Recognition of a code in a noisy environment

Christophe Chabot

Université de Limoges - XLIM - DMI
INRIA Rocquencourt - Projet CODES

ISIT Nice - June 29, 2007
Outline

1. Introduction

2. Recognition of a code
 - Problem
 - Theoretical results
 - Experimental results

3. Conclusion
Introduction

Context:
- Data transmission.
- Several transformations applied to the data.
- Transmitted data is corrupted by noise.

General Problem: Finding some information on the transformations used only from an intercepted noisy sequence.
Reconstruction of code

Recovering the first layer i.e. the error correcting code used.
→ Problem of reconstruction of code.

State of art:
- convolutional codes, turbo codes: [Fil],[Bar],[Din]
- linear block codes: [Val],[Clu],[Bar]
 This problem is NP-Hard [Val].
 Complexity exponential in the error rate.

→ Easier problem : recognition of a code.
Problem

Let be given a binary sequence S and a binary linear code C.

Is this sequence S composed of noisy codewords of C?
Binary linear code

Let C be a binary linear code of length n and dimension k. i.e. C is a vector subspace of \mathbb{F}_2^n of dimension k.

It can be represented by:

- its generator matrix (whose lines span the vector subspace C).
- its parity check matrix (whose lines span C^\perp).

We will use a basis of the dual code of C, $H = (h_1, h_2, \ldots, h_{n-k})$, then, for all $j \in \{1, \ldots, n-k\}$, for all $c \in C$,

$$< h_j, c >= \sum_{i=1}^{n} h_{j,i} \ast c_i = 0.$$

We will note, for $x \in \mathbb{F}_2^n$, $\text{supp}(x) = \{ i \in \{1, \ldots, n\} | x_i \neq 0 \}$, and $w(x) = \#(\text{supp}(x))$ its Hamming weight.
We will consider a binary symmetric channel with error rate p.

$$S = (s_j)_{1 \leq j \leq M}$$ is a sequence taken at the output of the channel, $s_j \in \mathbb{F}_2^n$.

Note: if $p = 1/2$, S is random (one-time pad).
Main idea

- If S comes from C:
 - if $p = 0$, $<h_i, s_j> = 0$ for all i,j.
 - if $0 < p << 1/2$, $<h_i, s_j> = 1$ for a few number of i,j.
- Else: $<h_i, s_j> = 1$ half of the time.
Different cases

Let h be a non-zero word of C^\perp.

- If S comes from a random sequence:
 \[
 \dim(h^\perp) = n - 1, \quad \frac{\#(h^\perp)}{\#(\mathbb{F}_2^n)} = \frac{1}{2},
 \]
 \[
 \rightarrow P[< h, s_j > = 1] = 1/2.
 \]

- If S comes from words of C:
 For all j, $s_j = c_j + e_j$, with $c_j \in C$ and e_j the error vector.
 \[
 < h, s_j > = 1 \iff \#(\text{supp}(h) \cap \text{supp}(e_j)) \text{ is odd}.
 \]
 \[
 \rightarrow P[< h, s_j > = 1] = \frac{1 - (1 - 2p)^{w(h)}}{2}.
 \]
Different cases

- If S comes from a sequence of words of $C' \not\in C$: There exists at least one h_0 in a basis of C^\perp such that $h_0 \not\in C'^\perp$.
 \[P[< h_0, s_j > = 1] = 1/2. \]

- Other cases: heuristic result but confirmed by experiments.
 \[P[< h, s_j > = 1] = 1/2. \]
Statistical test

Summary:

- If S does not come from C:
 There exists at least one $h \in \{h_1, \ldots, h_{n-k}\}$, s.t.
 $$P[< h, s_j > = 1] = 1/2.$$

- If S comes from C:
 For all $h \in \{h_1, \ldots, h_{n-k}\}$,
 $$P[< h, s_j > = 1] = \frac{1}{2} - \frac{1}{2} (1 - 2p)^{w(h)}.$$

Idea:

$$\sum_{j=1}^{M} < h, s_j > \text{ (sum in } \mathbb{Z}) \text{ “close” to } \frac{M}{2} - \frac{M}{2} (1 - 2p)^{w(h)}?$$
Theorem

Theorem: The statistical test consisting in deciding that $S = (s_j)_{1 \leq j \leq M}$ comes from a sequence of M words of h^\perp if and only if

$$\sum_{j=1}^{M} < h, s_j > \leq T$$

with

$$M = \left(\frac{b\sqrt{1-(1-2p)^2w(h)}-a}{(1-2p)^w(h)} \right)^2, \quad T = \frac{1}{2}(M + a\sqrt{M})$$

and $a = \phi^{-1}(\alpha)$, $b = \phi^{-1}(1 - \beta)$ verifies:

$$P[(\sum_{j=1}^{M} < h, s_j >) \leq T | S \text{ is random}] = \alpha \text{ (false alarm)},$$

$$P[(\sum_{j=1}^{M} < h, s_j >) \geq T | S \text{ comes from } h^\perp] = \beta \text{ (non detection)}.$$
Input:
- C, a $[n, k]$-linear binary code,
- a binary symmetric channel with error rate p,
- $S = (s_j)_{1 \leq j \leq M}$, a sequence taken at the output of the channel,
- α, β, false alarm and non detection probabilities.

Initialization:
- Compute (h_1, \ldots, h_{n-k}) a basis of C^\perp with low weight words.
- Compute M_i and T_i for each $i \in \{1, \ldots, n-k\}$.

Algorithm:
- $N_i = \sum_{j=1}^{M_i} < h_i, s_j >$ (sum in \mathbb{Z}) for $i \in \{1, \ldots, n-k\}$.

Output:
- If $N_i \leq T_i$ for all $i \in \{1, \ldots, n-k\}$, say that S comes from a sequence of words of C.
- If $N_i \geq T_i$ for at least one $i \in \{1, \ldots, n-k\}$, say that S does not come from a sequence of words of C.
Computing results

<table>
<thead>
<tr>
<th>Code used</th>
<th>(n)</th>
<th>(w(h)) max</th>
<th>Error rate (p)</th>
<th>(M)</th>
<th>(T)</th>
<th>Time is s</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCH 511</td>
<td>511</td>
<td>140</td>
<td>0.005</td>
<td>1462</td>
<td>640</td>
<td>(\leq 1)</td>
</tr>
<tr>
<td>BCH 511</td>
<td>511</td>
<td>140</td>
<td>0.01</td>
<td>25823</td>
<td>12529</td>
<td>17</td>
</tr>
<tr>
<td>RM 1024</td>
<td>1024</td>
<td>136</td>
<td>0.005</td>
<td>1345</td>
<td>585</td>
<td>4</td>
</tr>
<tr>
<td>RM 1024</td>
<td>1024</td>
<td>136</td>
<td>0.01</td>
<td>21963</td>
<td>10629</td>
<td>28</td>
</tr>
<tr>
<td>Random 2000</td>
<td>2000</td>
<td>535</td>
<td>0.001</td>
<td>724</td>
<td>298</td>
<td>9</td>
</tr>
<tr>
<td>Random 2000</td>
<td>2000</td>
<td>535</td>
<td>0.002</td>
<td>6540</td>
<td>3078</td>
<td>62</td>
</tr>
</tbody>
</table>

Here, \(\alpha = \beta = 10^{-6} \).
Synchronization

Input:

\[C, p, S, \alpha \text{ and } \beta. \]

Initialization:

- Compute \[S^{(l)} = (s_{j}^{(l)})_{1 \leq j \leq M}, \] \[0 \leq l \leq n - 1. \]
- Compute \((h_1, \ldots, h_r) \) some words of a basis of \(C^\perp \).
- Compute \(M_i \) and \(T_i \) for each \(i \in \{1, \ldots, r\} \).

Algorithm:

For \(l \) from 0 to \(n - 1 \) do

\[N_i^{(l)} = \sum_{j=1}^{M_i} < h_i, s_{j}^{(l)} > \text{ (sum in } \mathbb{Z} \text{) for } i \in \{1, \ldots, r\}. \]

Output:

If \(N_i^{(l)} \leq T_i \) for all \(i \in \{1, \ldots, r\} \),

say that \(S \) seems to come from a sequence of words of \(C \) with synchronization \(l \rightarrow \text{check it!} \).
Conclusion

- Easy and fast algorithm to recognize a code.
- Can reach high error rate (compared to reconstruction).
- Application to synchronization.
Thanks for your attention.