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Part V

Topology optimization

A glimpse at mathematical homogenization

4. Relaxation by homogenization
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The G-closure (1)

4.1. The G-closure problem : preliminaries

We have seen that, in 2D-periodic homogenization, the effective conductivity A∗ of a
mixture of 2 phases α and β is given by the resolution of PDE’s

One computes the correctors χ1, χ2 H1
#-solutions to the cell problems div

(
a(y)

[
χj(y) + yj

])
= 0 in Y

χj ∈ H1
#(Y ), i = 1, 2

and then forms

A∗ij =

∫
Y

a(y)
(
δij +

∂χj

∂yj

)

Equivalently, one can solve the variational problem

A∗ξ · ξ = min{
∫
Y

a(y)
(
ξ +∇w(y)

)
·
(
ξ +∇w(y)

)
w ∈ H1

#(Y )}
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The G-closure (2)

A few natural questions arise from this derivation :

- Can A∗ be interpreted as the conductivity of a limiting material ?

Does A∗ posess the properties of a conductivity ?

Does u∗ solve a PDE of the same type as the uε’s ?

- Can one characterize all the conductivities A∗ that can be obtained by mixing
two (or more) phases ?

The latter question is called the problem of G -closure
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The G-closure (3)

• In general, effective conductivities are matrix-valued

In particular, one can build anisotropic media as homogenized limits of mixtures of
isotropic phases

• If a(y) is symmetric, so is A∗

• Effective conductivities satisfy the following

Prop : Elementary Reuss-Voigt bounds

∀ ξ ∈ R2,
(
M(1/a)

)−1
ξ · ξ ≤ A∗ξ · ξ ≤

(
M(a)

)
ξ · ξ (1)

where M(f ) =

∫
Y

f (y) dy

In particular, it follows that the homogenized equation is elliptic (and well-posed)
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The G-closure (4)

Proof : 1. Recall the variational principle

A∗ξ · ξ = min{
∫
Y

a(y)
(
ξ +∇w(y)

)
·
(
ξ +∇w(y)

)
w ∈ H1

#(Y )}

The choice w = 0 is admissible and yields

A∗ξ · ξ ≤
∫
Y

a(y)ξ · ξ dy = M(a)ξ · ξ

2. For the lower bound, consider w ∈ H1
#(Y ). Then for a.e. y ∈ Y

a(y)(ξ +∇w(y)) · (ξ +∇w(y)) = sup
η∈R2

{
2(ξ +∇w(y)) · η − 1

a(y)
η · η

}
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The G-closure (5)

It follows that

T :=

∫
Y

a(y)
(
ξ +∇w(y)

)
·
(
ξ +∇w(y)

)
≥

∫
Y

sup
η(y)∈R2

{
2(ξ +∇w(y)) · η(y)− 1

a(y)
η(y) · η(y)

}

≥ sup
η∈R2

∫
Y

2(ξ +∇w(y)) · η − 1
a(y)

η · η

as one obtains a lower bound by choosing the same η for all y ’s
Using the fact that w is periodic, we further obtain that for any w ∈ H1

#(Y )

T ≥ sup
η∈R2

2ξ · η −
(∫

Y

1
a(y)

)
η · η

Taking the supremum wrt to η yields the lower bound

7 / 37



Laminates

4.2. The G-closure problem : sequential laminates

As we have seen, the effective coefficients A∗ of a composite mixture of 2 phases
depends on the following ingredients

- the conductivities α, β of the constituting pure phases

- the function χ that describe the geometry of the mixture

The determination of A∗ require the resolution of a PDE. In a (very) limited number
of cases, one can obtain explicit formulas
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Laminates (2)

Let e ∈ Rd be a unit vector and given 0 ≤ θ ≤ 1 let χ denote the 1-periodic function
(of a single variable) whose graph is

For ε > 0, we consider a medium defined by the conductivity

Aε(x) = χ(
x · e
ε

)A + (1− χ(
x · e
ε

))B

which describes the periodic distribution of a
mixture of 2 phases with conductivities A, B
in layers perpendicular to the direction e
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Laminates (3)

As a consequence of Tartar’s compactness theorem, if uε is a bounded sequence of
voltage potentials which satisfies

div(Aε(x)∇uε(x)) = 0 in Ω (2)

and which converges weakly in H1 to some u∗, then the limiting potential satisfies

div(A∗∇u∗(x)) = 0 in Ω

Let us try to construct a sequence of solutions to (2) which are piecewise linear
functions : we seek λ, ξ ∈ Rd so that in the j-th layer

uε(x) =

{
λ · x + cj in the layers of the phase A

ξ · x + c ′j in the layers of the phase B

where the constants cj , c ′j are adjusted in each layer so that the resulting function is
continuous.
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Laminates (4)

Actually, continuity is the sole requirement for such a function to be in H1
loc

In particular, if we consider two points x and x + te⊥ that belong to the same
interface then continuity at these points yields the condition

λ · x + cj = ξ · x + c ′j

λ · (x + te⊥) + cj = ξ · (x + te) + c ′j

so that for any direction e⊥ perpendicular to e

(ξ − λ) · e⊥ = 0 (3)

Notice that such uε has a periodic, piecewise constant gradient and that the
associated current σε = a(y)∇uε has the form

σε =

{
Aλ in the layers of the phase A

Bξ in the layers of the phase B
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Laminates (5)

Such a function is a solution to div(σε) = 0 in D′(Ω) provided(
Aλ− Bξ

)
· e = 0 (4)

Relations (3-4) show that

ξ = λ+ te with t =
(A− B)ξ · e

Be · e (5)

In addition, since both fields ∇uε and σε are periodic, they converge weakly in L2 to

∇uε ⇀ ∇u∗ := θλ+ (1− θ)ξ and σε ⇀ σ∗ := θAλ+ (1− θ)Bξ

which should satisfy

A∗∇u∗ = σ∗ i.e. A∗
(
θλ+ (1− θ)ξ

)
= θ

(
Aλ
)

+ (1− θ)
(
Bξ
)
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Laminates (6)

Setting ζ = θλ+ (1− θ)ξ, so that

λ = ζ − (1− θ)
(A− Bζ · e

(1− θ)Ae · e + θBe · e e

and working out the algebra yields

A∗ζ = θ
(
Aζ
)

+ (1− θ)
(
Bζ
)
−

θ(1− θ)
(
A− B

)
ζ · e

(1− θ)Ae · e + θBe · e (A− B)e

This formula can be rewritten in a more interesting form when A− B is invertible

θ(A∗ − B)−1 = (A− B)−1 + (1− θ)
e ⊗ e

Be · e
where the notation e ⊗ e stands for the matrix with entries (eiej)1≤i,j≤d

13 / 37



Laminates (7)

This construction can be iterated : Suppose we laminate phases A and B with a
proportion θ1 of A in a direction e1 : we obtain a composite with effective
conductivity A∗1 given by the previous expression

θ1(A∗1 − B)−1 = (A− B)−1 + (1− θ1)
e1 ⊗ e1

Be1 · e1

We can then construct a new material by layering A∗1 and the same background
phase B, with a proportion θ2 of A∗1 in a direction e2 to obtain an effective
conductivity A∗2 given by

θ2(A∗2 − B)−1 = (A∗1 − B)−1 + (1− θ2)
e2 ⊗ e2

Be2 · e2

The overal proportion of the original phase A in the resulting composite is now
θ = θ1θ2 and one sees that

θ1θ2(A∗2 − B)−1 = (A− B)−1 + (1− θ1)
e1 ⊗ e1

Be1 · e1
+ (1− θ2)θ1

e2 ⊗ e2

Be2 · e2
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Laminates (8)

15 / 37



Laminates (9)

Iterating this procedure (keeping the same phase B as background material) one can
construct a laminate of rank p :

Let e1, . . . , ep be a set of unit vectors, θ ∈ [0, 1] and mi , 1 ≤ i ≤ p ∈ [0, 1] with∑p
i=1 mi = 1, the laminate of rank p with lamination parameters mi is defined by

θ(A∗p − B)−1 = (A− B)−1 + (1− θ)

p∑
i=1

mi
ei ⊗ ei
Bei · ei
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Laminates (10)

The same procedure can be carried out for the operator of linearized elasticity

Given 2 materials with isotropic Hooke’s laws A and B, p unit vectors
e1, . . . , ep ∈ Rd , θ ∈ [0, 1] and mi , 1 ≤ i ≤ p ∈ [0, 1] with

∑p
i=1 mi = 1, the laminate

of rank p with lamination parameters mi is defined by

(1− θ)(A∗p − B)−1 = (B − A)−1 + θ

p∑
i=1

mi fA(ei )

where for any d × d symmetric matrix ξ

fA(e)ξ : ξ =
1
µA

(
|ξe|2 − (ξe · e)2

)
+

1
2µAλA

(ξe · e)2
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Optimal Bounds

4.3. The G-closure problem : optimal bounds

Laminates composites provide a class of homogenized materials for which explicit
formulas are available and the properties of which depend on a finite number of
parameters

We recall the question of G−closure : what is the set Gθ of effective conductivities
or effective Hookes’laws that can be reached as homogenized limits of (periodic)
mixtures of two phases A and B in proportion θ and (1− θ) ?

If we cannot fully characterize Gθ, can we get optimal estimates on some functions
of A∗ ?

Such estimates are called Hashin-Shtrikman bounds
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Optimal Bounds (2)

Thm : Hashin-Strickman bounds in conductivity [Murat Tartar 85, Lurie and
Cherkaev 84]

Let A∗ be a d × d matrix that can be realized as the mixture of 2 isotropic
conductivities α < β in volume fraction θ and (1− θ) (we say A∗ ∈ Gθ)

Then the eigenvalues λ1, . . . λd of A∗ satisfy{
λ−θ ≤ λj ≤ λ+

θ

1 ≤ j ≤ d
and


∑d

j=1
1

λj−α
≤ 1

λ−
θ
−α

+ d−1
λ+
θ
−α∑d

j=1
1

β−λj
≤ 1

β−λ−
θ

+ d−1
β−λ+

θ

where λ−θ =
(
θα−1 + (1− θ)β−1

)−1
and λ+

θ = θα+ (1− θ)β
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Optimal Bounds (3)

Representation of the bounds in 2D : note that laminates describe the enveloppe of
the sets Gθ
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Optimal Bounds (4)

For linearized elasticity, the situation is more complex : there is no complete
characterization of Gθ

However, one can characterize those effective Hooke’s laws that whose energy is
optimal

Thm : [Allaire-Kohn 93]

Let A∗ denote the effective Hooke’s law of a mixture of 2 well-ordered materials with
Hooke’s laws A ≤ B (in the sense of quadratic forms) then

A∗ξ : ξ ≥ Aξ : ξ + (1− θ) max
η∈Md

s

[
2ξ : η + (B − A)−1η : η − θmax

|e|=1
fA(e)η : η

]

A∗ξ : ξ ≤ Bξ : ξ + θ min
η∈Md

s

[
2ξ : η + (B − A)−1η : η − (1− θ) min

|e|=1
fB(e)η : η

]
Furthermore, these bounds are attained by sequential laminates of rank d in
dimension d, whose directions of lamination are aligned with the eigendirections of
the symmetric matrix ξ
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Structural optimization

4.4. A strategy for structural optimization

To summarize the insight we have gained in the previous paragraphs, let us consider
again the problem of finding the optimal distribution of a material with Hooke’s
law A and a very soft material with Hooke’s law B = ηA, η << 1, in a given set Ω

Find χopt ∈ L∞(Ω, {0, 1}) such that

J(χopt) = min
{
J(χ) χ ∈ L∞(Ω, {0, 1})

}
= min

χ

{∫
Ω

Aχe(uχ) : e(uχ) + λ

∫
Ω

χ
}

Where for a given χ, uχ is defined as the solution to{ −div(Aχe(uχ)) = f in Ω

uχ = 0 on ∂Ω
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Structural optimization (2)

If (χn) is a minimizing sequence, then weak compactness and the compactness
theorem of Tartar imply that a subsequece of (χn,Aχn ) converges to some limiting
composite structure (θ,A∗)

The latter convergence holds in the sense of H-convergence : the sequence of
equilibrium states un converge weakly in H1 to the equilibrium state u∗ associated
to A∗

Moreover, the energies converge, so that

J(χn) →
∫

Ω

A∗e(u∗) : e(u∗) + λ

∫
Ω

θ =: J∗(θ,A∗)

23 / 37



Structural optimization (3)

We are thus led to consider the relaxed optimization problem

Find θopt ∈ L∞(Ω, [0, 1]) and A∗opt ∈ Gθ, such that

J∗(θopt ,A
∗
opt) = min

{
J∗(θ,A∗), θ ∈ L∞(Ω, [0, 1]),A∗ ∈ Gθ

}
:= min

θ,A∗

{∫
Ω

A∗e(u∗) : e(u∗) + λ

∫
Ω

θ
}
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Structural Optimization (4)

Remarks :

- The condition A∗ ∈ Gθ means A∗(x) ∈ Gθ(x) for a.e. x

- There is a catch : for linear elasticiy, we do not know explicitely the set Gθ

- However, when the cost functional is the compliance (or a sum of compliances)
we do know that optimal values of the compliance may be achieved with
laminated composites of rank d

- So we may replace the condition A∗ ∈ Gθ by A∗ ∈ Lθ the set of rank d
laminates : recall that such materials are characterized by d directions and
d proportions of lamination at each point

25 / 37



Structural Optimization (5)

Given θ,A∗, recall that u∗ is defined as the solution to{ −div(A∗e(u∗)) = f in Ω

u∗ = 0 on ∂Ω
(6)

so that by the principle of minimal complementary energy∫
Ω

A∗e(u∗) : e(u∗) =

∫
Ω

f · u∗ = min
σ∈Σadm

∫
Ω

(A∗)−1σ : σ

where

Σadm = {σ ∈ L2(Ω),−div(σ) = f in Ω}
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Structural Optimization (6)

It follows that the relaxed problem can be cast in the form :

min
θ,A∗∈Gθ

{∫
Ω

A∗e(u∗) : e(u∗) + λ

∫
Ω

θ
}

= min
θ,A∗∈Lθ

min
σ∈Σadm

{∫
Ω

(A∗)−1σ : σ + λ

∫
Ω

θ
}

= min
σ∈Σadm

∫
Ω

min
θ

[
min

A∗∈Lθ

(
(A∗)−1σ : σ

)
+ λθ

]
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Structural Optimization (7)

When η → 0, one can show that given τ ∈ Md
s and 0 ≤ θ ≤ 1

min
A∗∈Lθ

(A∗)1τ : τ → A−1τ : τ +
1− θ
θ

g∗(τ)

where

g∗(τ) = min 0 ≤ mi ≤ 1∑d
i=1 mi = 1

d∑
i=1

mi f
c
A (ei )τ : τ
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Structural Optimization (8)

In 2D and 3D this g∗(τ) can be computed explicitely

For example in 2D, denoting τ1 and τ2 the eigenvalues of the (symmetric) matrix τ

g∗(τ) =
λ

4µ(λ+ µ)
(|τ1|+ |τ2|)2

and the minimum is achieved by a rank-2 laminate aligned with the eigenvectors of τ
and with parameters

m1 =
|τ2|

|τ1|+ |τ2|
, m2 =

|τ1|
|τ1|+ |τ2|
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Structural Optimization (9)

Note that

- The minimization with respect to the structural parameters (local volume
fraction of phase A, lamination parameters) is local

- Given the pointwise values θ(x) and σ(x), the minimization wrt the lamination
parameters is explicit. These are the composites that achieve the optimal
bounds for the complementary energy

- Existence of a minimum can be established for this relaxed optimization
problem

- This formulation leads to efficient algorithms
that will be the described next
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An alternate direction algorithm

4.5. An algorithm for topological optimization

We consider optimization of the compliance under given load + BC’s

min
θ,A∗∈Gθ

{∫
Ω

A∗e(u∗) : e(u∗) + λ

∫
Ω

θ
}

= min
θ,A∗∈Lθ

min
σ∈Σadm

{∫
Ω

(A∗)−1σ : σ + λ

∫
Ω

θ
}

where u∗ is the solution to{ −div(A∗e(u∗)) = f in Ω

u∗ = 0 on ∂Ω
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An alternate direction algorithm (2)

The bounded domain Ω is discretized with quadrangular elements

Alternate directions algorithm

- Initialisation of the design parameters θ0,A∗0

(for example θ0 = 1,A∗n = A everywhere in Ω)

- Iteration until convergence:

a) Computation of u∗,n solution to the problem of linear
elasticity with design parameters θn,A∗n

b) update of the design variables θn,A∗n using the explicit
formulas for the lamination parameters, which are locally
optimal for the field τn = A∗ne(u∗,n)
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An alternate direction algorithm (3)
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An alternate direction algorithm (4)

Note that the resulting shape is a composite structure

Upon convergence, once can obtain quasi-optimal black-and-white shapes by
performing a few more iterations of the algorithms where composites are penalized :

In the (local) optimization with respect to θ, one forces the values of the optimal
density to move closer to 0 or 1

θn =
1− cos(πθopt)

2

Of course, the resulting shapes do not perform as well, but one can have a practical
estimate of the loss of performance

34 / 37



An alternate direction algorithm (5)
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An alternate direction algorithm (6)

Experimentally, one observes less local minima and robustness with respect to the
initial design parameters
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An alternate direction algorithm (7))

Remarks :

- Explicit formulas are only available for the compliance (or a sum of compliance)

- There are many open questions concerning the numerical implementation of
such methods and its coupling with level set/parametric methods

- The idea of looking into generalized composite designs, may give ideas of
original designs that may prove interesting
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