array}{l}
r_{i+1}=r_{i-1} \\
i=i+1 ;
\end{array} \bmod r_{i} ;
\end{aligned}
$$

$$
/ \star r_{i-1}=r_{i} q_{i}+r_{i+1} \quad \star /
$$

- The last $r_{i} \neq 0$ is the gcd of a and b

GCD and Euclidean Algorithm

Problem

Given $a, b \in \mathbb{Z}$, find $g=\operatorname{GCD}(a, b)$ and u, v coprime s.t. $u a+v b=g$

begin

$$
\begin{aligned}
& r_{0}=a ; \\
& r_{1}=b ; \\
& u_{0}=1, v_{0}=0 ; \\
& u_{1}=0, v_{1}=1
\end{aligned}
$$

while $r_{i} \neq 0$ do

$$
\begin{aligned}
& r_{i+1}=r_{i-1} \bmod r_{i} ; \\
& u_{i+1}=u_{i-1}-q_{i} u_{i} ; \\
& v_{i+1}=v_{i-1}-q_{i} v_{i} ; \\
& i=i+1 ;
\end{aligned}
$$

- The last $r_{i} \neq 0$ is the gcd of a and b
- invariant $u_{i} a+v_{i} b=r_{i}$ for all $i \Rightarrow$ Bezout coefficients

Outline

Introduction

Computational cost/complexity analysis refresh

Integers and finite fields (a computational point of view)
Arithmetic of integers
Arithemtic of Integers modulo
The Chinese Remainder Theorem

Algebra refresh
Algebraic structures
Finite groups

Galois fields

Finite ring and fields: $\mathbb{Z} / n \mathbb{Z}$

Integers modulo n

$\mathbb{Z} / n \mathbb{Z}=\{0,1, \ldots, n-1\}$ equiped with addition et mult. modulo n.

- use integer arithmetic
- reduce the results mod n

Finite ring and fields: $\mathbb{Z} / n \mathbb{Z}$

Integers modulo n

$\mathbb{Z} / n \mathbb{Z}=\{0,1, \ldots, n-1\}$ equiped with addition et mult. modulo n.

- use integer arithmetic
- reduce the results mod n

Addition	$\mathrm{c}=\mathrm{a}+\mathrm{b} ;$
	if $(\mathrm{c}>=\mathrm{n}) \quad \mathrm{c}=\mathrm{c}-\mathrm{n} ;$
Opposé	$\mathrm{c}=\mathrm{n}-\mathrm{b} ;$
Multiplication	$\mathrm{c}=\mathrm{a} * \mathrm{~b} ;$
	if $(\mathrm{c}>=\mathrm{n}) \quad \mathrm{c}=\mathrm{c} \% \mathrm{n} ; / / \mathrm{c}$ modulo n

Inverse

Modular Inverse

Modulo n any non-zero element does not necessarily have an inverse: $2^{-1} \bmod 4$
Computing the modular inverse $a^{-1} \bmod n$
$\operatorname{PGCD}(a, n)=1 \Leftrightarrow u a+v n=1 \Leftrightarrow u a=1 \bmod n \Leftrightarrow a^{-1}=u \bmod n$.

Corollary

$\mathbb{Z} / p \mathbb{Z}$ is a field iff p is prime

Corollary

All finite fields are either equivalent to

- $\mathbb{Z} / p \mathbb{Z}$ for a prime p or
- $\mathbb{Z} / p \mathbb{Z}[X] /(Q)$ where $Q \in \mathbb{Z} / p \mathbb{Z}[X]$ is irreducible

Outline

Introduction

Computational cost/complexity analysis refresh

Integers and finite fields (a computational point of view)
Arithmetic of integers
Arithemtic of Integers modulo
The Chinese Remainder Theorem

Algebra refresh
Algebraic structures
Finite groups

Galois fields

The Chinese remainder theorem

Problem (Sunzi Suanjing)
Find n knowing that $\left\{\begin{array}{l}n \bmod 3=2, \\ n \bmod 5=3, \\ n \bmod 7=2\end{array}\right.$
$\Rightarrow n=23+105 k$ for $k \in \mathbb{Z}$.
\Rightarrow unique integer between 0 and 104

The Chinese remainder theorem

> Problem (Sunzi Suanjing)
> Find n knowing that $\left\{\begin{array}{l}n \bmod 3=2, \\ n \bmod 5=3, \\ n \bmod 7=2\end{array}\right.$
> $\Rightarrow n=23+105 k$ for $k \in \mathbb{Z}$.
> \Rightarrow unique integer between 0 and 104

Theorem

If p, q are coprime and x, y are residues modulo p and q. Then $\exists!A<p q$, such that $A=x \bmod p$ and $A=y \bmod q$.

The Chinese remainder theorem

Theorem (Alternative formulation)
If p, q are coprime,

$$
\mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / q \mathbb{Z} \equiv \mathbb{Z} /(p q) \mathbb{Z}
$$

The Chinese remainder theorem

Theorem (Alternative formulation)

If p, q are coprime,

$$
\mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / q \mathbb{Z} \equiv \mathbb{Z} /(p q) \mathbb{Z}
$$

Isomorphism:

$$
\begin{aligned}
f: & \mathbb{Z} /(p q) \mathbb{Z} \\
& \rightarrow \mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / q \mathbb{Z} \\
n & \mapsto(n \bmod p, n \bmod q) \\
f^{-1}: \mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / q \mathbb{Z} & \rightarrow \mathbb{Z} /(p q) \mathbb{Z} \\
(x, y) & \mapsto x q\left(q^{-1} \bmod p\right)+y p\left(p^{-1} \quad \bmod q\right) \bmod p q
\end{aligned}
$$

The Chinese remainder theorem

Theorem

If m_{1}, \ldots, m_{k} are pairwise relatively prime,

$$
\mathbb{Z} / m_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / m_{k} \mathbb{Z} \equiv \mathbb{Z} /\left(m_{1} \ldots m_{k}\right) \mathbb{Z}
$$

Isomorphism:

$$
\begin{aligned}
f: & \mathbb{Z} /\left(m_{1} \ldots m_{k}\right) \mathbb{Z} \\
n & \rightarrow \mathbb{Z} / m_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / m_{k} \mathbb{Z} \\
n & \mapsto\left(n \bmod m_{1}, \ldots, m \bmod m_{k}\right) \\
f^{-1}: \quad \mathbb{Z} / m_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / m_{k} \mathbb{Z} & \rightarrow \mathbb{Z} /\left(m_{1} \ldots m_{k}\right) \mathbb{Z} \\
\left(x_{1}, \ldots, x_{k}\right) & \mapsto \sum_{i=1}^{k} x_{i} \Pi_{i} Y_{i} \bmod \Pi
\end{aligned}
$$

where $\left\{\begin{array}{l}\Pi=\prod_{i=1}^{k} m_{i} \\ \Pi_{i}=\Pi_{i} m_{i} \\ Y_{i}=\Pi_{i}^{-1} \bmod m_{i}\end{array}\right.$

The Chinese remainder theorem

Theorem

If m_{1}, \ldots, m_{k} are pairwise relatively prime,

$$
\mathbb{Z} / m_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / m_{k} \mathbb{Z} \equiv \mathbb{Z} /\left(m_{1} \ldots m_{k}\right) \mathbb{Z}
$$

Isomorphism:

$$
\begin{aligned}
f: & \mathbb{Z} /\left(m_{1} \ldots m_{k}\right) \mathbb{Z} \\
n & \rightarrow \mathbb{Z} / m_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / m_{k} \mathbb{Z} \\
n & \mapsto\left(n \bmod m_{1}, \ldots, m \bmod m_{k}\right) \\
f^{-1}: \mathbb{Z} / m_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / m_{k} \mathbb{Z} & \rightarrow \mathbb{Z} /\left(m_{1} \ldots m_{k} \mathbb{Z}\right. \\
\left(x_{1}, \ldots, x_{k}\right) & \mapsto \sum_{i=1}^{k} x_{i} \Pi_{i} Y_{i} \bmod \Pi
\end{aligned}
$$

where $\left\{\begin{array}{l}\Pi=\prod_{i=1}^{k} m_{i} \\ \Pi_{i}=\Pi / m_{i} \\ Y_{i}=\Pi_{i}^{-1} \bmod m_{i}\end{array}\right.$

Theorem (Alternative formulation)

If m_{1}, \ldots, m_{k} are pairwise relatively prime and a_{1}, \ldots, a_{k} are residues modulo resp. m_{1}, \ldots, m_{k}. Then $\exists!A \in \mathbb{Z}_{+}, A<\prod_{i=1}^{k} m_{i}$, such that $A=a_{i}\left[m_{i}\right]$ for $i=1 \ldots k$.

Analogy with the polynomials

Over the ring of polynomials $K[X]$ (for any field K),

$$
P(a)=P \quad \bmod (X-a)
$$

Evaluate P in a
\leftrightarrow
Reduce P modulo $X-a$

Analogy with the polynomials

Over the ring of polynomials $K[X]$ (for any field K),

$$
P(a)=P \quad \bmod (X-a)
$$

Evaluate P in a
Reduce P modulo $X-a$

Polynomials	Integers
Evaluation:	
$y=P \bmod (X-a)$	$y=N \bmod m$
$y=P(a)$	$y=$ "Evaluation" of N in m
Interpolation:	
$P=\sum_{i=1}^{k} y_{i} \prod_{i \neq i}\left(X-a_{j}\right)$	$N=\sum_{i \neq i}^{k} y_{i} \prod_{j \neq i} m_{j}\left(\prod_{j \neq i} m_{j}\right)^{-1\left[m_{i}\right]}$

Outline

Introduction

Computational cost/complexity analysis refresh

Integers and finite fields (a computational point of view)
Arithmetic of integers
Arithemtic of Integers modulo
The Chinese Remainder Theorem

Algebra refresh
Algebraic structures
Finite groups

Galois fields

Outline

Introduction

Computational cost/complexity analysis refresh

Integers and finite fields (a computational point of view)
Arithmetic of integers
Arithemtic of Integers modulo
The Chinese Remainder Theorem

Algebra refresh
Algebraic structures
Finite groups

Galois fields

Groups, Rings, Fields

Definition (informally)

A group $(G, *, 1)$: is a set G with an associative law $*$ such that

- 1 is a neutral element $x * 1=1 * x=x$
- every element of G is invertible: $\forall x \exists y, x y=y x=1$
- Examples: $(\mathbb{Z},+, 0) ;(\mathbb{Q} \backslash\{0\}, \times, 1)$

Groups, Rings, Fields

Definition (informally)

A group $(G, *, 1)$: is a set G with an associative law $*$ such that

- 1 is a neutral element $x * 1=1 * x=x$
- every element of G is invertible: $\forall x \exists y, x y=y x=1$
- Examples: $(\mathbb{Z},+, 0) ;(\mathbb{Q} \backslash\{0\}, \times, 1)$

A ring $(R,+, \times, 0,1)$ is

- a group $(R,+, 0)$
- with an associative law \times with neutral element 1 .
- such that $0 \times x=0$
- Examples: $(\mathbb{Z} / n \mathbb{Z},+, \times, 0,1) ;(\mathbb{Z}[X],+, \times, 0,1)$

Groups, Rings, Fields

Definition (informally)

A group $(G, *, 1)$: is a set G with an associative law $*$ such that

- 1 is a neutral element $x * 1=1 * x=x$
- every element of G is invertible: $\forall x \exists y, x y=y x=1$
- Examples: $(\mathbb{Z},+, 0) ;(\mathbb{Q} \backslash\{0\}, \times, 1)$

A ring $(R,+, \times, 0,1)$ is

- a group ($R,+, 0$)
- with an associative law \times with neutral element 1 .
- such that $0 \times x=0$
- Examples: $(\mathbb{Z} / n \mathbb{Z},+, \times, 0,1) ;(\mathbb{Z}[X],+, \times, 0,1)$

A field $(F,+, \times, 0,1)$ is

- a ring $(F,+, \times, 0,1)$
- where every element except 0 has an inverse for \times
- equivalently such that ($F \backslash\{0\}, \times, 1$) is a group.
- Examples: $(\mathbb{Q},+, \times, 0,1) ;(\mathbb{Z} / p \mathbb{Z},+, \times, 0,1)$ for p prime

An example of finite ring: $\mathbb{Z} / n \mathbb{Z}$

$\mathbb{Z} / n \mathbb{Z}=\{0,1, \ldots, n-1\}$ equiped with addition and mult. modulo n.

- $(\mathbb{Z} / n \mathbb{Z},+, \times, 0,1)$ is a ring
- not necessarily a field: e.g. $n=p q$
$\Rightarrow p q=0 \bmod n$
\Rightarrow if p is invertible, then $p^{-1} p q=q=0 \bmod n$
\Rightarrow neither p nor q have an inverse $\bmod n$

An example of finite ring: $\mathbb{Z} / n \mathbb{Z}$

$\mathbb{Z} / n \mathbb{Z}=\{0,1, \ldots, n-1\}$ equiped with addition and mult. modulo n.

- $(\mathbb{Z} / n \mathbb{Z},+, \times, 0,1)$ is a ring
- not necessarily a field: e.g. $n=p q$
$\Rightarrow p q=0 \bmod n$
\Rightarrow if p is invertible, then $p^{-1} p q=q=0 \bmod n$
\Rightarrow neither p nor q have an inverse $\bmod n$

Theorem

$(\mathbb{Z} / n \mathbb{Z},+, \times, 0,1)$ is a field iff n is prime.

Constructive proof.

By the Extended Euclidean Algorithm

Multiplicative group of a ring

If $(R,+, \times, 0,1)$ is a ring, not all elements of R are invertible for \times.

Definition (Multiplicative group of a ring R)

The subset of its elements that are invertible for \times. Denoted by R^{*}

- If R is a field, all non-zero element is invertible, $\Rightarrow R^{*}=R \backslash\{0\}$
- $(\mathbb{Z} / n \mathbb{Z})^{*}=\{x \in \mathbb{Z} / n \mathbb{Z}$ s.t. $\operatorname{GCD}(x, n)=1\}$

Outline

Introduction

Computational cost/complexity analysis refresh

Integers and finite fields (a computational point of view)
Arithmetic of integers
Arithemtic of Integers modulo
The Chinese Remainder Theorem

Algebra refresh
Algebraic structures
Finite groups

Galois fields

Lagrange, Euler, Fermat

Definition

finite group: un groupe ayant un nombre fini d'éléments order of an element $x: \#\left\{x^{i}, i \in \mathbb{Z}\right\}$
cyclic group: a finite group generated by a unique element

Lagrange, Euler, Fermat

Definition

finite group: un groupe ayant un nombre fini d'éléments
order of an element $x: \#\left\{x^{i}, i \in \mathbb{Z}\right\}$
cyclic group: a finite group generated by a unique element

Theorem (Lagrange)

For a finite group $(G, 1)$ and $a \in G, a^{\# G}=1$.

Corollary

The order of any element divides that of the its group. $\forall a \in G, o(a) \mid \# G$

Lagrange, Euler, Fermat

Definition

finite group: un groupe ayant un nombre fini d'éléments
order of an element $x: \#\left\{x^{i}, i \in \mathbb{Z}\right\}$
cyclic group: a finite group generated by a unique element

Theorem (Lagrange)

For a finite group $(G, 1)$ and $a \in G, a^{\# G}=1$.

Corollary

The order of any element divides that of the its group: $\forall a \in G, o(a) \mid \# G$
Theorem (Lagrange-v2)
If H est is a sub-group of G, then $\# H \mid \# G$

Lagrange, Euler, Fermat

Definition

finite group: un groupe ayant un nombre fini d'éléments
order of an element x : $\#\left\{x^{i}, i \in \mathbb{Z}\right\}$
cyclic group: a finite group generated by a unique element

Theorem (Lagrange)

For a finite group $(G, 1)$ and $a \in G, a^{\# G}=1$.

Corollary

The order of any element divides that of the its group. $\forall a \in G, o(a) \mid \# G$
Theorem (Lagrange-v2)
If H est is a sub-group of G, then $\# H \mid \# G$

Property

Any sub-group H of a cyclic group G is cyclic.

Euler totient function

Definition

- Multiplicative subgroup of $\mathbb{Z} / n \mathbb{Z}:(\mathbb{Z} / n \mathbb{Z})^{*}=\{x \in \mathbb{Z} / n \mathbb{Z}, \operatorname{GCD}(x, n)=1\}$
- Euler Totient: $\varphi(n)=\#(\mathbb{Z} / n \mathbb{Z})^{*}$

Euler totient function

Definition

- Multiplicative subgroup of $\mathbb{Z} / n \mathbb{Z}:(\mathbb{Z} / n \mathbb{Z})^{*}=\{x \in \mathbb{Z} / n \mathbb{Z}, G C D(x, n)=1\}$
- Euler Totient: $\varphi(n)=\#(\mathbb{Z} / n \mathbb{Z})^{*}$

Property

- $\varphi(p)=(p-1)$ for p prime
- $\varphi\left(p^{k}\right)=(p-1) p^{k-1}$ for p prime
- $\varphi(m n)=\varphi(m) \varphi(n)$ for $\operatorname{GCD}(m, n)=1$

Euler totient function

Definition

- Multiplicative subgroup of $\mathbb{Z} / n \mathbb{Z}:(\mathbb{Z} / n \mathbb{Z})^{*}=\{x \in \mathbb{Z} / n \mathbb{Z}, G C D(x, n)=1\}$
- Euler Totient: $\varphi(n)=\#(\mathbb{Z} / n \mathbb{Z})^{*}$

Property

- $\varphi(p)=(p-1)$ for p prime
- $\varphi\left(p^{k}\right)=(p-1) p^{k-1}$ for p prime
- $\varphi(m n)=\varphi(m) \varphi(n)$ for $\operatorname{GCD}(m, n)=1$

Example: $n=\prod_{i=1}^{k} p_{i}^{\alpha_{i}}$ (prime factor decomposition)

$$
\varphi(n)=\prod_{i=1}^{k} p_{i}^{\alpha_{i}-1}\left(p_{i}-1\right)
$$

Euler totient function

Definition

- Multiplicative subgroup of $\mathbb{Z} / n \mathbb{Z}:(\mathbb{Z} / n \mathbb{Z})^{*}=\{x \in \mathbb{Z} / n \mathbb{Z}, G C D(x, n)=1\}$
- Euler Totient: $\varphi(n)=\#(\mathbb{Z} / n \mathbb{Z})^{*}$

Property

- $\varphi(p)=(p-1)$ for p prime
- $\varphi\left(p^{k}\right)=(p-1) p^{k-1}$ for p prime
- $\varphi(m n)=\varphi(m) \varphi(n)$ for $\operatorname{GCD}(m, n)=1$

Example: $n=\prod_{i=1}^{k} p_{i}^{\alpha_{i}}$ (prime factor decomposition)

$$
\varphi(n)=\prod_{i=1}^{k} p_{i}^{\alpha_{i}-1}\left(p_{i}-1\right)
$$

Property

The number of generators in a cylcic group of order n is $\varphi(n)$

Euler, Fermat

Theorem (Euler)
Let $a, n \in \mathbb{Z}$. If $G C D(a, n)=1$, then $a^{\varphi(n)}=1 \bmod n$.
Theorem (Fermat)
If p is prime, then $a^{p}=a \bmod p \forall a \in \mathbb{Z} / p \mathbb{Z}$.

Outline

```
Introduction
Computational cost/complexity analysis refresh
Integers and finite fields (a computational point of view)
    Arithmetic of integers
    Arithemtic of Integers modulo
    The Chinese Remainder Theorem
Algebra refresh
    Algebraic structures
    Finite groups
```

Galois fields

Extension fields

Algebraic extensions

Consider a field $(K,+, \times)$, and a polynomial $P \in K[X]$ of degree d.

- We denote by $K[X] /(P)$ the set of equivalence classes of $K[X]$ modulo P.
- This is the set of the $P \in K[X]$ with degree $<d$ equipped with the following laws

$$
\text { Addition: } S+T=S(X)+_{K[X]} T(X) \bmod P
$$

Multiplication: $S \times T=S(X) \times_{K[X]} T(X) \bmod P$

- $(K[X] /(P),+, \times)$ is thus a commutative ring, called the quotient ring of $K[X]$ by P.

Extension fields

Algebraic extensions

Consider a field $(K,+, \times)$, and a polynomial $P \in K[X]$ of degree d.

- We denote by $K[X] /(P)$ the set of equivalence classes of $K[X]$ modulo P.
- This is the set of the $P \in K[X]$ with degree $<d$ equipped with the following laws

$$
\text { Addition: } S+T=S(X)+_{K[X]} T(X) \bmod P
$$

Multiplication: $S \times T=S(X) \times_{K[X]} T(X) \bmod P$

- $(K[X] /(P),+, \times)$ is thus a commutative ring, called the quotient ring of $K[X]$ by P.

Property

$K[X] /(P)$ is a field iff P is irreducible over $K[X]$.

Extension fields

Algebraic extensions

Consider a field $(K,+, \times)$, and a polynomial $P \in K[X]$ of degree d.

- We denote by $K[X] /(P)$ the set of equivalence classes of $K[X]$ modulo P.
- This is the set of the $P \in K[X]$ with degree $<d$ equipped with the following laws

$$
\text { Addition: } S+T=S(X)+_{K[X]} T(X) \bmod P
$$

Multiplication: $S \times T=S(X) \times_{K[X]} T(X) \bmod P$

- $(K[X] /(P),+, \times)$ is thus a commutative ring, called the quotient ring of $K[X]$ by P.

Property

$K[X] /(P)$ is a field iff P is irreducible over $K[X]$.

Proof.

For all $S \in K[X] /(P), \operatorname{GCD}(S, P)=1$ hence $\exists U, V, U S+V P=1$ thus S is invertible and $U=S^{-1} \bmod P$.

Extension fields

Example

$\operatorname{Over}(\mathbb{Z} / 2 \mathbb{Z})[X]$, let $P=(X+1)\left(X^{2}+X+1\right)$ (non-irreducible).

- Then $(\mathbb{Z} / 2 \mathbb{Z})[X] /(P)$ is not a field: $X+1$ is not invertible since $(X+1)\left(X^{2}+X+1\right)=0$

Extension fields

Example

$\operatorname{Over}(\mathbb{Z} / 2 \mathbb{Z})[X]$, let $P=(X+1)\left(X^{2}+X+1\right)$ (non-irreducible).

- Then $(\mathbb{Z} / 2 \mathbb{Z})[X] /(P)$ is not a field: $X+1$ is not invertible since $(X+1)\left(X^{2}+X+1\right)=0$
- But $(\mathbb{Z} / 2 \mathbb{Z})[X] /\left(X^{2}+X+1\right)$ is a field since $X^{2}+X+1$ is irreducible. Its elements are $\{0,1, X, X+1\}$

Extension fields

Example

$\operatorname{Over}(\mathbb{Z} / 2 \mathbb{Z})[X]$, let $P=(X+1)\left(X^{2}+X+1\right)$ (non-irreducible).

- Then $(\mathbb{Z} / 2 \mathbb{Z})[X] /(P)$ is not a field: $X+1$ is not invertible since $(X+1)\left(X^{2}+X+1\right)=0$
- But $(\mathbb{Z} / 2 \mathbb{Z})[X] /\left(X^{2}+X+1\right)$ is a field since $X^{2}+X+1$ is irreducible. Its elements are $\{0,1, X, X+1\}$

Remark

This is a new finite field, with 4 elements (not of the form $\mathbb{Z} / p \mathbb{Z}$ since $p=4$ is not prime)

Finite fields

Property

Any finite field has a cardinality of the form p^{k} where p is prime and $k \in \mathbb{Z}_{>0}$.
p is called the characteristic of the field.

Finite fields

Property

Any finite field has a cardinality of the form p^{k} where p is prime and
$k \in \mathbb{Z}_{>0}$.
p is called the characteristic of the field.
Up to an isomorphism, all the finite fields are thus

- either the $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$ with p a prime number
- or the $\mathbb{F}_{p^{k}}=\mathbb{F}_{p}[x] /(Q)$ with p a prime number and Q an irreducible polynomial of degree k over $\mathbb{F}_{p}[X]$.

Multiplicative group of a finite field

Property

The multiplicative group $G=\left(\mathbb{F}_{p^{k}}\right)^{*}$ is cyclic

Multiplicative group of a finite field

Property

The multiplicative group $G=\left(\mathbb{F}_{p^{k}}\right)^{*}$ is cyclic

Proof.

Let $q=p^{k}$. Let e, be the smallest positive integer s.t. $\forall x \in G x^{e}=1$.
Thus $X^{e}-1$ has $q-1$ roots in $\mathbb{F}_{p^{k}}$.
Thus $e \geq q-1$.
Hence there exists an element $g \in G$ of order e generating all elements of G.

Multiplicative group of a finite field

Property

The multiplicative group $G=\left(\mathbb{F}_{p^{k}}\right)^{*}$ is cyclic

Proof.

Let $q=p^{k}$. Let e, be the smallest positive integer s.t. $\forall x \in G x^{e}=1$.
Thus $X^{e}-1$ has $q-1$ roots in $\mathbb{F}_{p^{k}}$.
Thus $e \geq q-1$.
Hence there exists an element $g \in G$ of order e generating all elements of G.

- The elements of $\left(\mathbb{F}_{p^{k}}\right)^{*}$ of order $p^{k}-1$ are called primitive.
- they are primitive $\left(p^{k}-1\right)$-th root of unity
- $\mathbb{F}_{p^{k}}$ correspond to \mathbb{F}_{p} to which one primitive $\left(p^{k}-1\right)$-th root of unity has been added (and all elements induced by the + and \times laws)

Primitive elements and polynomials

- The elements α of $\left(\mathbb{F}_{p^{k}}\right)^{*}$ or order $p^{k}-1$ are called primitives.
- they are primitives $\left(p^{k}-1\right)$-th root of unity

Primitive elements and polynomials

- The elements α of $\left(\mathbb{F}_{p^{k}}\right)^{*}$ or order $p^{k}-1$ are called primitives.
- they are primitives $\left(p^{k}-1\right)$-th root of unity
- $\mathbb{F}_{p^{k}}$ corresponds to \mathbb{F}_{p} adjoint with a primitive $\left(p^{k}-1\right)$-th root of unity (and with all elements that this induces by applying the + and \times) laws. Denoted by $\mathbb{F}_{p}(\alpha)$.

Primitive elements and polynomials

- The elements α of $\left(\mathbb{F}_{p^{k}}\right)^{*}$ or order $p^{k}-1$ are called primitives.
- they are primitives $\left(p^{k}-1\right)$-th root of unity
- $\mathbb{F}_{p^{k}}$ corresponds to \mathbb{F}_{p} adjoint with a primitive $\left(p^{k}-1\right)$-th root of unity (and with all elements that this induces by applying the + and \times) laws. Denoted by $\mathbb{F}_{p}(\alpha)$.
- $\mathbb{F}_{p}(\alpha) \equiv \mathbb{F}_{p}[X] / f$ où $f \in \mathbb{F}_{p}[X]$ is the minimal polynomial of α, i.e:
$\alpha^{k}=p_{k-1} \alpha^{k-1}+\cdots+p_{0}$ définit $f=X^{k}-p_{k-1}-\cdots-p_{0}$.

Primitive elements and polynomials

- The elements α of $\left(\mathbb{F}_{p^{k}}\right)^{*}$ or order $p^{k}-1$ are called primitives.
- they are primitives $\left(p^{k}-1\right)$-th root of unity
- $\mathbb{F}_{p^{k}}$ corresponds to \mathbb{F}_{p} adjoint with a primitive $\left(p^{k}-1\right)$-th root of unity (and with all elements that this induces by applying the + and \times) laws. Denoted by $\mathbb{F}_{p}(\alpha)$.
- $\mathbb{F}_{p}(\alpha) \equiv \mathbb{F}_{p}[X] / f$ où $f \in \mathbb{F}_{p}[X]$ is the minimal polynomial of α, i.e: $\alpha^{k}=p_{k-1} \alpha^{k-1}+\cdots+p_{0}$ définit $f=X^{k}-p_{k-1}-\cdots-p_{0}$.
- Reciprocally, all construction of the form $\mathbb{F}_{p^{k}} \equiv \mathbb{F}_{p}[X] / f$ does not necessarily imply that X generates $\left(\mathbb{F}_{p^{k}}\right)^{*}$.

Primitive elements and polynomials

- The elements α of $\left(\mathbb{F}_{p^{k}}\right)^{*}$ or order $p^{k}-1$ are called primitives.
- they are primitives $\left(p^{k}-1\right)$-th root of unity
- $\mathbb{F}_{p^{k}}$ corresponds to \mathbb{F}_{p} adjoint with a primitive $\left(p^{k}-1\right)$-th root of unity (and with all elements that this induces by applying the + and \times) laws. Denoted by $\mathbb{F}_{p}(\alpha)$.
- $\mathbb{F}_{p}(\alpha) \equiv \mathbb{F}_{p}[X] / f$ où $f \in \mathbb{F}_{p}[X]$ is the minimal polynomial of α, i.e: $\alpha^{k}=p_{k-1} \alpha^{k-1}+\cdots+p_{0}$ définit $f=X^{k}-p_{k-1}-\cdots-p_{0}$.
- Reciprocally, all construction of the form $\mathbb{F}_{p^{k}} \equiv \mathbb{F}_{p}[X] / f$ does not necessarily imply that X generates $\left(\mathbb{F}_{p^{k}}\right)^{*}$.
- Those f which satisfy this property are called primitive polynomials

Primitive elements and polynomials

- The elements α of $\left(\mathbb{F}_{p^{k}}\right)^{*}$ or order $p^{k}-1$ are called primitives.
- they are primitives $\left(p^{k}-1\right)$-th root of unity
- $\mathbb{F}_{p^{k}}$ corresponds to \mathbb{F}_{p} adjoint with a primitive $\left(p^{k}-1\right)$-th root of unity (and with all elements that this induces by applying the + and \times) laws. Denoted by $\mathbb{F}_{p}(\alpha)$.
- $\mathbb{F}_{p}(\alpha) \equiv \mathbb{F}_{p}[X] / f$ où $f \in \mathbb{F}_{p}[X]$ is the minimal polynomial of α, i.e: $\alpha^{k}=p_{k-1} \alpha^{k-1}+\cdots+p_{0}$ définit $f=X^{k}-p_{k-1}-\cdots-p_{0}$.
- Reciprocally, all construction of the form $\mathbb{F}_{p^{k}} \equiv \mathbb{F}_{p}[X] / f$ does not necessarily imply that X generates $\left(\mathbb{F}_{p^{k}}\right)^{*}$.
- Those f which satisfy this property are called primitive polynomials

Example

Build \mathbb{F}_{8} using a primitive polynomial

The non prime fields in practice

Essentially 2 types of implementations:

- polynomial
- logarithmic

The polynomial representation

Simply using the arithmetic of $\mathbb{F}_{p}[X]$ modulo Q :

- Every element is a polynomial of degree $<k$ with coeffs over \mathbb{F}_{p} \Rightarrow array of size k of elements of $\mathbb{Z} / p \mathbb{Z}$
- see representation of $\mathbb{Z} / p \mathbb{Z}$ for the type of the coefficients
(uint64_t, float, double, ...)
- Case of $p=2$: bit-packing technique (see next slide)

The non prime fields in practice

Essentially 2 types of implementations:

- polynomial
- logarithmic

The polynomial representation

Simply using the arithmetic of $\mathbb{F}_{p}[X]$ modulo Q :

- Every element is a polynomial of degree $<k$ with coeffs over \mathbb{F}_{p} \Rightarrow array of size k of elements of $\mathbb{Z} / p \mathbb{Z}$
- see representation of $\mathbb{Z} / p \mathbb{Z}$ for the type of the coefficients (uint64_t, float, double, ...)
- Case of $p=2$: bit-packing technique (see next slide)
- Addition: remains of degree $<k \Rightarrow$ just arithmetic over $\mathbb{Z} / p \mathbb{Z}$
- Mutliplication: $S \times T \bmod Q \Rightarrow$ euclidean division by Q.

Bit-packing for binary fields

If $p=2$:

- 1 bit $=\mathbb{F}_{2}$
- 1 byte $=\left(\mathbb{F}_{2}\right)^{8} \equiv \mathbb{F}_{2^{8}}$
- 1 uint64_t $=\left(\mathbb{F}_{2}\right)^{64} \equiv \mathbb{F}_{2^{64}}$, etc

Bit-packing for binary fields

If $p=2$:

- 1 bit $=\mathbb{F}_{2}$
- 1 byte $=\left(\mathbb{F}_{2}\right)^{8} \equiv \mathbb{F}_{2^{8}}$
- 1 uint $64 _$t $=\left(\mathbb{F}_{2}\right)^{64} \equiv \mathbb{F}_{2^{64}}$, etc

For instance $\mathbb{F}_{2^{8}}$

- char a: the binary representation of a is the vector of the coefficients of a polynomial P of degree ≤ 7 such that $P(2)=a$

a	0	1	2	3	4	5	\cdots
in binary	000000000	000000001	00000010	00000011	00000100	00000101	\cdots
represents	0	1	x	$x+1$	x^{2}	$x^{2}+1$	\cdots

Bit-packing for binary fields

If $p=2$:

- 1 bit $=\mathbb{F}_{2}$
- 1 byte $=\left(\mathbb{F}_{2}\right)^{8} \equiv \mathbb{F}_{2^{8}}$
- 1 uint $64 _$t $=\left(\mathbb{F}_{2}\right)^{64} \equiv \mathbb{F}_{2^{64}}$, etc

For instance $\mathbb{F}_{2^{8}}$

- char a: the binary representation of a is the vector of the coefficients of a polynomial P of degree ≤ 7 such that $P(2)=a$

a	0	1	2	3	4	5	\cdots
in binary	000000000	000000001	00000010	00000011	00000100	00000101	\cdots
represents	0	1	x	$x+1$	x^{2}	$x^{2}+1$	\cdots

- addition: bitwise XOR: a \wedge b

Bit-packing for binary fields

If $p=2$:

- 1 bit $=\mathbb{F}_{2}$
- 1 byte $=\left(\mathbb{F}_{2}\right)^{8} \equiv \mathbb{F}_{2^{8}}$
- 1 uint $64 _$t $=\left(\mathbb{F}_{2}\right)^{64} \equiv \mathbb{F}_{2^{64}}$, etc

For instance $\mathbb{F}_{2^{8}}$

- char a: the binary representation of a is the vector of the coefficients of a polynomial P of degree ≤ 7 such that $P(2)=a$

a	0	1	2	3	4	5	\cdots
in binary	000000000	000000001	00000010	00000011	00000100	00000101	\cdots
represents	0	1	x	$x+1$	x^{2}	$x^{2}+1$	\cdots

- addition: bitwise XOR: a \wedge b
- mult: iterated application of mulByX

```
char mulByX (char a) {
    char b = a<<1;
    if (a & 128) b ^= 29
    return b;
}
```

here $X^{8} \bmod X^{8}+X^{4}+X^{3}+X^{2}+1=X^{4}+X^{3}+X^{2}+1 \equiv 29$

Logarithmic representation (Zech-log)

- Choose a generator g of $\left(\mathbb{F}_{q}\right)^{*}$
- Each element $a \neq 0$ is represented by its discrete log. i s.t.: $a=g^{i}$.
- $a=0$ is represented by a special value (e.g. $q-1$)
- multiplication: $a \times b=g^{i} \times g^{j}=g^{i+j} \Rightarrow$ addition of the indices $\bmod q-1$
- addition: $g^{i}+g^{j}=g^{i} \times\left(1+g^{j-i}\right)$

Logarithmic representation (Zech-log)

- Choose a generator g of $\left(\mathbb{F}_{q}\right)^{*}$
- Each element $a \neq 0$ is represented by its discrete log. i s.t.: $a=g^{i}$.
- $a=0$ is represented by a special value (e.g. $q-1$)
- multiplication: $a \times b=g^{i} \times g^{j}=g^{i+j} \Rightarrow$ addition of the indices $\bmod q-1$
- addition: $g^{i}+g^{j}=g^{i} \times\left(1+g^{j-i}\right)$

Exercise

Write the algorithm for the addition, using a precomputed table

Logarithmic representation (Zech-log)

- Choose a generator g of $\left(\mathbb{F}_{q}\right)^{*}$
- Each element $a \neq 0$ is represented by its discrete log. i s.t.: $a=g^{i}$.
- $a=0$ is represented by a special value (e.g. $q-1$)
- multiplication: $a \times b=g^{i} \times g^{j}=g^{i+j} \Rightarrow$ addition of the indices $\bmod q-1$
- addition: $g^{i}+g^{j}=g^{i} \times\left(1+g^{j-i}\right)$

Exercise

Write the algorithm for the addition, using a precomputed table

Choosing a good generator

X is a simpler generator to compute with.
\Rightarrow the polynomials Q such that $\left(\mathbb{F}_{p}[X] /(Q)\right)^{*}$ is generated by X are called primitive polynomials

