TD 2: Polynomial multiplication

Exercice 1. Polynomial Arithmetic

A polynomial $P=p_{0}+p_{1} X+\cdots+p_{n-1} X^{n-1}$ by an array of n elements $\left[p_{0}, p_{1}, \ldots, p_{n-1}\right]$.
a. Propose a Divide and Conquer algorithm for the multiplication of two polynomials of same degree.

Indication: one can use the identity:

$$
\left(P_{0}+X P_{1}\right)\left(Q_{0}+X Q_{1}\right)=P_{0} Q_{0}+X\left(P_{0} Q_{1}+P_{1} Q_{0}\right)+X^{2} P_{1} Q_{1}
$$

b. Analyse its cost (when the size of the polynomials is a power of two).
c. In 1960, Karatsuba proposed to use instead the following formula:

$$
\left(P_{0}+X P_{1}\right)\left(Q_{0}+X Q_{1}\right)=P_{0} Q_{0}+X\left(\left(P_{0}+P_{1}\right)\left(Q_{0}+Q_{1}\right)-P_{0} Q_{0}-P_{1} Q_{1}\right)+X^{2} P_{1} Q_{1}
$$

Deduce an algorithm and analyse it complexity.
We now investigate the decomposition of polynomials in three: $P=P_{0}+X P_{1}+X^{2} P_{2}$ et $Q=Q_{0}+X Q_{1}+X^{2} Q_{2}$. Toom proposed a formula computing $P \times Q$ using the five following values:

$$
\begin{aligned}
& M_{0}=P_{0} Q_{0} \\
& M_{1}=\left(P_{0}+P_{1}+P_{2}\right)\left(Q_{0}+Q_{1}+Q_{2}\right) \\
& M_{2}=\left(P_{0}-P_{1}+P_{2}\right)\left(Q_{0}-Q_{1}+Q_{2}\right) \\
& M_{3}=\left(P_{0}+2 P_{1}+4 P_{2}\right)\left(Q_{0}+2 Q_{1}+4 Q_{2}\right) \\
& M_{4}=P_{2} Q_{2}
\end{aligned}
$$

The product $R=P \times Q=R_{0}+R_{1} X+R_{2} X^{2}+R_{3} X^{3}+R_{4} X^{4}$ is obtained as follows:

$$
\left\{\begin{array}{l}
R_{0}=M_{0} \tag{1}\\
R_{1}=\frac{1}{6}\left(-3 M_{0}+6 M_{1}-2 M_{2}-M_{3}+12 M_{4}\right) \\
R_{2}=\frac{1}{2}\left(-2 M_{0}+M_{1}+M_{2}-2 M_{4}\right) \\
R_{3}=\frac{1}{6}\left(3 M_{0}-3 M_{1}-M_{2}+M_{3}-12 M_{4}\right) \\
R_{4}=M_{4}
\end{array}\right.
$$

d. What is the cost of the corresponding algorithm multiplying polynomials of arbitrary degrees?
e. Justify that the formulas computing the M_{i} can be viewed as evaluations. State in which points?
f. Deduce how the coefficients of the formule (1) have been found.

More generally, Toom-Cook algorithms at order k compute the product $P \times Q$ of two polynomials of size k in $(2 k-1)$ multiplications.
g. What is the cost of these algorithms ?
h. Explain how to construct them.
i. Conclude on the cost of multiplying polynomials.

