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Part V

Topology optimization

@ A glimpse at mathematical homogenization

4. Relaxation by homogenization
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The G-closure (1)‘

4.1. The G-closure problem : preliminaries

We have seen that, in 2D-periodic homogenization, the effective conductivity A* of a
mixture of 2 phases a and 3 is given by the resolution of PDE's

One computes the correctors x1, x2 Hx-solutions to the cell problems
X1, X g

div(a(y) [xj(y)-i-yj]) =0 inY
xj € Hi(Y), i=1,2

ox
A = [ e+ 59)
! % T oy
Equivalently, one can solve the variational problem

A6 = mm{/ §+VW(y))-(§+vW(y)> w e Hy(Y)}

and then forms
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The G-closure (2) ‘

A few natural questions arise from this derivation :

- Can A be interpreted as the conductivity of a limiting material ?
Does A™ posess the properties of a conductivity ?

Does u. solve a PDE of the same type as the u.'s ?

- Can one characterize all the conductivities A* that can be obtained by mixing
two (or more) phases ?

The latter question is called the problem of G-closure
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The G-closure (3) ‘

e In general, effective conductivities are matrix-valued

In particular, one can build anisotropic media as homogenized limits of mixtures of
isotropic phases

e If a(y) is symmetric, so is A*
e Effective conductivities satisfy the following

Prop : Elementary Reuss-Voigt bounds

veeR, (M) te < ace < (M@)e ()

where /\/l(f):/yf(y) dy

In particular, it follows that the homogenized equation is elliptic (and well-posed)
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’The G-closure (4) ‘

Proof : 1. Recall the variational principle

AEE = min{./ya(y)<§+VW(y))~<§+Vw(y)> w e HL(Y)}

The choice w = 0 is admissible and yields

Ae-e < /Ya(y)ffdy = M(a)e €

2. For the lower bound, consider w € H.(Y). Then for ae. y € Y

A)(E+TW) (€ +Twl) = sup {26+ Twly)n - osnen)

neRr2
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’The G-closure (5) ‘

It follows that

T

/Ya(y) (5 + Vw(y)> : (5 + VW(Y))

1
> /Yn(jgepRz {2(5 VW) nly) = 570 ,](y)}
1
> nseuusz/y2(€+ Vw(y)) -n— mn 1

as one obtains a lower bound by choosing the same 7 for all y's
Using the fact that w is periodic, we further obtain that for any w € HL(Y)

T > nsglsjﬂn—(/yﬁﬁw

Taking the supremum wrt to 7 yields the lower bound
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Laminates

4.2. The G-closure problem : sequential laminates

As we have seen, the effective coefficients A* of a composite mixture of 2 phases
depends on the following ingredients

- the conductivities «, 8 of the constituting pure phases
- the function x that describe the geometry of the mixture

The determination of A* require the resolution of a PDE. In a (very) limited number
of cases, one can obtain explicit formulas
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Laminates (2) ‘

Let e € R? be a unit vector and given 0 < 6 < 1 let x denote the 1-periodic function

(of a single variable) whose graph is

For £ > 0, we consider a medium defined by the conductivity

A() = x(TA+ A-x(0)B

which describes the periodic distribution of a

e
mixture of 2 phases with conductivities A, B
in layers perpendicular to the direction e / //

9/37



Laminates (3) ‘

As a consequence of Tartar's compactness theorem, if u. is a bounded sequence of
voltage potentials which satisfies

div(A:(x)Vue(x)) = 0 inQ (2)
and which converges weakly in H* to some u., then the limiting potential satisfies
div(A*Vu.(x)) = 0 inQ

Let us try to construct a sequence of solutions to (2) which are piecewise linear
functions : we seek ), ¢ € R? so that in the j-th layer

A-x+ ¢ in the layers of the phase A
u-(x) =

E-x+ Cj’ in the layers of the phase B

where the constants ¢, ¢/ are adjusted in each layer so that the resulting function is
continuous.
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Laminates (4) ‘

Actually, continuity is the sole requirement for such a function to be in Hi_
In particular, if we consider two points x and x 4 te® that belong to the same
interface then continuity at these points yields the condition

Ax+¢g = & x+¢
A(x+te)+g = € (x+te)+d
so that for any direction e perpendicular to e

(E-N)-e =0 (3)

Notice that such u. has a periodic, piecewise constant gradient and that the
associated current 0. = a(y)Vu. has the form

AX in the layers of the phase A
o =
B¢ in the layers of the phase B
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’Laminates (5) ‘

Such a function is a solution to div(o.) = 0 in D'(£2) provided
(A)\—B§>~e =0 (4)
Relations (3-4) show that
. (A—B)¢-e
= h = -
E=A+te with ¢ Be . o (5)

In addition, since both fields Vu. and o. are periodic, they converge weakly in L2 to

Vue = Vu, == 0\ + (1 -0)¢ and 0. = oy = 0AN+ (1 —0)B¢

which should satisfy

AVu, =0,  ie A (6/\ +(1- 0)5) - 0<AA) (- e)(sg)
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Laminates (6) ‘

Setting ¢ = 60X\ + (1 — 6)¢, so that
(A—BC-e .
(1—0)Ae-e+0Be-e

A= ¢—(1-9)

and working out the algebra yields

9(1—9)<A—B)§-e
(1—0)Ae-e+6Be-e

AT = 9(A<)+(1—9)(B<) - (A— B)e

This formula can be rewritten in a more interesting form when A — B is invertible
e®e

Be - e

where the notation e ® e stands for the matrix with entries (ej€j)1<ij<d

A" —B)™' = (A-B)'+(1-0)

13/37



Laminates (7) ‘

This construction can be iterated : Suppose we laminate phases A and B with a
proportion 61 of A in a direction e; : we obtain a composite with effective
conductivity A7 given by the previous expression

e ®er

* —1 _ _ -1 o
nA-B) = (A-B) T +(a-m)EEe

We can then construct a new material by layering A7 and the same background
phase B, with a proportion 62 of Aj in a direction e» to obtain an effective
conductivity A3 given by

e e

* —1 _ * —1 _
0204~ B) = (AL - B) M+ (1-0) o

The overal proportion of the original phase A in the resulting composite is now
0 = 610> and one sees that

e X e
Bez - e

€ ®er

(A5 —B)' = (A-B) '+ (1-
0102(A; — B) ( )+ ( 91)361,61

+(1—62)01

14/37



Laminates (8)




Laminates (9)

Iterating this procedure (keeping the same phase B as background material) one can
construct a laminate of rank p :

Let e1,..., e, be a set of unit vectors, 6 € [0,1] and m;,1 < i < p € [0, 1] with
>-F . mi =1, the laminate of rank p with lamination parameters m; is defined by

p
04 —B)" = (A-B) T +(1-0)) ma 2

i=1
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Laminates (10) ‘

The same procedure can be carried out for the operator of linearized elasticity

Given 2 materials with isotropic Hooke's laws A and B, p unit vectors
e,...,6 €R?, 0 c[0,1] and m;,1 <i < p € [0,1] with P . mi =1, the laminate
of rank p with lamination parameters m; is defined by

(1-6)As—B)™ = (B-A)'+90 Zp: mifa(er)

where for any d x d symmetric matrix £

fa(e)é : € (¢e-e)?

(Igef* = (ge- %) +

1
HA 2paNa
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Optimal Bounds

4.3. The G-closure problem : optimal bounds

Laminates composites provide a class of homogenized materials for which explicit
formulas are available and the properties of which depend on a finite number of
parameters

We recall the question of G—closure : what is the set Gy of effective conductivities
or effective Hookes'laws that can be reached as homogenized limits of (periodic)
mixtures of two phases A and B in proportion 6 and (1 —6) 7

If we cannot fully characterize Gy, can we get optimal estimates on some functions
of A* 7

Such estimates are called Hashin-Shtrikman bounds
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Optimal Bounds (2) ‘

Thm : Hashin-Strickman bounds in conductivity [Murat Tartar 85, Lurie and
Cherkaev 84]

Let A* be a d x d matrix that can be realized as the mixture of 2 isotropic
conductivities a < f in volume fraction 6 and (1 — 6) (we say A" € Gp)

Then the eigenvalues A1, ...\ of A* satisfy

_ d 1 1 d—1

{ Ay <N <A ; Yian-e S watxoa
an

. d 1 1 d—1

1<;<d Zj:l B—x; < 8=, + B—X;

—1
where \; = (aa-l +(1- 9)5—1) and A} = fa + (1 - 0)3

10 /37



Optimal Bounds (3)
the sets Gy

Representation of the bounds in 2D : note that laminates describe the enveloppe of

rank 2
1

rank 1
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Optimal Bounds (4) ‘

For linearized elasticity, the situation is more complex : there is no complete
characterization of Gy

However, one can characterize those effective Hooke's laws that whose energy is
optimal

Thm : [Allaire-Kohn 93]

Let A* denote the effective Hooke's law of a mixture of 2 well-ordered materials with
Hooke's laws A < B (in the sense of quadratic forms) then

A€ e > At E+(1-0) [25 4 (B —A) "' — O max fale)n : 7,]

max
nemd le[=1

IN

Ae g BE: €+ 6 min [25 4 (B—A) " :n— (1 - 6) min fa(e)n : 7,]
nemd le|=1

Furthermore, these bounds are attained by sequential laminates of rank d in
dimension d, whose directions of lamination are aligned with the eigendirections of
the symmetric matrix &

21/37



Structural optimization

4.4. A strategy for structural optimization

To summarize the insight we have gained in the previous paragraphs, let us consider
again the problem of finding the optimal distribution of a material with Hooke's
law A and a very soft material with Hooke's law B = nA, n << 1, in a given set Q

Find xopt € L(£,{0,1}) such that
Joeon) = min{J(x) x € L¥(2,{0,1})}

min{ [ Ave(un) () + A [ 1}

Where for a given x, uy is defined as the solution to
—div(Aye(uy)) = f inQ
Uy = 0 ondQ
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Structural optimization (2) ‘

If (xn) is a minimizing sequence, then weak compactness and the compactness
theorem of Tartar imply that a subsequece of (xn, Ay,) converges to some limiting
composite structure (6, A*)

The latter convergence holds in the sense of H-convergence : the sequence of
equilibrium states u, converge weakly in H* to the equilibrium state u, associated
to A"

Moreover, the energies converge, so that

J(xn) — /QA*e(u*) ce(us) + A/Q() :J7(0,A)
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Structural optimization (3) ‘

We are thus led to consider the relaxed optimization problem

Find 0o € L™(€, [0, 1]) and A, € Go, such that

T (Bopt, Ase) = min {J*(G,A*), 0 L(2,[0,1]), A" € Ge}

gjn)‘g{/Ae(u*. e(u) +/\/
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Structural Optimization (4) ‘

Remarks :

- The condition A* € Gy means A*(x) € Gy(y fora.e. x
- There is a catch : for linear elasticiy, we do not know explicitely the set Gy

- However, when the cost functional is the compliance (or a sum of compliances)
we do know that optimal values of the compliance may be achieved with
laminated composites of rank d

- So we may replace the condition A* € Gy by A* € Ly the set of rank d
laminates : recall that such materials are characterized by d directions and
d proportions of lamination at each point
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’Structural Optimization (5) ‘

Given 6, A", recall that u. is defined as the solution to
—div(A*e(us)) = f inQ
Us = 0 onodQ

so that by the principle of minimal complementary energy
/ Ate(uy):e(uy) = / f-u. = min /(A*)fla Lo
Q Q 0€Tadm J o

Yoim = {o€3(Q),—div(c)=finQ}

where
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Structural Optimization (6) ‘

It follows that the relaxed problem can be cast in the form :

min {/Ae(u*. u*+)\/
0,476y \ Jq

min  min {/(A*)fla co + )\/0}
0,A"ELg o€ 0m L [ a

— arenziarlm/nmein [Arpeirge ((A*)710 : 0’) + /\6’]
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Structural Optimization (7) ‘

When 7 — 0, one can show that given 7 € M% and 0 < 0 < 1

1-0
. *\1 __ ., —-1_ . *
Arpeers(A YriTr — A TITH 8 ()
where
d
g(r) = min mify(e)T: T
0<m <1 ;
Z?:l m; =1
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Structural Optimization (8) ‘

In 2D and 3D this g"(7) can be computed explicitely

For example in 2D, denoting 71 and 72 the eigenvalues of the (symmetric) matrix 7

£ = grgnl+ i)’

and the minimum is achieved by a rank-2 laminate aligned with the eigenvectors of
and with parameters
|72 |71

m = ———- my = ———
e I o L A Y
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Structural Optimization (9) ‘

Note that

- The minimization with respect to the structural parameters (local volume
fraction of phase A, lamination parameters) is local

- Given the pointwise values 6(x) and o(x), the minimization wrt the lamination
parameters is explicit. These are the composites that achieve the optimal
bounds for the complementary energy

- Existence of a minimum can be established for this relaxed optimization
problem

- This formulation leads to efficient algorithms
that will be the described next
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An alternate direction algorithm

4.5. An algorithm for topological optimization

We consider optimization of the compliance under given load + BC's

a,Am*igce{/QA*e(“*) re(us) + )\/90}

o - . *y—1 .
= i, { [+ 0}
where u. is the solution to
—div(A*e(u)) = f inQ
Us = 0 onodQ2
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An alternate direction algorithm (2)‘

The bounded domain Q is discretized with quadrangular elements

Alternate directions algorithm

- Initialisation of the design parameters 6o, Ag

(for example 6o = 1, A; = A everywhere in Q)

- Iteration until convergence:

a) Computation of u, , solution to the problem of linear
elasticity with design parameters 6,, A;,

b) update of the design variables 6,, A; using the explicit
formulas for the lamination parameters, which are locally
optimal for the field 7, = A*ne(ux,n)
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{An alternate direction algorithm (3) {




An alternate direction algorithm (4) ‘

Note that the resulting shape is a composite structure

Upon convergence, once can obtain quasi-optimal black-and-white shapes by
performing a few more iterations of the algorithms where composites are penalized :

In the (local) optimization with respect to 6, one forces the values of the optimal
density to move closer to 0 or 1
1 — cos(70,pt)

0 =
2

Of course, the resulting shapes do not perform as well, but one can have a practical
estimate of the loss of performance
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An alternate direction algorithm (5) ‘




An alternate direction algorithm (6) ‘

Experimentally, one observes less local minima and robustness with respect to the
initial design parameters
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An alternate direction algorithm (7)) ‘

Remarks :
- Explicit formulas are only available for the compliance (or a sum of compliance)

- There are many open questions concerning the numerical implementation of
such methods and its coupling with level set/parametric methods

- The idea of looking into generalized composite designs, may give ideas of
original designs that may prove interesting
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