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Cryptographic Engineering

Important: This exam is composed of 4 parts:

Part 1: P. Karpman, 7 points

Part 2: C. Pernet, 7 points

Part 3: E. Peyre, 4 points

Part 4: C. Ene, 6 points

� Any manuscript document allowed

� Each of the 4 parts has to be answered on a separate answer sheet.

� The scale of grading is 24 points and your score over 24 will become your grade over 20.
Hence it is not necessary to answer correctly all questions to get the maximum grade of 20.

� Your answers have to be short but clearly and cleanly argued or commented.

Part 1: Symmetric Cryptography (P. Karpman). 7 points

Exercise 1: The XEX tweakable block cipher construction

IND-CPA. We recall brie�y and informally that an IND-CPA game is played in two phases. In
a training phase, the Adversary has the possibility of sending query messages to the encryption
scheme under analysis, and receives their encryption with some (�xed, a priori unknown, randomly
picked) key. In a later challenge phase, the Adversary is tasked with deciding if an encrypted
message c is an encryption of m0 or an encryption of m1, where m0 and m1 are two messages of
its choosing of the same length; it wins the game if it makes a correct guess.

Let E : {0, 1}κ × {0, 1}n → {0, 1}n be a block cipher. The encryption of an l-block1 message
m1||m2|| · · · ||ml, m1, . . . ,ml ∈ {0, 1}n with the �ECB� mode instantiated with E and a key k is
de�ned as E (k,m1)||E (k,m2)|| · · · ||E (k,ml).

Q.1

1. Show that the above ECB mode has poor security with respect to the IND-CPA de�nition,
by exhibiting an e�cient attack with a large advantage.

Let now Ẽ : {0, 1}κ × {0, 1}τ × {0, 1}n → {0, 1}n be a tweakable block cipher. The encryption
of an l-block message m1||m2|| · · · ||ml, m1, . . . ,ml ∈ {0, 1}n with the �TIE� mode instantiated

with Ẽ and a key k is de�ned as ι|| Ẽ (k, ι,m1)|| Ẽ (k, ι + 1,m2)|| · · · || Ẽ (k, ι + (l − 1),ml), where
ι� {0, 1}τ .

Q.2

1. Explain informally why TIE is not vulnerable to your attack on ECB.

2. Suppose that the maximal length l of the messages is �small�. What condition would you
need to impose on τ in function of the total number N of messages that are to be encrypted
with the TIE mode with a single key?

1For the sake of simplicity and without loss of generality, we assume here that all messages are made of an
integral number of blocks.



?

We now de�ne the XEX tweakable block cipher construction in the following way. Let E be
as above, α1, . . . , αt ∈ F×2n , I1, . . . , It ∈ Z, then XEX[E , α1, . . . , αt, I1, . . . , It] is the tweakable

block cipher Ẽ : {0, 1}κ × (I1 × · · · × It) × {0, 1}n → {0, 1}n de�ned by Ẽ (k, i1, . . . , it, x) :=
E (k, x + ∆) + ∆ where ∆ := αi11 · · ·α

it
t · E (k, 0n), with arithmetic being done in F2n and where

0n stands for the string of n 0's.2 The signature of Ẽ obtained thusly is di�erent from the one
used above in the TIE mode, but having such � `multi-dimensional� tweaks may be useful in some
other modes of operation, especially authenticated-encryption modes. This however comes with
the necessary security condition that for any �xed k the map (i1, . . . , it) 7→ ∆ be injective, i.e.

αi11 · · ·α
it
t · E (k, 0n) = α

i′1
1 · · ·α

i′t
t · E (k, 0n)⇒ (i1, . . . , it) = (i′1, . . . , i

′
t).

Finally, we will de�ne F2[X]/〈P 〉 to be the �eld representation used for F2n , with P some (a
priori unspeci�ed) polynomial of degree n irreducible over F2. Following usual conventions, we use
2 (resp. 3 ) to denote the class of X (resp. X+1) modulo P in this representation; in other words,

a polynomial Q =
∑n
i=0 qiX

i ∈ F2[X] is represented by the integer
∑d
i=0 qi2

i.

Q.3

1. Why is it necessary in the XEX construction that E (k, 0n) 6= 0n?

2. Explain why Prk�{0,1}κ [E (k, 0n) = 0n] is negligible, assuming that E is a �good� PRP.

Q.4 We �rst focus on a case where t = 1, that is one has ∆ := αi11 E (k, 0n).
An irreducible polynomial P of degree n is said to be primitive, if the multiplicative order of 2

in F2[X]/〈P 〉 (i.e. the order of 2 ∈ (F2[X]/〈P 〉)×) is equal to 2n − 1.

1. A user wishes to use α1 = 2 . Explain why in this case it would be desirable that P be
primitive.

Q.4 We now consider a case where t = 2 and P is primitive. A user would like to use α1 = 2
and α2 = 3 , and wishes to �nd suitable values for I1 = J−N1, N1K and I2 = J−N2, N2K s.t. the
map (i1, i2) 7→ ∆ is injective.

1. Assuming that E (k, 0n) 6= 0n, express the injectivity condition on (i1, i2) 7→ ∆ in terms of
`3 , the discrete logarithm of 3 in base 2 .

2. Suppose that in some representation of some �eld F2n , minx∈J−1000,1000K,x 6=0(|(x`3 mod 2n−
1)− (2n−1)|) > 2117 (that is, there is no non-zero x ∈ J−1000, 1000K s.t. there is a reduction
of x`3 modulo 2n − 1 in the interval J−(2n − 2), 2n − 2K that is less than 2117 in absolute
value. Or, put another way, x`3 is at least �2117 far from 0� modulo 2n − 1). Propose (and
justify) values for N1 and N2 that ensure injectivity.

3. Would the computation of `3 be tractable in F2128 (N.B.: Note that the largest prime factor
of 2128 − 1 is 67280421310721 ≈ 246)?

Q.5 One can show thatAdvS̃PRP
Ẽ

(t, q) ≤ AdvSPRPE (t′, 2q)+O(q2)/2n, where S̃PRP is the relevant
adaptation of the SPRP security de�nition to tweakable block ciphers, and with t′ ≈ t in practice.

1. Do you think that a tweakable block cipher built with an XEX construction could be used
in a �beyond-birthday bound� mode of operation?

?

N.B.: This exercise is based on the paper E�cient Instantiations of Tweakable Blockciphers

and Re�nements to Modes OCB and PMAC, Phillip Rogaway, ASIACRYPT 2004.

2This in fact slightly simpli�es over the original XEX construction which also allows E(k, 0n) to vary.
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Part 2: Asymmetric Cryptography (C. Pernet). 7 points

Exercise 2: Reductions

Among the following computational problems:
BreakRSA: From (n = pq, e) �nd d such that ed = 1 mod ϕ(n)
CDH: From A = ga and B = gb in a group, �nd C = gab

DLOG: From (g, gx) from a group G �nd x ∈ {1, . . . , |G|}.
ModExp: From (x, n, e) integers compute xe mod n
IntegerFact: From n = pq an integer, �nd p and q

1. List 4 reductions in the form ProblembA ≤ ProblemB.

2. For two of them of your choice, explain the outline of the proof: which supposition is made
at the beginning and which conclusion is reached (you don't have to actually prove it).

Exercise 3: Coding Theory

Consider the following tuples of code parameters of the form (n, k, d), where n is the length, k the
dimension and d the minimum distance:
(a) (24, 10, 2) over F256

(b) (32, 11, 22) over F32

(c) (8, 5, 3) over Z/11Z
(d) (10, 6, 4) over Z/2Z
(e) (12, 8, 5) over Z/19Z

1. Which one has the largest information rate?

2. Which one can correct the largest number of errors?

3. For each of them, say whether or not it can be achieved by a Reed-Solomon code. Justify
your answers.

4. For a set of parameters which can be achieved by a Reed-Solomon code, explain how to
construct such a Reed-Solomon code : de�nition of the code, and describe an encoding
algorithm, and a decoding algorithm.

Part 3: Elliptic curves (E. Peyre). 4 points

Exercise 4: Elliptic curves

Let E be the elliptic curve de�ned by the a�ne equation

Y 2 = X3 −X + 1

over F7 = Z/7Z.

1. Check that E is smooth.

2. Give the list of elements in E(F7).

3. Find all points of order 2 in E(F7).

4. Is the group E(F7) cyclic?

3



Part 4: Models and analysis of security protocols. 6 points

Exercise 5 (2 pts.)

In this exercise, 〈_,_〉 represents concatenation, [[ _ ]]_ represents a symmetric encryption scheme, {|
_ |}_ an asymmetric encryption scheme, and pr(u) is the inverse secret key associated to pk(u). We
recall the rules of the Deduction System for Dolev Yao theory that allows (by repeted application)
to infer a term t from a set of terms T0 (denoted T0 ` t):

(A) u ∈ T0

T0 ` u
(UL)

T0 ` 〈u, v〉
T0 ` u

(P) T0 ` u T0 ` v

T0 ` 〈u, v〉
(UR)

T0 ` 〈u, v〉
T0 ` v

(C) T0 ` u T0 ` v

T0 ` [[ u ]]v
(AC)

T0 ` u T0 ` pk(v)

T0 ` {| u |}pk(v)

(D)
T0 ` [[ u ]]v T0 ` v

T0 ` u
(AD)

T0 ` {| u |}pk(v) T0 ` pr(v)

T0 ` u

The set of Syntactic Subterms of a term t, denoted by S(t), is the smallest set such that:

� t ∈ S(t)

� 〈u, v〉 ∈ S(t)⇒ u, v ∈ S(t)

� [[ u ]]v ∈ S(t)⇒ u, v ∈ S(t)

For a set T of terms, we de�ne S(T ) =
⋃
t∈T S(t).

The following algorithm allows to decide if T0 ` w (where T `≤1 s means that s can be obtained
from T using only one rule from the Deduction System):
McAllester's Algorithm
Input : T0, w

T ← T0;
while (∃s ∈ S(T0 ∪ {w}) such that T `≤1 s and s 6∈ T )

T ← T ∪ {s};
Output :w ∈ T

1. Using the above algorithm, prove or disprove that a passive Dolev Yao intruder can deduce
the message s with the initial knowledge T0.

1.) T0 = {a, k, n1, [[ s ]]〈n1,n5〉, [[ s ]]〈n2,n4〉, [[ n3 ]]〈n2,n1〉, [[ 〈n4, [[ n3 ]]〈n4,n1〉〉 ]]k, [[ 〈k1, [[ n2 ]]〈n4,n1〉〉 ]]n3, [[ n2 ]]n5}
2.) T0 = {a, b, [[ k1 ]]k2, k2, [[ s ]]〈k3,k1〉, [[ k4 ]]〈k1,k2〉, [[ 〈[[ s ]]k3, [[ s ]]k6〉 ]]k5, [[ 〈[[ k6 ]]k1, [[ k1 ]]k5〉 ]]k2, [[ [[ k4 ]]k3 ]]k1}.

2. We add to the Dole-Yao inference system given above a new rule corresponding to block
encryption modes such as ECB (Electronic codebook) or CBC (Cipher-block chaining).

(ECB)
T0 ` [[ 〈u, v〉 ]]w
T0 ` [[ u ]]w

It re�ects the fact that an attacker may compute the pre�x of an encrypted message (provided
the length of the pre�x is a multiple of the length of a block). Can you extend the notion
of Syntactic Subterms of a term t to some di�erent notion of Semantic Subterms of
a term t (denoted also S(t)) such that the McAllester's Algorithm remains sound with
respect to the deducibility of a message w from a set of terms T0?

Exercise 6 (2 pts.)

In this exercise, 〈_,_〉 represents concatenation, [[ _ ]]_ represents a symmetric encryption scheme,
{| _ |}_ an asymmetric encryption scheme, pk(u) is the public key associated to the user with
identity u and ⊕ denotes the usual bitwise xor over equal-length bitstrings, e.g. 0011⊕1110 = 1101.
Consider the following protocol:

1. A → B : {| 〈〈A,B〉, Na〉 |}pk(B)

2. B → A : 〈{| 〈K,Nb〉 |}pk(A), [[ Na ⊕B ]]K〉
3. A → B : {| 〈〈A,Nb〉,K〉 |}pk(B)

The goal of this protocol is to provide both secrecy and authentication: at the end of a session
between two honest participants a and b, k (the instantiation of the parameterK in the speci�cation
of the protocol) should be a new shared secret value known only by a and b. This target session
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between honest participants a and b may be part of a richer scenario containing other running
sessions in parallel where the active adversary i can be involved. If you think that the protocol is
correct, then give a justi�cation. Otherwise,

� give an attack on the target session between honest participants a and b where the intruder
i will learn k;

� propose a correction of the protocol.

Exercise 7 (2 pts.)

In this exercise, 〈_,_〉 represents concatenation, {| _ |}_ represents an asymmetric encryption
scheme, and pk(u) is the public key associated to the user with identity u. All protocols in this
exercise are intended to provide acknowledgement of the receipt of an encrypted message m by the
intended receiver b, i.e. at the end of a session between honest participants a and b, a will think
that she is talking to b and she is sharing a secret value m with b. For all following protocols,
you should consider a target session between honest (uncorrupted) participants a and b, part of
a richer scenario containing maybe other running sessions, and check if m (the instantiation of
variable M in this session) remains secret in presence of an active Dolev-Yao intruder. For all
protocols below, if you think that the protocol is not correct, give an attack on the target session
between honest participants a and b where the intruder i will learn m (maybe using other sessions
running in parallel where i can be involved), but if you think that the protocol is correct, pthen
give a justi�cation.

1. We start with a naive protocol:

1. A → B : 〈A, {|M |}pk(B)〉
2. B → A : {|M |}pk(A)

2. A more �elaborate� protocol:

1. A → B : {| 〈A,M〉 |}pk(B)

2. B → A : {|M |}pk(A)

3. And a �very encrypted� protocol:

1. A → B : {| 〈A, {|M |}pk(B)〉 |}pk(B)

2. B → A : {|M |}pk(A)
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