Cryptology Complementary TD 1

Exercice 1. Euclidean Algorithm

a. Apply the Euclidean Algorithm to compute the inverse of 21 modulo 40.
b. Consider the polynomials $P=X^{4}+X^{3}+2 X^{2}+2$ et $Q=X^{3}+X+1$. over the field $\mathbb{Z} / 3 \mathbb{Z}$.

1. Compute their GCD and the corresponding Bézout coefficients.
2. How could we done more quickly?

Exercice 2. Binary Euclidean Algorithm

a. Explain how to compte the power of 2 of the gcd between two integers
b. In the setting where one of x and y is odd (suppose w.l.o.g that this is u), explain how the $\operatorname{gcd}(x, y)$ can be reduced to computing a $\operatorname{gcd}(u, v)$ where v is odd and $\max (|u|,|v|) \leq \max (|x|,|y|) / 2$ only by means of subtraction and division by 2 .
c. Deduce an algorithm computing the GCD of two integers.
d. What is its arithmetic cost?

Exercice 3. Chinese Remainder Theorem: the pirates

A group of 17 pirates stole a treasure composed by golden coins of equal value. The decide to share them equally and leave the remainder to the cook. He would then receive 3 coins.

However the pirates get into a dispute and six of them are killed. The cook will then receive 4 coins. Later on, the ship sunk, and only the treasure, six pirates and the cook are saved. The cook would then receive 5 coins.
a. What is the least amount of coins which the Cook may hope to get, once he decides to poison the rest of the crew?

