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Introduction

This course is a refresher of a few selected topics in differential calculus, which are fundamental prerequisites
for graduate analysis courses. It is mainly oriented towards calculus and applications; in particular, it does
not cover more theoretical material such as the Banach theorems at the principle of functional analysis. On
the other hand, whenever possible, concrete applications and algorithmic principles are extracted from the
results. We have focused on intuitive (albeit rigorous) presentation of the tackled topics, with the hope that
it be more easily understandable by the reader. As a result, the statements may not be “optimal” in terms
of assumptions, and the proofs may sometimes be lengthy. We hope, however, that they allow to exemplify
important techniques or interesting applications of the fundamental concepts. At the end of each part, some
exercises are proposed, ranging from very simple verifications of properties from the main text, to more
advanced and conceptual ones, passing through practical calculations.

The central notion of the course is that of differential, as a suitable generalization to abstract spaces of the
derivative of functions on the real line. We heavily emphasize on the basic concepts and facts in Section 2,
before turning to more advanced topics (such as the mean value theorem, higher-order derivatives and the
Taylor formulas) in Section 4. Meanwhile, we recall in Section 3 a few fundamental facts from the theory of
Lebesgue integration. The next sections are devoted to slightly more advanced topics, which are also good
opportunities to apply the concepts of the first sections: the fixed point theorem is presented in Section 5,
together with a few interesting applications. The next Section 6 is devoted to the fundamental implicit
function theorem, and illustrations of some of its multiple applications. Then, we briefly broach the subject
of mathematical optimization in Section 7, mainly dealing with the statement of necessary conditions for
local optimality, before finally turning to differential calculus in regular domains of Rd in Section 8.

Let us warn the reader that the material presented in these notes goes way beyond the contents taught
during the lectures. It is our hope that the reader will find all the mathematical details of the sometimes
too fast derivations, as well as some interesting complements. Comments, suggestions, and reports about
mistakes will be gratefully received at the following email address:

charles.dapogny[AT]univ-grenoble-alpes.fr

1. Reminders: normed vector spaces, convergence and Banach spaces

This first section gathers haphazardly a few facts from undergraduate analysis; it is not meant to be read
in linear fashion, but rather to be consulted as support if the need becomes apparent in the study of the
subsequent sections.

1.1. General notation

The following notation and conventions are used throughout the text:

• R denotes the set of real numbers and R+ is the subset of non negative real numbers.
• For a, b ∈ R ∪ {−∞,∞}, (a, b) and [a, b] respectively denote the open and closed intervals of R with

ends a and b.
• Unless specified otherwise, all the considered vector spaces in these lecture notes are based on the

field R of real numbers.
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• N is the set of non negative integers: N = {0, 1, . . .}.
• For any integer d ≥ 1, the canonical basis {ei}i=1,...,d of the Euclidean space Rd is defined by:

ei = (0, . . . , 1︸︷︷︸
ith position

, . . . , 0).

The canonical inner product 〈·, ·〉 of Rd is defined by:

∀x =

d∑
i=1

xiei, y =

d∑
i=1

yiei ∈ Rd, 〈x, y〉 =

d∑
i=1

xiyi,

and the corresponding Euclidean norm reads:

∀x ==

d∑
i=1

xiei ∈ Rd, |x| :=
(
x2

1 + . . .+ x2
d

) 1
2

.

• The vector product u ∧ v of two vectors u = (u1, u2, u3), v = (v1, v2, v3) ∈ R3 is the vector in R3

defined by
u ∧ v = (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1).

• For any integers p, q ≥ 1, Mp,q(R) is the vector space of p× q matrices with real entries. An element
M ∈ Mp,q(R) may be alternatively denoted via its entries M = (mij) i=1,...,p

j=1,...,q
with mij ∈ R. In the

latter notation, the reference to the numbers p, q of columns and rows of M is omitted when clear
from the context, and we simply write M = (mij).

• For p, q ≥ 1 and any matrix M = (mij) ∈ Mp,q(R), we denote by MT ∈ Mq,p(R) the transpose of
M , i.e. the matrix with entries

∀i = 1, . . . q, j = 1, . . . , p, (MT )ij = mji.

• When p = q, we simply denote by Mp(R) the space of square p× p matrices.
• For any integer p ≥ 1, Ip ∈Mp(R) is the identity p× p matrix.
• The trace of a p× p matrix M = (mij) is the sum of its diagonal entries:

tr(M) =

p∑
i=1

mii.

• The determinant of a p× p matrix M = (mij) is denoted by:

det(M) =

∣∣∣∣∣∣∣
m11 m12 . . . m1p

...
...

mp1 mp2 . . . mpp

∣∣∣∣∣∣∣ .
• For any p× p matrix M = (mij), the associated (i, j) minor ∆ij is the determinant of the (p− 1)×

(p− 1) matrix obtained from M by deleting the ith row and jth column:

∆ij =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m11 m12 . . . m1j−1 m1j+1 . . . m1p

...
...

mi−11 mi−12 . . . mi−1j−1 mi−1j+1 . . . mi−1p

mi+11 mi+12 . . . mi+1j−1 mi+1j+1 . . . mi+1p

...
...

mp1 mp2 . . . mpj−1 mpj+1 . . . mpp

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
..

• For any square p × p matrix M = (mij) ∈ Mp(R), com(M) ∈ Mp(R) is the associated cofactor
matrix, that is, the p × p matrix whose (i, j) entry equals (−1)i+j∆ij . Let us recall the following
fundamental identity from linear algebra:

∀M ∈Mp(R), MT com(M) = det(M)Ip.

• A sequence is an enumeration {x0, x1, . . .} of objects that is indexed by N; it is either denoted
between braces {xn}n∈N, or most often via its general term xn.
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Figure 1. (a) The segment joining two points x, y in a convex subset C of a vector space
E completely lies in C; (b) the graph {(x, f(x)), x ∈ E} of a convex function lies below any
line segment joining two points (x, f(x)), (y, (y)) of the graph.

• A subsequence of a sequence {xn}n∈N is another sequence obtained by retaining only some of the
terms among the x0, x1, . . .. For instance, {x2, x5, x8, . . .} is a subsequence of {xn}n∈N. Formally,
such a subsequence is defined by means of an “extraction mapping” ϕ : N → N, i.e. an increasing
mapping identifying the retained indices among {0, 1, . . .}. The subsequence

{
xϕ(n)

}
n∈N is sometimes

denoted by {xnk
}k∈N for short.

• For any subset A of a vector space E, we denote by 1A the characteristic function of A, that is:

∀x ∈ E, 1A(x) =

{
1 if x ∈ A,
0 otherwise.

1.2. A few facts from real analysis

1.2.1. Convex sets and functions

In this short subsection, we recall the notions of convex sets and functions in a vector space, which are
ubiquitous in differential calculus.

Definition 1.1. Let E be a vector space.

• A subset C ⊂ E is called convex if

∀x, y ∈ C, ∀λ ∈ [0, 1], λx+ (1− λ)y ∈ C.
• A real-valued function f : C → R defined on a convex subset C ⊂ E is called convex if

∀x, y ∈ C, ∀λ ∈ [0, 1], f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

• A real-valued function f : C → R defined on a convex subset C ⊂ E is called strictly convex if

∀x, y ∈ C, ∀λ ∈ (0, 1), f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y);

Intuitively, a convex set C is such that whenever two points x, y ∈ E belong to C, the whole line segment
{(1− λ)x+ λy, λ ∈ [0, 1]} is included in C. A convex function f : C → R is characterized by the fact that
its graph {(x, f(x)), x ∈ C} ⊂ E×R lies locally below any line segment between two of its points (x, f(x)),
(y, f(y)), see Fig. 1 for an illustration.

1.2.2. The mean value theorem for real-valued functions on the real line

We now recall the mean value theorem for a real-valued functions f defined on an interval [a, b] ⊂ R. The
latter is a key tool to express the variations of f over [a, b] as the value of the derivative f ′ at an intermediate
point a < c < b, see Fig. 2 for an illustration.
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Theorem 1.1 (Mean-value theorem). Let a < b, and let f : [a, b] → R be a real-valued function which
is continuous on the closed interval [a, b], and differentiable on the open interval (a, b). Then there exists
θ ∈ (0, 1) such that

f(b)− f(a)

b− a = f ′(a+ θ(b− a)).
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f

Figure 2. The slope of the solid blue line between the points (a, f(a)) and (b, f(b)) equals
f(b)−f(a)

b−a ; the mean value Theorem 1.1 asserts that there exists an intermediate point c :=

a+ θ(b− a), θ ∈ (0, 1), such that the derivative f ′(c) of f at c is exactly equal to this slope.

1.3. Analysis in normed vector spaces

We now slip into the context of normed vector spaces, in which we investigate convergent sequences. We
notably recall the fundamental Cauchy criterion and the related notion of Banach space.

1.3.1. General facts about normed vector spaces

Let us start with a few definitions.

Definition 1.2. Let E be a (real) vector space; a norm || · || on E is a mapping E → R+ which satisfies the
following three conditions:

• (Positive homogeneity): For all λ ∈ R and x ∈ E, one has ||λx|| = |λ|||x||;
• (Positive definiteness): For all x ∈ E, ||x|| = 0 if and only if x = 0;
• (Triangle inequality): For all x, y ∈ E, one has: ||x+ y|| ≤ ||x||+ ||y||.

A vector space E equipped with a norm || · || is called a normed vector space.

The following lemma, sometimes referred to as the “second triangle inequality”, is a straightforward,
albeit fundamental consequence of the definition of norm.

Lemma 1.1. Let (E, || · ||) be a normed vector space; then:

∀x, y ∈ E, |||x|| − ||y||| ≤ ||x+ y||.
Proof. For all x, y ∈ E, the triangle inequality yields

||x|| = ||x+ y − y|| ≤ ||x+ y||+ ||y||,
and so ||x|| − ||y|| ≤ ||x + y||. Applying the same argument after inverting the roles of x and y, we obtain
the desired statement. �

One given vector space can generally be endowed with multiple different norms, inducing as many different
structures of normed vector space on E. The following notion helps in identifying those norms inducing a
“similar” structure on E.
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Definition 1.3. Let E be a vector space, and let || · ||1, || · ||2 : E → R+ be two norms on E. These norms
are called equivalent if there exist positive real numbers 0 < α ≤ β such that

∀x ∈ E, α||x||2 ≤ ||x||1 ≤ β||x||2.
A very particular feature of finite-dimensional spaces is the equivalence of all possible norms, as we recall

in the next result.

Proposition 1.1. Let E be a finite-dimensional space; all norms defined on E are then equivalent.

Proof. See Exercise 1.1. �

Unfortunately, such a statement is utterly false in an infinite-dimensional space E; its properties, starting
from its topology (as we shall see in the next sections), depend heavily on the chosen norm.

1.3.2. Topology on normed vector spaces

The structure of a norm on a vector space allows to make out different sorts of subsets, a classification which
is referred to as the topology of the space.

Definition 1.4. Let (E, || · ||E) be a normed vector space.

• For all x ∈ E, and r > 0, we denote by

B(x, r) := { y ∈ E, ||y − x|| < r} , and B(x, r) = { y ∈ E, ||y − x|| ≤ r}
the open and closed balls with center x and radius r, respectively.

• A subset U ⊂ E is called open if, for all x ∈ U , there exists r > 0 such that the ball B(x, r) is
enclosed in U .

• A subset F ⊂ E is called closed if its complement U := E \ F is open.
• Let A ⊂ E be an arbitrary subset; a neighborhood of A is an open subset U of E such that A ⊂ U .

Remark 1.1. The closedness of a subset F ⊂ E is often used under the following sequential form: F is
closed if and only if, for every sequence xn ∈ F which converges to some element x∞ ∈ E, the limit x∞
actually belongs to F . The verification of the equivalence between this property and Definition 1.4 is left to
the reader.

We next turn to the definition of continuous and uniformly continuous functions on a normed vector space,
which are the immediate generalizations of their perhaps more familiar one-dimensional counterparts.

Definition 1.5. Let (E, || · ||E) and (F, || · ||F ) be normed vector spaces; let A ⊂ E and f : A → F be a
function;

• The function f is said to be continuous at a particular point x ∈ A if

∀ε > 0, ∃δ > 0, ∀y ∈ A, ||x− y||E ≤ δ ⇒ ||f(x)− f(y)||F ≤ ε.
The function f is called continuous on A if it is continuous at every point x ∈ A.

• The function f is called uniformly continuous on A if for all ε > 0, there exists δ > 0 such that

∀x, y ∈ I, ||x− y||E ≤ δ ⇒ ||f(x)− f(y)||F ≤ ε.
The difference between the continuous and uniformly continuous functions on A ⊂ E is a little subtle.

The continuity of f on A solely requires that, for each given point x ∈ A, f(y) be as close to f(x) as desired,
provided y is close enough from x; formally: for a given error margin ε > 0, f(y) takes values close to f(x)
(i.e. within a range ε from f(x)) provided y is “close enough” to x (i.e. the distance between x and y is
less than δ), but how close y has to be from x for this to happen depends on the considered point x. In
particular, one may imagine that f take larger and larger variations as y gets near the border of A. On the
contrary, when f is uniformly continuous on A, for each given tolerance ε > 0, there is a distance δ > 0 such
that, as soon as the distance between any two points x and y ∈ A is less than δ, the difference between f(x)
and f(y) is less than ε. In other terms, f cannot “vary too fast” on A, see Fig. 3 for an illustration in the
case where E = R.

Uniformly continuous functions are obviously continuous, but the converse is false in general. However,
as we shall recall in Section 1.3.4, when the considered function f is defined on a compact subset K of E,
the remarkable Heine’s theorem asserts that both notions coincide.
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Figure 3. One-dimensional illustrations of the notions of continuity and uniform continu-
ity. (a) The function f : x 7→ 1

x is continuous on (0,∞), but not uniformly continuous on
this interval: as points x, y gets near 0, to get variations between f(x) and f(y) less than
a given threshold ε requires x and y to be closer and closer from one another; (b) Heine’s
Theorem 1.4 states that a continuous function on a compact interval is uniformly continu-
ous, since its variations are controlled.

One third important notion of continuity is the following.

Definition 1.6. Let (E, || · ||E) and (F, || · ||F ) be normed vector spaces and let A ⊂ E. A function f : A→ F
is called Lipschitz continuous with ratio C > 0 if the following relation holds:

∀x, y ∈ A, ||f(x)− f(y)||F ≤ C||x− y||E .
Lipschitz continuity is somehow a quantitative version of uniform continuity, as it gives an explicit mea-

surement of “how much” x and y have to be close from one another so that the distance between f(x) and
f(y) be less than a given threshold. Formally,

For all ε > 0, ||x− y||E ≤
ε

C
⇒ ||f(x)− f(y)||E ≤ ε;

in particular, a Lipschitz continuous function is uniformly continuous, thus continuous.

1.3.3. Convergent and Cauchy sequences in normed vector spaces

We now recall the notions of convergent and Cauchy sequences in a normed vector space.

Definition 1.7. Let (E, || · ||E) be a normed vector space, and let xn be a sequence of elements of E;

• The sequence xn is said to converge to an element x∞ ∈ E if,

∀ε > 0, ∃N ≥ 1, ∀n ≥ N, ||xn − x∞||E ≤ ε.
• The sequence xn is called a Cauchy sequence if

∀ε > 0, ∃N ∈ N, ∀n,m ≥ N, ||xn − xm||E ≤ ε.
Intuitively, the elements of a Cauchy sequence tend to “get increasingly closer” from each other as n→∞,
while the elements of a convergent sequence xn tend to “get ı̀ncreasingly closer” to a fixed element x∞ ∈ E.

The following proposition sheds some light on the relation between both notions.

Proposition 1.2. Let (E, || · ||E) be a normed vector space;

(i) A Cauchy sequence xn of elements of E is bounded;
(ii) A sequence xn of elements of E which converges to some x∞ ∈ E is a Cauchy sequence.

Proof. (i): Letting ε = 1 in the Definition 1.7 of a Cauchy sequence, we see that there exists N ≥ 0 such
that

∀n ≥ N, ||xn − xN ||E ≤ 1.
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Using the triangle inequality, we infer that, for n ≥ N ,

||xn|| − ||xN ||E ≤ 1 and so ||xn||E ≤ 1 + ||xN ||E ,
and so:

∀n ≥ 0, ||xn||E ≤ max(||x0||E , ||x1||E , . . . , ||xN−1||E , 1 + ||xN ||E),

that is, the sequence xn is bounded.

(ii): Let xn be a sequence of elements of E, converging to some x∞ ∈ E. By definition, for all ε > 0, there
exists N ≥ 0 such that

∀n ≥ N, ||xn − x∞||E ≤
ε

2
.

The triangle inequality then yields, for all integers m, n ≥ N ,

||xn − xm||E ≤ ||xn − x∞||E + ||xm − x∞||E ≤ ε
2 + ε

2
= ε,

which proves that xn is a Cauchy sequence. �

It turns out that the converse property holds true in particularly “nice” vector spaces, which deserve a
name of their own.

Definition 1.8. A normed vector space (E, || · ||) is called complete if all Cauchy sequences of elements of
E are convergent. A complete normed vector space is called a Banach space.

Remark 1.2.

• All finite-dimensional vector spaces are complete, see Exercise 1.5.
• An important example of a non convergent Cauchy sequence in a (necessarily not complete) normed

vector space is given in Exercise 1.2.

1.3.4. Compact subsets of a normed vector space

We conclude this section by recalling the key notion of compactness.

Definition 1.9. Let K be a subset of a normed vector space (E, || · ||E); K is called compact if, for any
sequence {xn}n∈N of elements of K, there exists a subsequence {xnk

}k∈N which converges to an element
x∞ ∈ K.

Intuitively, a compact set K is “small” enough so that any sequence of elements xn ∈ K must cluster at
least at one point in K.

Proposition 1.3. Let K be a compact subset of a normed vector space (E, || · ||E). Then K is closed and
bounded, that is, there exists M > 0 large enough so that K ⊂ B(0,M).

Proof. Let us first show the boundedness of K. We argue by contradiction: let x0 be any point in K. Since
K is not bounded, there exists x1 ∈ K such that ||x1||E ≥ ||x0||E +1. In turn, since K is not bounded, there
exists x2 ∈ K with ||x2||E ≥ ||x1||E + 1 ≥ ||x0||E + 2. By induction, we thus construct a sequence xn ∈ K
such that

∀n,m ∈ N, n ≥ m⇒ ||xn − xm||E ≥ ||xn||E − ||xm||E ≥ m.
This sequence cannot possess any convergent subsequence, since the previous inequality impedes any subse-
quence of xn to have the Cauchy property. This contradicts the compactness of K.

Let us now show that K is closed. To this end, we rely on the sequential definition of the closedness
of subsets of E, see Remark 1.1. Let xn be any sequence of elements of K, converging to some x∞ ∈ E.
By definition, xn has a convergent subsequence xnk

converging to some element y ∈ K. But since xnk
is

a subsequence of xn, it also converges to x∞, and by uniqueness of the limit, we obtain x∞ = y ∈ K, as
desired. �

Unfortunately, the converse of the latter property does not hold in general, and compact subsets of a
normed vector space may be much more difficult to identify (and actually more scarce) than closed and
bounded subsets. The case of finite-dimensional spaces is special in this perspective, as stated by the famous
Bolzano-Weierstrass theorem, which we recall without proof.
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Theorem 1.2 (Bolzano-Weierstrass theorem). Let E be a finite-dimensional vector space. A subset K ⊂ E
is compact if and only if it is closed and bounded.

The compactness property of a subset of a normed vector space is often used via the following equivalent
characterization, sometimes referred to as the Borel-Lebesgue property, whose difficult proof is admitted.

Theorem 1.3 (Borel-Lebesgue characterization of compactness). Let (E, || · ||E) be a normed vector space,
and let K be a subset of E. Then K is compact if and only if, for any collection {Ui}i∈I of open subsets of
E (where the set of indices I is arbitrary), forming a covering of K, in the sense that

K ⊂
⋃
i∈I

Ui,

there exists a finite subset of indices {i1, . . . , iN} ⊂ I such that the collection
{
Uij
}
j=1,...,N

still forms a

covering of K, i.e.

K ⊂
N⋃
j=1

Uij .

To conclude this brief discussion about compact sets, we present one among the many key properties of
compact subsets of a normed vector space, that we have already hinted at previously: continuous functions
defined on compact sets are uniformly continuous.

Theorem 1.4. Let (E, || · ||E) and (F, || · ||F ) be normed vector spaces and let K ⊂ E be a compact subset.
If a function f : K → F is continuous, it is uniformly continuous.

Proof. We proceed by contradiction: assume that there exists ε > 0 such that for all δ > 0, one may find
two points x, y ∈ K with

||x− y||E ≤ δ, and ||f(x)− f(y)||F > ε.

In particular, one may define two sequences an and bn of elements in K such that

(1.1) ∀n ∈ N, ||an − bn||E ≤
1

n
and ||f(an)− f(bn)||F > ε.

Since the set K is compact, up to extraction of a subsequence (still indexed by n) the sequences an and bn
converge to some elements a∞ and b∞ ∈ K, respectively. Passing to the limit in the first inequality of (1.1),
we actually see that a∞ = b∞ =: c.

On another hand, the continuity of f at c reads:

∃η > 0, ||x− c||E ≤ η ⇒ ||f(x)− f(c)||F ≤
ε

2
.

In particular, for n larger than some n0 ∈ N, we have ||an − c||E ≤ η and ||bn − c||F ≤ η; this implies:

∀n ≥ n0, ||f(an)− f(c)||F ≤
ε

2
and ||f(bn)− f(c)||F ≤

ε

2
,

and so, by the triangle inequality

||f(an)− f(bn)||F ≤ ||f(an)− f(c)||F + ||f(c)− f(bn)||F ≤ ε,
which contradicts (1.1). This ends the proof. �

Remark 1.3. The use of Theorem 1.2 yields the perhaps more familiar version of Heine’s theorem, which
is just a particular case of Theorem 1.4: a function f : [a, b]→ R defined on a closed bounded interval of R
is uniformly continuous.

1.4. Normed vector spaces and linear structures

In this section, we focus on the linear structure of mappings between normed vector spaces, which shows
remarkable properties.
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1.4.1. Linear mappings between normed vector spaces

Throughout this section, (E, || · ||E) and (F, || · ||F ) are two normed vector spaces.

Definition 1.10. A mapping f : E → F is said to be linear provided

∀x, y ∈ E, λ, µ ∈ R, f(λx+ µy) = λf(x) + µf(y).

The continuity of linear mappings can be characterized in a very handful way.

Proposition 1.4. Let f : E → F be a linear mapping; the following three conditions are equivalent:

(i) f is continuous on E;
(ii) f is continuous at 0;

(iii) There exists a constant C > 0 such that:

(1.2) ∀x ∈ E, ||f(x)||F ≤ C||x||E .
Proof. (i)⇒ (ii) is obvious.

(ii)⇒ (iii): Letting ε = 1 in the definition of the continuity of f at 0 (see Definition 1.5), there exists δ > 0
such that

∀x ∈ E s.t. ||x||E ≤ δ, ||f(x)||F ≤ 1.

Now, let x ∈ E be given. If x = 0, the inequality (1.2) trivially holds true; otherwise, the element y :=
δ
||x||E x ∈ E is such that ||y||E = δ, and the previous inequality yields:

||f(y)||F ≤ 1, and so
δ

||x||E
||f(x)||F ≤ 1,

where we have used the linearity of f . Since this holds for any x ∈ E \{0}, we have proved (1.2) with C = 1
δ .

(iii)⇒ (i): Using the inequality (1.2) with x of the form x = z − y, for arbitrary y, z ∈ E, we see that f is
actually Lipschitz continuous (see Definition 1.6), i.e.

∀y, z ∈ E, ||f(z)− f(y)||F ≤ C||z − y||E .
The continuity of f on E easily follows from this fact. �

In the following, we denote by L(E;F ) the vector space of continuous linear functions from E to F . We
define the operator norm ||f ||L(E;F ) of f as the best (i.e. the lowest) value of the constant C such that the
inequality (1.2) holds, that is:

(1.3) ||f ||L(E;F ) = sup
x∈E
x 6=0

||f(x)||F
||x||E

.

That this expression indeed defines a norm on L(E;F ) is a simple verification which is left to the reader,
see Exercise 1.3.

One interesting property of the space L(E;F ) is that it inherits the completeness of the arrival space
F . More precisely, we have the following result, whose proof is important, as it can be adapted to many
situations when it comes to showing completeness of a normed vector space.

Proposition 1.5. Assume that (F, || · ||F ) is a Banach space. Then the vector space L(E;F ) of continuous
and linear mappings from E to F , equipped with the norm (1.3), is also a Banach space.

Proof. Let fn ∈ L(E;F ) be a Cauchy sequence of continuous linear mappings from E to F ; we wish to show
that fn converges to a certain linear mapping f∞ : E → F . We proceed within three steps.

Step 1: We find a candidate f∞ for the limit of fn. To this end, let us write down the definition of a
Cauchy sequence in L(E;F ). For all ε > 0, there exists N ≥ 0 such that

∀m,n ≥ N, ||fn − fm||L(E;F ) ≤ ε.
Let us fix x ∈ E; using the definition of the operator norm (1.3), we infer that, in particular

∀m,n ≥ N, ||fn(x)− fm(x)||F ≤ ε||x||E .
10



This implies, in particular, that {fn(x)}n≥1 is a Cauchy sequence of elements of F . Since F is complete,

this sequence converges to an element of F , which we denote by f∞(x).
We have thus constructed a mapping E 3 x 7→ f∞(x) ∈ F , about which no further information is available

at the moment.

Step 2: We prove that the mapping f∞ belongs to L(E;F ). At first, for any x, y ∈ E, and any λ, µ ∈ R, we
have, on the one hand, by the definition of f∞:

fn(λx+ µy)
n→0−−−→ f∞(λx+ µy).

On the other hand, since each fn is linear, it holds

fn(λx+ µy) = λfn(x) + µfn(y),

and the right-hand side of the above expression converges to λf∞(x) + µf∞(y). By uniqueness of the limit
of a sequence of elements in F , we obtain that

f∞(λx+ µy) = λf∞(x) + µf∞(y),

which means that f∞ is linear.
Let us show that f∞ is continuous. To this end, we know that fn is bounded as a Cauchy sequence, see

Proposition 1.2. Hence, there exists a constant C > 0 such that, for all n ≥ 0,

∀x ∈ E, ||fn(x)||F ≤ C||x||E .

Passing to the limit, it follows that

∀x ∈ E, ||f∞(x)||F ≤ C||x||E ,

which means that f∞ is continuous.
Summarizing, we have proved that f∞ ∈ L(E;F ).

Step 3: We prove that ||fn−f∞||L(E;F ) → 0 as n→∞. We return to the fact that fn is a Cauchy sequence
in L(E;F ): for all ε > 0, there exists N ≥ 0 such that

∀n,m ≥ N, ∀x ∈ E, ||fn(x)− fm(x)||F ≤ ε||x||E .

For an arbitrary given ε > 0, keeping n fixed and passing to the limit m→∞, this yields:

∀n ≥ N, ∀x ∈ E, ||fn(x)− f∞(x)||F ≤ ε||x||E ,

i.e.

∀n ≥ N, ||fn − f∞||L(E;F ) ≤ ε.
Since ε > 0 is arbitrary, this expresses the convergence of fn to f∞ in L(E;F ). �

Additional properties of interest concerning linear mappings are introduced in the next definition.

Definition 1.11.

• A linear and continuous mapping f : E → F is called a linear isomorphism if there exists a contin-
uous, linear mapping g : F → E such that

g ◦ f = idE and f ◦ g = idF ,

where idE : E → E is the identity mapping of E and idF : F → F is the identity mapping of F .
• A linear mapping f : E → F is called an isometry if

∀x ∈ E, ||f(x)||F = ||x||E .

Remark 1.4. It follows immediately from the definition that an isometry f : E → F is continuous and
injective.
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1.4.2. Multlinear mappings between normed vector spaces

The previous definitions and concepts extend almost immediately to the case of multilinear mappings. In
this section, we consider (n + 1) normed vector spaces (E1, || · ||E1), . . . , (En, || · ||En) and (F, || · ||F ). The
product space E1 × . . .× En is naturally equipped with the norm

∀x = (x1, . . . , xn) ∈ E1 × . . .× En, ||x||E1×...×En
= sup
i=1,...,n

||xi||Ei
.

Remark 1.5. From the fact that all norms defined on a finite-dimensional vector space are equivalent (see
Proposition 1.1), it is easy to see that the above norm is equivalent to any norm of the form

E1 × . . .× En 3 x = (x1, . . . , xn) 7−→ N
(
||x1||E1

, . . . , ||xn||En

)
∈ R,

where N(·) is an arbitrary norm on Rn.

Definition 1.12. A mapping f : E1× . . .×En → F is called multilinear (or n-linear) if for all k = 1, . . . , n,
for any fixed elements x1 ∈ E1, . . . , xk−1 ∈ Ek−1, xk+1 ∈ Ek+1, . . . , xn ∈ En, the partial mapping

Ek 3 z 7−→ f(x1, . . . , xk−1, z, xk+1, . . . , xn) ∈ F
is linear.

The following result about the continuity of multilinear mappings is the exact counterpart of Proposi-
tion 1.4 in the present context. Its proof is thus left to the reader.

Proposition 1.6. Let f : E1× . . .×En → F be a multilinear mapping. Then the following three conditions
are equivalent.

(i) f is continuous on E1 × . . .× En;
(ii) f is continuous at (0, . . . , 0) ∈ E1 × . . .× En;

(iii) There exists a constant C > 0 such that:

(1.4) ∀(x1, . . . , xn) ∈ E1 × . . .× En, ||f(x1, . . . , xn)||F ≤ C||x1||E1
. . . ||xn||En

.

We denote by L(E1, . . . , En;F ) the vector space of all n-linear continuous mappings E1 × . . .×En → F .
The operator norm ||f ||L(E1,...,En;F ) of a continuous multilinear mapping f : E1 × . . . × En → F is defined
as the smallest constant C such that the inequality (1.4) holds:

∀f ∈ L(E1, . . . , En;F ), ||f ||L(E1,...,En;F ) = sup
x1 6=0, x2 6=0,...,xn 6=0

||f(x1, . . . , xn)||F
||x1||E1

. . . ||xn||En

.

For later purposes, we eventually introduce the space of symmetric multilinear mappings.

Definition 1.13. Let (E, || · ||E) and (F, || · ||F ) be normed vector spaces, and let n ≥ 2. A multilinear
mapping f : En → F is called symmetric if for any permutation σ : {1, . . . , n} → {1, . . . , n}, it holds:

∀x1, . . . xn ∈ E, f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)).

The vector space of continuous and symmetric n-linear mappings from En into F is denoted by Ls(En;F ).

1.4.3. The dual of a normed vector space

In the study of a normed vector space E, a central role is played by the associated space of continuous, linear
forms on E, i.e. on the continuous linear mappings E → R.

Definition 1.14. The dual space of E is the vector space E∗ = L(E;R) of continuous linear forms on E,
equipped with the norm

||`||E∗ = sup
x∈E
x6=0

|`(x)|
||x||E

.

Often, much information can be gleaned about E by looking at the dual space E∗, and the way they
interact with one another – a relation which is called duality in the literature. Indeed, E∗ often turns out to
show more pleasant properties than E, in spite of its apparent greater complexity. For instance, it follows
from Proposition 1.5 that E∗ is always a Banach space, even when E is not.
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1.5. Hilbert spaces

Among Banach spaces, we make out the subcategory of Hilbert spaces, whose desirable properties stem from
the presence of an additional structure, that of inner product.

Definition 1.15. Let E be a (real) vector space; an inner product on E is a mapping 〈·, ·〉 : E × E → R
which is

(i) Bilinear: For all x, y and z ∈ E and all λ, µ ∈ R, there holds:

〈λx+ µy, z〉 = λ〈x, z〉+ µ〈y, z〉, and 〈z, λx+ µy〉 = λ〈z, x〉+ µ〈z, y〉.
(ii) Symmetric: For all x, y ∈ E, one has 〈x, y〉 = 〈y, x〉.

(iii) Positive: For all x ∈ E, 〈x, x〉 ≥ 0.
(iv) Positive definite: For all x ∈ E, 〈x, x〉 = 0 if and only if x = 0.

One fundamental property related to inner products is the well-known Cauchy-Schwarz inequality.

Lemma 1.2 (Cauchy-Schwarz inequality). Let E be a (real) vector space equipped with an inner product
〈·, ·〉. Then, it holds:

(1.5) ∀x, y ∈ E, 〈x, y〉2 ≤ 〈x, x〉〈y, y〉.
Proof. Let x, y be two given elements in E; we define the function p : R→ R by

p(t) = 〈x+ ty, x+ ty〉 = 〈x, x〉+ 2t〈x, y〉+ t2〈y, y〉.
Hence, p(t) is a second-order polynomial function, which taking only non negative values owing to the
positivity of the inner product 〈·, ·〉. Its discriminant must therefore be negative, which reads

4〈x, y〉2 − 4〈x, x〉〈y, y〉 ≤ 0,

Re-arranging the latter expression yields the desired inequality (1.5). �

As a consequence, it is easily verified that:

• The mapping || · || : E → R+ given by

(1.6) ||x|| :=
√
〈x, x〉

defines a norm on E.
• For any given y ∈ H, the linear form

E 3 x 7→ 〈x, y〉 ∈ R

is continuous when E is equipped with the norm (1.6).

Definition 1.16. A vector space E equipped with an inner product 〈·, ·〉 (and the induced norm (1.6)) is
called a pre-Hilbert space. If, in addition, E is complete for the norm (1.6), it is called a Hilbert space.

The following theorem is at the basis of many crucial properties of a Hilbert space H. Roughly, it expresses
that when C ⊂ H is a closed and convex subset of H, one may define a projection mapping pC : H → C
which to each point x ∈ H associates the closest point p to x in C, see Fig. 4.

Theorem 1.5. Let (H, 〈·, ·〉) be a Hilbert space, || · || be the associated norm, and let C ⊂ H be a closed and
convex subset. Then for all x ∈ H, there exists a unique point p ∈ C such that

(1.7) ||x− p||2 = min
y∈C

||x− y||2.

This point is called the projection of x onto C and it is denoted by pC(x).
The point pC(x) is also characterized by the following fact:

(1.8) ∀z ∈ H, z = pC(x)⇔
{
z ∈ C,
∀y ∈ C, 〈z − x, y − z〉 ≥ 0.

The so-defined mapping pC : H → C is continuous.
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<latexit sha1_base64="hRC12RSymSF3w9HPRQdng97yUBA=">AAAB6HicdZDLSsNAFIYn9VbrrerSzWARXJVE0ou7QjcuW7AXaEOZTE/asZNJmJkIJfQJ3LhQxK2P5M63cdJWUNEfBj7+cw5zzu/HnClt2x9WbmNza3snv1vY2z84PCoen3RVlEgKHRrxSPZ9ooAzAR3NNId+LIGEPoeeP2tm9d49SMUicavnMXghmQgWMEq0sdrNUbFkl227UnPrOAPHqdaWYFevK9jJwKiE1mqNiu/DcUSTEISmnCg1cOxYeymRmlEOi8IwURATOiMTGBgUJATlpctFF/jCOGMcRNI8ofHS/T6RklCpeeibzpDoqfpdy8y/aoNEB3UvZSJONAi6+ihIONYRzq7GYyaBaj43QKhkZldMp0QSqk02BRPC16X4f+helZ1q2W27pYa7jiOPztA5ukQOqqEGukEt1EEUAXpAT+jZurMerRfrddWas9Yzp+iHrLdP6dKM/Q==</latexit>
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<latexit sha1_base64="ubT7RMxKmxLSA0oxMLZ0HbJYB4I=">AAAB7nicdZDJSgNBEIZ7XGPcoh69NAbBU5iRyeIt4MVjBLNAMoSeTk3SpGehu0YIQx7CiwdFvPo83nwbe5IIKvpDw8dfVXTV7ydSaLTtD2ttfWNza7uwU9zd2z84LB0dd3ScKg5tHstY9XymQYoI2ihQQi9RwEJfQtefXuf17j0oLeLoDmcJeCEbRyIQnKGxugM/lRJwWCrbFduu1t0GzcFxavUF2LWrKnVyMCqTlVrD0vtgFPM0hAi5ZFr3HTtBL2MKBZcwLw5SDQnjUzaGvsGIhaC9bLHunJ4bZ0SDWJkXIV243ycyFmo9C33TGTKc6N+13Pyr1k8xaHiZiJIUIeLLj4JUUoxpfjsdCQUc5cwA40qYXSmfMMU4moSKJoSvS+n/0LmsOLWKe+uWm+4qjgI5JWfkgjikTprkhrRIm3AyJQ/kiTxbifVovVivy9Y1azVzQn7IevsEy/6P2g==</latexit>•

<latexit sha1_base64="AgA4H/dAjgJIA596Q+ZiLldHW1Y=">AAAB6HicdZDLSsNAFIYn9VbrrerSzWARXJVE0ou7ghuXLdgLtKFMpift2MkkzEzEEvoEblwo4tZHcufbOGkrqOgPAx//OYc55/djzpS27Q8rt7a+sbmV3y7s7O7tHxQPjzoqSiSFNo14JHs+UcCZgLZmmkMvlkBCn0PXn15l9e4dSMUicaNnMXghGQsWMEq0sVr3w2LJLtt2pebWcQaOU60twK5eVrCTgVEJrdQcFt8Ho4gmIQhNOVGq79ix9lIiNaMc5oVBoiAmdErG0DcoSAjKSxeLzvGZcUY4iKR5QuOF+30iJaFSs9A3nSHRE/W7lpl/1fqJDupeykScaBB0+VGQcKwjnF2NR0wC1XxmgFDJzK6YTogkVJtsCiaEr0vx/9C5KDvVsttySw13FUcenaBTdI4cVEMNdI2aqI0oAvSAntCzdWs9Wi/W67I1Z61mjtEPWW+fOjWNMg==</latexit>x

<latexit sha1_base64="J6Fc1nNu1KH2TAHzoN8XfMhAhH8=">AAAB7XicdZDLSgMxFIbP1Futt6pLN8Ei1E2ZkenFXaEblxXsBdqhZNK0jc1MhiQjlqHv4MaFIm59H3e+jZm2gor+EPj4zznknN+POFPatj+szNr6xuZWdju3s7u3f5A/PGorEUtCW0RwIbs+VpSzkLY005x2I0lx4HPa8aeNtN65o1IxEd7oWUS9AI9DNmIEa2O1o0GjeH8+yBfskm2Xq24NpeA4leoC7MplGTkpGBVgpeYg/94fChIHNNSEY6V6jh1pL8FSM8LpPNePFY0wmeIx7RkMcUCVlyy2naMz4wzRSEjzQo0W7veJBAdKzQLfdAZYT9TvWmr+VevFelTzEhZGsaYhWX40ijnSAqWnoyGTlGg+M4CJZGZXRCZYYqJNQDkTwtel6H9oX5ScSsm9dgt1dxVHFk7gFIrgQBXqcAVNaAGBW3iAJ3i2hPVovVivy9aMtZo5hh+y3j4BEjOOxw==</latexit>
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<latexit sha1_base64="J442kpfx70emx970JbW7/REhsUs=">AAAB7nicdVDJSgNBEK1xjXGLevQyGARPYUaCegx48RjBLJAMoadTkzTp6Rm6a4Qw5CO8eFDEq9/jzb+xswhxe1DweK+KqnphKoUhz/twVlbX1jc2C1vF7Z3dvf3SwWHTJJnm2OCJTHQ7ZAalUNggQRLbqUYWhxJb4eh66rfuURuRqDsapxjEbKBEJDgjK7W6YSYlUq9U9iveDK73i3xZZVig3iu9d/sJz2JUxCUzpuN7KQU50yS4xEmxmxlMGR+xAXYsVSxGE+SzcyfuqVX6bpRoW4rcmbo8kbPYmHEc2s6Y0dD89KbiX14no+gqyIVKM0LF54uiTLqUuNPf3b7QyEmOLWFcC3ury4dMM042oeJyCP+T5nnFv6hUb6vlWnURRwGO4QTOwIdLqMEN1KEBHEbwAE/w7KTOo/PivM5bV5zFzBF8g/P2CXhJj6A=</latexit>•

<latexit sha1_base64="rNE6QdB0GElSRGLOtq6MeMKP2BM=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0ikqMeCF48V7Ae0oWy2m3bpZhN2J0IJ/RFePCji1d/jzX/jts1BWx8MPN6bYWZemEph0PO+ndLG5tb2Tnm3srd/cHhUPT5pmyTTjLdYIhPdDanhUijeQoGSd1PNaRxK3gknd3O/88S1EYl6xGnKg5iOlIgEo2ilTj/MpOQ4qNY811uArBO/IDUo0BxUv/rDhGUxV8gkNabneykGOdUomOSzSj8zPKVsQke8Z6miMTdBvjh3Ri6sMiRRom0pJAv190ROY2OmcWg7Y4pjs+rNxf+8XobRbZALlWbIFVsuijJJMCHz38lQaM5QTi2hTAt7K2FjqilDm1DFhuCvvrxO2leuf+3WH+q1hlvEUYYzOIdL8OEGGnAPTWgBgwk8wyu8Oanz4rw7H8vWklPMnMIfOJ8/dPuPmQ==</latexit>•
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c

Figure 4. (a) Projection onto a closed convex set C in a Hilbert space; (b) When C is not
convex, Theorem 1.5 fails since one point x ∈ H may have two closest points p1, p2 ∈ C;
(c) Projection onto a closed vector subspace F .

Proof. Let us denote by

δ = inf
p∈C
||x− p||.

Note that for the moment, we do not know whether this infimum is attained. However, by definition of the
infimum, there exists a minimizing sequence for this problem, i.e. a sequence yn of elements in C such that

lim
n→∞

||yn − x|| = δ.

We now show that this sequence actually converges to an element in C, relying on the Cauchy criterion. To
this end, we use the parallelogram identity in the Hilbert space H; see Exercise 1.9. For all n,m ∈ N, we
have

1
2 ||yn − ym||2 = 1

2 ||yn − x− (ym − x)||2
= ||yn − x||2 + ||ym − x||2 − 1

2 ||yn + ym − x||2
= ||yn − x||2 + ||ym − x||2 − 2

∣∣∣∣x− 1
2 (yn + ym)

∣∣∣∣2
≤ ||yn − x||2 + ||ym − x||2 − 2δ2,

where we have used the definition of δ in the last line, together with the fact that 1
2 (yn + ym) belongs to

C since this set is convex. Now, since ||yn − x|| converges to 0 as n → ∞, the right-hand side of the above
inequality converges to δ as m,n → ∞, which proves that yn is a Cauchy sequence in H. It therefore
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converges to some p ∈ H, and p belongs to C since this set is closed. At this point, we have thus proved
that there exists at least one point p satisfying (1.7).

Let now p ∈ C be any point satisfying (1.7), and let us prove that p also satisfies (1.8). For any point
y ∈ C, and for any t ∈ (0, 1], the point (1− t)p+ ty belongs to C, and so

||x− p||2 ≤ ||x− (1− t)p− ty||2.
Expanding the right-hand side, we obtain that

||x− p||2 ≤ ||x− p||2 − 2t〈x− p, y − p〉+ t2||y − p||2.
Canceling the common term ||x− p||2 in both side, dividing by t and then letting t tend to 0, we thus obtain
the desired inequality

〈x− p, y − p〉 ≤ 0.

At this point, we have thus proved that there exists at least one solution to (1.7), and that it satisfies (1.8).

Conversely, let z ∈ H be any point satisfying (1.8), that is:

z ∈ C and ∀y ∈ C, 〈z − x, y − x〉 ≥ 0.

Then, we have, for all y ∈ C,

||x− y||2 = ||x− z||2 + 2〈x− z, z − y〉+ ||z − y||2
≥ ||x− z||2 + ||z − y||2.

Hence, it is clear that

min
y∈C
||x− y||2 ≥ ||z − x||2,

and equality holds if and only if y = z. Hence, z is the unique solution to the minimization problem (1.7).
Since this argument holds for any point z satisfying (1.8), this shows in the meantime that there exists a
unique such point z ∈ H.

We have thus proved that there exists a unique solution p = pC(x) to (1.7), which is equivalently charac-
terized by (1.8). Eventually, we turn to the continuity of the (non linear) mapping pC . We actually prove
that pC is 1-Lipschitz. For any two points x, y ∈ H, let us write:

||pC(x)− pC(y)||2 = 〈pC(x)− pC(y), pC(x)− pC(y)〉
= 〈pC(x)− x, pC(x)− pC(y)〉+ 〈x− y, pC(x)− pC(y)〉+ 〈y − pC(y), pC(x)− pC(y)〉
≤ 〈x− y, pC(x)− pC(y)〉,

where we have used the inequality (1.8) to pass from the second to the third line. Now, by the Cauchy-
Schwarz inequality, we obtain:

||pC(x)− pC(y)||2 ≤ ||x− y||||pC(x)− pC(y)||,
which readily yields

||pC(x)− pC(y)|| ≤ ||x− y||.
This shows the continuity of pC and the proof of Theorem 1.5 is now complete. �

This fundamental result has even more remarkable implications in the case where the closed convex set
C of interest is a closed vector subspace of H. Before studying these, a few definitions are in order.

Definition 1.17. Let (H, 〈·, ·〉) be a Hilbert space.

• Two elements a, b ∈ H are called orthogonal when 〈a, b〉 = 0.
• The orthogonal of a subset A ⊂ H is the closed vector space A⊥ ⊂ H defined by:

A⊥ := {x ∈ H, ∀a ∈ A, 〈a, x〉 = 0} .
We are now in position to state and prove the result of interest, see Fig. 4 (b) for an illustration.

Theorem 1.6. Let F be a closed vector subspace of H. Then,
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(i) The projection mapping pF : H → F supplied by Theorem 1.5 is a linear and continuous mapping
which is characterized by the identity:

(1.9) p = pF (x)⇔
{
p ∈ F,
∀z ∈ F, 〈x− p, z〉 = 0.

(ii) The following decomposition of H holds

H = F ⊕ F⊥.
Proof. (i): Let x ∈ H be given; Theorem 1.5 ensures that the projection point pF (x) is characterized by:

pF (x) ∈ F and ∀z ∈ F, 〈x− pF (x), pF (x)− z〉 ≥ 0.

Since F is a vector space, this is equivalent to

pF (x) ∈ F and ∀z ∈ F, 〈x− pF (x), z〉 ≥ 0.

Finally, pF (x) is the unique point in F such that:

pF (x) ∈ F and ∀z ∈ F, 〈x− pF (x), z〉 = 0.

It follows easily from this characterization that the mapping x 7→ pF (x) is linear from H to F . Since we
already know from Theorem 1.5 that x 7→ pF (x) is continuous, it follows that pF ∈ L(H;F ), as desired.

(ii): Any point x ∈ H can be decomposed as

x = (x− pF (x)) + pF (x),

where by definition, pF (x) ∈ F , and (x− pF (x)) ∈ F⊥ because of (1.9). Since, obviously, F ∩F⊥ = {0}, the
desired result is proved. �

We end this short tour of Hilbert spaces with a study of their dual space. On the one hand, it is clear
that, for each u ∈ H, the mapping ` : H → R defined by

`(x) := 〈u, x〉
is a continuous linear form on H. The following theorem establishes that the converse holds true, i.e. that
any continuous linear form ` ∈ H∗ can be represented by an element u ∈ H.

Theorem 1.7 (Riesz representation theorem). Let (H, 〈, ·, ·〉) be a Hilbert space, and let ` : H → R be a
continuous linear form. Then there exists a unique element u ∈ H such that

(1.10) ∀x ∈ H, `(x) = 〈u, x〉.
In addition,

||`||H∗ = ||u||H .
Proof. The idea of the proof is that the kernel of a continuous linear form ` ∈ H∗ is a closed hyperplane F
of H; hence, ` is characterized by the orthogonal complement F⊥ of F , which is a one-dimensional space,
and the sought Riesz representative u of ` in (1.10) is then a suitably scaled generator of F⊥.

The result is trivial is ` = 0, and we thus assume that ` 6= 0. Let F = Ker(`); since ` is a continuous
linear form which does not vanish identically on H, F is a strict, closed vector subspace of H, and by virtue
of Theorem 1.6, we may write

H = F ⊕ F⊥.
As F⊥ 6= {0}, let u0 ∈ F⊥ be different from 0; in particular, `(u0) 6= 0. Then, for all v ∈ F⊥, he have:

`

(
v − `(v)

`(u0)
u0

)
= `(v)− `(v) = 0,

and so,
(
v − `(v)

`(u0)u0

)
belongs at the same time to to F⊥ (by definition), and to F = Ker(`). Hence,

v =
`(v)

`(u0)
u0,

which proves that F⊥ is a vector space with dimension 1, spanned by u0.
16



Now, let us consider the linear form `0 : H 3 v 7→ 〈u0, v〉. Then `0(v) = `(v) = 0 for all v ∈ F , and

∀v = αu0 ∈ F⊥, `0(v) = α||u0||2, and `(v) = α`(u0).

It follows that

∀v ∈ H, `(v) =
`(u0)

||u0||2
〈u0, v〉;

setting u := `(u0)
||u0||2u0 ∈ H, we have proved that there exists one Riesz representative u for `, as in (1.10).

Let us now prove the uniqueness of such a representative: if there exist u1, u2 ∈ H such that

`(v) = 〈u1, v〉 = 〈u2, v〉,
then (u1 − u2) is orthogonal to all elements in H, and so u1 − u2 = 0.

Finally, it follows immediately from the Cauchy-Schwarz inequality that if ` is represented by u ∈ H, then
||`||H∗ = ||u||. �

Remark 1.6. The Riesz representation Theorem 1.7 supplies an isometric, bijective mapping H∗ → H,
which allows to identify the dual space H∗ with H itself: a continuous linear form ` ∈ H∗ is often seen as
the corresponding Riesz representative u ∈ H.

1.6. Exercises

Exercise 1.1 (Equivalence of norms in finite-dimensional vector spaces). The purpose of this exercise is to
prove the well-known result that all norms in a finite-dimensional vector space are equivalent. Let E be
a vector space with finite dimension d, equipped with a basis (e1, . . . , ed). We define the supremum norm
|| · ||∞ on E with respect to this basis by

∀x =

d∑
i=1

xiei ∈ E, ||x||∞ := sup
i=1,...,d

|xi|.

We consider another norm m(x) on E, and we aim to prove that m and || · ||∞ are equivalent.

(i) Prove that there exists a constant C > 0 such that:

∀x ∈ E, m(x) ≤ C||x||∞.
(ii) Infer that the mapping x 7→ m(x) is continuous from (E, || · ||∞) into R.
(iii) Prove that the unit sphere S := {x ∈ E, ||x||∞ = 1} is a compact subset of E.
(iv) By using the fact that a continuous function on a compact metric space has a lower bound and an

upper bound which are attained, conclude that the norms m and || · ||∞ are equivalent.

Exercise 1.2. Let P be the vector space of real-valued polynomial functions on the interval [0, 1] ⊂ R,
equipped with the supremum norm:

∀p ∈ P, ||p||P := sup
x∈[0,1]

|p(x)|.

Let the sequence pn of polynomials in P be defined by:

pn(x) :=

n∑
k=0

xk

k!
.

(i) Prove that pn is a Cauchy sequence in P .
(ii) Show that if pn converges to some polynomial function f ∈ P , then necessarily pn(x) → f(x) for all

points x ∈ [0, 1].
(iii) Infer from the previous question that if pn converges to f ∈ P , then f is necessarily the exponential

function f(x) = ex.
(iv) Show that the function x 7→ ex is not a polynomial.
(v) Conclude that the Cauchy sequence pn does not converge to an element of P .

Exercise 1.3. Let (E, || · ||E) and (F, || · ||F ) be two normed vector spaces; recall that for all linear and
continuous mapping ` : E → F , the quantity ||`||L(E;F ) is defined by the formula (1.3).

(i) Show that the mapping ` 7→ ||`||L(E;F ) is a norm on L(E;F ).
17



(ii) Let (G, || · ||G) be another normed vector space, and let `1 : E → F , `2 : F → G be continuous linear
mappings; show that

||`2 ◦ `1||L(E;G) ≤ ||`2||L(F ;G)||`1||L(E;F ).

Exercise 1.4 (Extension by uniform continuity). Let (E, || · ||E) be a normed vector space, and (F, || · ||F )
be a Banach space; let U ⊂ E be a dense subset. Let f : U → F be a uniformly continuous function. Show
that there exists a unique uniformly continuous function g : E → F such that f = g|U .

Exercise 1.5. The goal of this exercise is to prove that any finite-dimensional vector space is complete,
admitting the Bolzano-Weierstrass Theorem 1.2.

(i) Let (E, || · ||E) be an arbitrary normed vector space. Show that if a Cauchy sequence xn of elements of
E has a convergent subsequence, then xn itself is a convergent sequence.

(ii) Show that, if E has finite dimension, any Cauchy sequence in E has a convergent subsequence.
(iii) Conclude.

Exercise 1.6 (The adjoint mapping). Let (E, || · ||E) and (F, || · ||F ) be two normed vector spaces, and let
T : E → F be a linear, continuous mapping. We define the adjoint mapping T ∗ : F ∗ → E∗ by the formula

∀` ∈ F ∗, T ∗` = ` ◦ T.
(i) Show that T ∗ is a linear and continuous mapping from F ∗ into E∗ and that its operator norm satisfies:

||T ∗||L(F∗;E∗) ≤ ||T ||L(E;F ).

[Remark: It can be shown that, actually, equality holds in the previous inequality, but this is more
difficult to prove.]

(ii) Show that the kernel Ker(T ∗) of T ∗ coincides with R̊an(T ), where the range Ran(T ) of T is defined by

Ran(T ) = {Tx ∈ F, x ∈ E}
and where the polar set V̊ ⊂ F ∗ of an arbitrary subset V ⊂ F is given by:

V̊ = {` ∈ F ∗, 〈`, y〉 = 0 for all y ∈ V } .
(iii) We now assume that E and F are Hilbert spaces, denoting by 〈·, ·〉E and 〈·, ·〉F the associated inner

products. We identify the dual spaces E∗ and F ∗ with E and F respectively, according to Remark 1.6.
Show that the adjoint mapping T ∗, which is a continuous linear mapping F → E once this identification
is made, satisfies:

∀u ∈ E, v ∈ F, 〈T ∗v, u〉E = 〈Tu, v〉F .
(iv) We now assume that E = Rd and F = Rm for some d,m ≥ 1, equipped with their canonical bases and

inner products. Let M be the matrix associated to the mapping T : E → F ; show that the matrix of
T ∗ : F → E is MT .

Exercise 1.7 (The spaces of bounded continuous functions and functions of class C1).

(i) Let E be the vector space of continuous functions on the interval [0, 1] equipped with the norm

||f ||∞ := sup
x∈[0,1]

|f(x)|.

Show that E is a Banach space.
(Hint: the proof can be conducted in a quite similar way to that of Proposition 1.5.)

(ii) Let F be the vector space of functions of class C1 on [0, 1] (that is, f ∈ F if and only if it is the
restriction to [0, 1] of a function of class C1 on an open neighborhood of [0, 1]). Show that

u ∈ F ⇔ u ∈ E, and ∃v ∈ E s.t. ∀t ∈ [0, 1], u(t) = u

(
1

2

)
+

∫ t

1
2

v(s) ds.

(iii) We now equip F with the following norm:

||u||F := sup

(
sup
x∈[0,1]

|u(x)|, sup
x∈[0,1]

|u′(x)|
)
.

Infer from the previous question that (F, || · ||F ) is a Banach space.
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Exercise 1.8 (Neumann series). Let (E, || · ||) be a Banach space.

(i) Let T : E → E be a linear operator with norm ||T ||L(E) < 1. Show that the series

U =

∞∑
n=0

Tn

converges in L(E).
(ii) Prove that (Id− T ) is invertible, with inverse (Id− T )−1 = U .
(iii) Show that the subset Inv(E) of L(E) made of invertible operators is open in L(E).
(iv) Prove that the (non linear) mapping

Inv(E) 3 T 7−→ T−1 ∈ Inv(E)

is continuous.
(v) Let (F, || · ||F ) be another normed vector space. Show that the subset Inv(E;F ) of L(E;F ) made of

invertible mappings is open in L(E;F ).

Exercise 1.9 (The parallelogram identity).

(i) Let (H, 〈·, ·〉) be a pre-Hilbert space. Show that the associated norm || · || =
√
〈·, ·〉 satisfies the

parallelogram identity:

(1.11) ∀x, y ∈ H, ||x+ y||2 + ||x− y||2 = 2||x||2 + 2||y||2,

see Fig. 5 for an illustration.

Let now (E, || · ||) be a normed vector space, whose norm satisfies the parallelogram identity (1.11). Our aim
is to prove that this norm is actually induced by an inner product on E. More precisely, we define

∀x, y ∈ E, 〈x, y〉 :=
1

4

(
||x+ y||2 − ||x− y||2

)
,

and we prove that this mapping satisfies the axiom of an inner product.

(ii) Prove that 〈·, ·〉 satisfies the symmetry, positiveness and positive definiteness axioms (ii) (iii) and (iv)
of Definition 1.15.

(iii) Prove that, for any fixed y ∈ E, the mapping x 7→ 〈x, y〉 is continuous.
(iv) Prove that, for any x, y, z ∈ E, the following identity holds:

||x+ y + z||2 = ||x||2 + ||y||2 + ||x+ z||2 + ||y + z||2 − 1

2
||x− y + z||2 − 1

2
||y − x+ z||2.

(v) Deduce that it holds:

∀x, y, z ∈ E, 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉.

(vi) Show that, for any integer λ ∈ N, one has:

(1.12) ∀x, y ∈ E, 〈λx, y〉 = λ〈x, y〉.

(vii) Show that (1.12) actually holds when the integer n is replaced with an arbitrary rational number λ ∈ Q.
(viii) Show that (1.12) holds for all λ ∈ R and conclude.
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Figure 5. Illustration of the parallelogram identity.

Exercise 1.10 (The Lax-Milgram theorem). Let (H, 〈·, ·〉) be a Hilbert space, a : H×H → R be a continuous
bilinear form which is elliptic, that is, there exists α > 0 such that

∀u ∈ H, α||u||2 ≤ a(u, u).

(i) Show that there exists a continuous linear mapping A : H → H such that:

∀u, v ∈ H, a(u, v) = 〈A(u), v〉.
(ii) Show that for all linear form ` : H → R, there exists a unique u ∈ H such that

∀v ∈ H, a(u, v) = `(v),

and that

||u||H ≤
1

α
||`||H∗ .

2. Differential calculus I: elementary facts

This section revolves around the notion of differentiability. Before delving into rigorous mathematical devel-
opments, let us first present the main ideas in an informal manner.

The differential is the generalization to arbitrary normed vector spaces of the familiar derivative of a
function f : R → R. For.a given point x ∈ R, the derivative f ′(x) is defined as the following limit, when it
exists:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
;

visually, f ′(x) is the slope of the tangent line to the graph of f at x. This expression can be re-arranged
into an approximation formula for f near x:

(2.1) f(x+ h) = f(x) + f ′(x)h+ o(h),

where the notation o(h) stands for an unspecified function of h which tends to 0 faster than h as h → 0:

limh→0
o(h)
h = 0. Roughly speaking, when “small” perturbations (x + h), h � 1, are considered around

x, a coarse approximation of the corresponding values f(x + h) is the (h-independent) value f(x). A more
accurate “first-order” approximation of h 7→ f(x + h) (up to a remainder of the order o(h)) is the affine
function h 7→ f(x) + f ′(x)h, see Fig. 6.

The benefits of this type of approximation of f(x + h) are manifold: much information about the local
behavior of f near x can be gleaned from the knowledge of the first-order approximation h 7→ f(x) + f ′(x)h.
For instance, just by looking at the sign of f ′(x), it is possible to determine whether f is increasing or
decreasing in the neighborhood of x.

The concept of differential generalizes these fundamental ideas to the case of functions f : E → F between
arbitrary normed vector spaces E and F . For a given point x ∈ E, we shall approximate (up to a remainder
of the order o(h)) the perturbed values f(x+ h) of f near x by an affine function h 7→ f(x) + dfx(h), where
dfx : E → F is now a continuous, linear mapping from E to F . As we shall see, a lot of information about
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Figure 6. Interpretation of the derivative of a function f : R→ R: when “zooming” on a
point x ∈ R, the function h 7→ f(x + h) resembles the constant value f(x); a more precise
approximation is given by the affine function h 7→ f(x) + f ′(x)(h) (whose graph is the
blue line), and an even more precise approximation is given by the second-order expansion
h 7→ f(x) + f ′(x)h+ 1

2f
′′(x)h2 (in purple).

the local behavior of f near x is encoded in this differential (e.g. its local invertibility, as appraised by the
local inverse Theorem 6.2 below).

Remark 2.1. The asymptotic expansion (2.1) of a function f : R → R near a point x ∈ R can be pursued
to higher orders; the second-order Taylor expansion of f near x indeed yields:

f(x+ h) = f(x) + f ′(x)h+
1

2
f ′′(x)h2 + o(h2),

where f is now approximated up to second-order by the quadratic function h 7→ f(x) + f ′(x)h + 1
2f
′′(x)h2.

This process will also be extended to functions between general normed vector spaces, see Section 4 about the
notion of higher-order differentials and general Taylor’s formulas.

2.1. Fréchet derivatives in normed vector spaces

Let us start by defining differentiable mappings between normed vector spaces.

Proposition-Definition 2.1. Let (E, || · ||E) and (F, || · ||F ) be two normed vector spaces, and let U be an
open subset of E. One function f : U → F is said to be differentiable in the sense of Fréchet at some point
x ∈ U if there exists a linear, continuous mapping L : E → F such that

(2.2) ∀ε > 0, ∃δ > 0,∀h ∈ E, ||h||E ≤ δ ⇒
||f(x+ h)− f(x)− L(h)||F

||h||E
≤ ε.

In such case, the linear mapping L satisfying (2.2) is unique, and it is called the differential of f at x, or
the Fréchet derivative of f at x.

The function f is called differentiable on U if it is differentiable at every point x ∈ U .

Notation. Several notations exist in the literature for the above differential L(h) of f at x ∈ U in a direction
h ∈ E. Depending on the authors, this quantity may be denoted by dfx(h), Df(x)(h) or again f ′(x)(h)...

Remark 2.2. The fact that the domain of definition U of f be open in the above definition is essential to
guarantee that for x ∈ U and for h ∈ E “small enough”, the perturbation (x+ h) also belongs to U , so that
the perturbed quantity f(x+ h) is well-defined.

21



It is customary to call differentiable a function f : A → F defined on a possibly non open subset A ⊂ E
if it is the restriction g|A to A of a differentiable function g : U → F on an open set U ⊂ E containing A.

Remark 2.3. The relation (2.2) is often expressed in alternative forms. In particular, it is equivalent to the
existence of a function r : E → F such that r(h)→ 0 as h→ 0 and

For small enough h ∈ E, f(x+ h) = f(x) + L(h) + ||h||Er(h).

Yet another equivalent statement to (2.2) is the following:

f(x+ h) = f(x) + L(h) + o(h),

where o(h) stands for an unspecified function of h which tends to 0 faster than h as h→ 0, that is

lim
h→0

o(h)

||h||E
= 0.

Let us warn the reader that this last formulation, however widespread and seemingly handful, is dangerous:
for instance, when f also depends on other variables and parameters than x, the notation o(h) hides how the
remainder depends on these parameters.

Proof of Proposition-Definition 2.1. Let L1, L2 be two linear and continuous mappings from E into F sat-
isfying (2.2). Then, there exist δ > 0 and two functions r1, r2 : E → R such that r1(h) → 0 and r2(h) → 0
as h→ 0 and

∀||h||E ≤ δ, f(x+ h) = f(x) + L1(h) + ||h||Er1(h), and f(x+ h) = f(x) + L2(h) + ||h||Er2(h).

Taking the difference and dividing both sides by ||h||E , we see that

∀||h||E ≤ δ, h 6= 0,
L2(h)− L1(h)

||h||E
= −(r2(h)− r1(h)).

Let us now fix the direction h 6= 0; we have, for t > 0 small enough:

For t small enough,
L2(h)− L1(h)

||h||E
= −(r2(th)− r1(th)),

and since the term in the above right-hand side tends to 0 as t→ 0, we arrive at:

L2(h)− L1(h)

||h||E
= 0.

As h 6= 0 is arbitrary, it follows that L1 = L2. �

Let us recall from the introduction of this section that the definition of the differential of f can be thought
of as a means to approximate f near a considered point x: roughly, the quantity f(x+h) is approximated at
0th order (i.e. very crudely) by the value f(x) of f at x when h is “small enough”; a more precise, first-order
approximation is achieved by the affine function h 7→ f(x) + dfx(h), see Fig. 7.
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Figure 7. Near the point x0, the graph of a function f : R2 → R (in yellow) is approximated
by the tangent plane

{
f(x0) + dfx0

(h), h ∈ R2
}

.

Let us provide a few elementary examples of Fréchet derivatives. The reader is strongly encouraged to
check these simple results by himself to appraise his understanding of the basic notions.

Example 2.1.

(i) Let f : R → R be a function which has a derivative at some point x0 ∈ R in the usual sense; then f
is differentiable at x0 in the sense of Proposition-Definition 2.1, and its Fréchet derivative at x0 is the
continuous linear mapping dfx0

: R→ R defined by:

∀h ∈ R, dfx0
(h) = f ′(x0)h.

In this situation, by a slight abuse of notations, one usually identifies the differential dfx (which is a
linear mapping from R into itself) with the derivative f ′(x) (which is a real number).

(ii) Let f : I → F be a function from an open interval I ⊂ R into the normed vector space F . It follows
from the definition that f is Fréchet differentiable at some point t ∈ I if and only if the limit

f ′(t) := lim
h→0

f(t+ h)− f(t)

h

exists in E. The Fréchet differential dft ∈ L(R;F ) is the defined by

∀h ∈ R, dft(h) = hf ′(t).

(iii) Let f : E → F be a constant function on E; then dfx = 0 at all points x ∈ U .
(iv) Let f : E → F be a continuous linear mapping; then f is differentiable at all points x ∈ E and

∀h ∈ E, dfx(h) = f(h).

(v) Let m : En → F be a continuous, n-linear mapping from En to F . We define the function f : E → F
by f(x) = m(x, . . . , x). Then, f is differentiable at every point x ∈ E and its derivative reads:

∀h ∈ E, dfx(h) = m(h, x, . . . , x) +m(x, h, x, . . . , x) + . . .+m(x, . . . , x, h).

(vi) Let (E1, || · ||E1
), (E2, || · ||E2

) and (F, || · ||F ) be three normed vector space, and let b : E1 × E2 → F
be a continuous bilinear mapping. Then the mapping b is Fréchet differentiable at any point (x1, x2) ∈
E1 × E2, and its Fréchet derivative reads:

∀(h1, h2)× E1 × E2, db(x1,x2)(h1, h2) = b(x1, h2) + b(h1, x2).
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Remark 2.4. In practice, recipes are scarce when it comes to proving the differentiability of a function
f : E → F between infinite-dimensional normed vector spaces. Often, the only available option is to return
to the definition, write down the definition of f(x+ h)− f(x), try to force out a linear term with respect to
h and then estimate the remainder.

We next turn to investigate how the differential mapping x 7→ dfx attached to a function f (taking values
in the space of linear continuous mappings from E to F ) depends on the point x ∈ U where the derivative
is calculated. This leads us to the notion of function of class C1.

Definition 2.1. The function f is said to be of class C1 on U if the mapping

df : U 3 x 7→ dfx ∈ L(E;F )

is continuous.

Remark 2.5. Let us warn the reader about the common confusion between the continuity of the linear
mapping

E 3 h 7→ dfx(h) ∈ F,
which stems directly from the definition of the differential dfx of f at a given point x ∈ U , and the continuity
of the (non linear) differential mapping

U 3 x 7→ dfx ∈ L(E;F ).

The latter appraises the dependence of the differential with respect to the base point, and it is precisely the
feature which is evaluated by the C1 character of f .

Another category of function, which will be involved repeatedly in the sequel is introduced in the next
definition.

Definition 2.2. Let (E, || · ||E) and (F, || · ||F ) be two normed vector spaces, and let U ⊂ E and V ⊂ F be
open. One function f : U → V is called a diffeomorphism of class C1 between U and V if

• f is a function of class C1;
• f is bijective;
• The inverse mapping f−1 : V → U is also of class C1.

Remark 2.6. As we have seen, the Fréchet derivative of a real-valued function f : E → R is a continuous
linear mapping on E. It turns out that this derivative can be identified with an element in E – the gradient
of f at x – in the particular case where E is a Hilbert space.

More precisely, when H is a Hilbert space, and f : A→ R is a Fréchet differentiable function on an open
subset A ⊂ H, for any x ∈ A, the continuous linear form dfx : H → R can be represented by a unique vector
∇f(x) ∈ H via the Riesz representation Theorem 1.7:

∀x ∈ H, dfx(h) = 〈∇f(x), h〉.
The vector ∇f(x) ∈ H is called the gradient of f at x.

2.2. Operations with Fréchet derivatives

Let us start with a few elementary properties of Fréchet derivatives, whose proofs offer nice opportunities to
handle the notion.

Proposition 2.1. Let (E, || · ||E) and (F, || · ||F ) be two normed vector spaces and let U ⊂ E be open.

(i) Let f : U → F be a differentiable function at some point x ∈ U ; then f is continuous at x.
(ii) Let f and g : U → F be two differentiable functions at some point x ∈ U . Then (f + g) is differentiable

at x and:

∀h ∈ E, d(f + g)x(h) = dfx(h) + dgx(h).

(iii) Let f : U → F be differentiable at x ∈ U and let λ ∈ R. Then λf is differentiable at x and:

∀h ∈ E, d(λf)x(h) = λdfx(h).
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(iv) More generally, let f : U → F and m : U → R be two Fréchet differentiable functions at x ∈ U . Then
the product mf : U → R is also differentiable at x and it holds

∀h ∈ E, d(mf)x(h) = m(x)dfx(h) + (dmx(h))f(x).

Proof. (i): Let ε > 0 be given; by the definition of differentiability, there exists δ > 0 such that, for all h ∈ E
with ||h||E ≤ δ,

||f(x+)− f(x)− dfx(h)||F < ε||h||E .
Now, using the triangle inequality and the continuity of the linear mapping dfx ∈ L(E;F ), we obtain, for
||h||E ≤ δ,

||f(x+ h)− f(x)||F ≤
(
ε+ ||dfx||L(E;F )

)
||h||E .

This immediately implies that f is continuous at x.

(ii): Since f is differentiable at x, there exist δ > 0 and a function rf : E → F such that rf (h)→ 0 as h→ 0
and

∀h ∈ E, ||h||E ≤ δ ⇒ f(x+ h) = f(x) + dfx(h) + ||h||Erf (h).

Likewise, the differentiability of g at x implies the existence of a function rg : E → F such that rg(h) → 0
as h→ 0 and (up to decreasing the value of δ):

∀h ∈ E, ||h||E ≤ δ ⇒ g(x+ h) = g(x) + dgx(h) + ||h||Erg(h).

Adding both identities, we obtain that, for ||h||E ≤ δ,

(f + g)(x+ h) = (f + g)(x) +
(

dfx(h) + dgx(h)
)

+ ||h||E
(
rf (h) + rg(h)

)
,

and since rf (h) + rg(h) → 0 as h → 0, Proposition-Definition 2.1 shows that (f + g) is differentiable at x
with differential d(f + g)x = dfx + dgx.

(iii) is on any point simpler than (iv) below, and it is left to the reader.

(iv): Let δ > 0 be such that B(x, δ) ⊂ U ; let us write, for ||h||E ≤ δ,
(2.3)

m(x+ h)f(x+ h) =
(
m(x+ h)−m(x)

)
f(x+ h) +m(x)f(x+ h)

=
(
m(x+ h)−m(x)

)
f(x+ h) +m(x)

(
f(x+ h)− f(x)

)
+m(x)f(x)

= m(x)f(x) +
(
m(x+ h)−m(x)

)
f(x) +m(x)

(
f(x+ h)− f(x)

)
+
(
m(x+ h)−m(x)

)(
f(x+ h)− f(x)

)
.

Now, since m is differentiable at x, there exists a function rm : E → R such that (up to decreasing the value
of δ):

rm(h)→ 0 as h→ 0, and for ||h||E ≤ δ, m(x+ h) = m(x) + dmx(h) + ||h||Erm(h),

and likewise, there exists rf : E → F such that (up to decreasing again δ):

rf (h)→ 0 as h→ 0, and for ||h||E ≤ δ, f(x+ h) = f(x) + dfx(h) + ||h||Erf (h).

Hence, (2.3) rewrites, for all h ∈ E such that ||h||E ≤ δ:
m(x+ h)f(x+ h) = m(x)f(x) + dmx(h)f(x) +m(x)dfx(h) + ||h||E r̃(h),

where we have set

r̃(h) :=

{
0 if h = 0,

rm(h)f(x) +m(x)rf (h) + ||h||E
(

dmx

(
h
||h||E

)
+ rm(h)

)(
dfx

(
h
||h||E

)
+ rf (h)

)
otherwise.

Finally, since dmx and dfx are continuous linear mappings, there exists a constant C > 0 such that

∀h ∈ E \ {0} ,
∣∣∣∣∣∣∣∣dfx( h

||h||E

)∣∣∣∣∣∣∣∣
F

≤ C, and

∣∣∣∣dmx

(
h

||h||E

)∣∣∣∣ ≤ C.
This shows that r̃(h)→ 0 when h→ 0, thus completing the proof. �
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One crucial property of Fréchet derivatives is related to their behavior with respect to the composition of
functions.

Theorem 2.1 (Chain rule). Let (E, || · ||E), (F, || · ||F ) and (G, || · ||G) be three normed vector spaces, and
let U ⊂ E and V ⊂ F be open subsets. Let f : U → F and g : V → G be two functions; we assume that
f(U) ⊂ V so that the composite mapping g ◦ f : U → G is well-defined. Let x ∈ U be a point such that f is
differentiable at x and g is differentiable at f(x). Then, g ◦ f : U → G is differentiable at x and its Fréchet
derivative reads:

∀h ∈ E, d(g ◦ f)x(h) = dgf(x) (dfx(h)) .

Proof. Let us set y = f(x) ∈ F ; from the definition of the differentiability of f at x, there exist δ1 > 0 and
a function rf : E → F such that

(2.4) For ||h||E ≤ δ1, f(x+ h) = f(x) + dfx(h) + ||h||Erf (h), and lim
h→0

rf (h) = 0.

Likewise, there exist δ2 > 0 and a function rg : F → G with

(2.5) For ||k||F ≤ δ2, g(y + k) = g(y) + dgy(k) + ||k||F rg(k), and lim
k→0

rg(k) = 0.

Let us now write, for ||h||E ≤ δ1:

g ◦ f(x+ h) = g(f(x) + k), where we have set k := dfx(h) + ||h||Erf (h) ∈ F.
The continuity of dfx ∈ L(E;F ) and the fact that rf (h) → 0 as h → 0 imply that, up to decreasing the
value of δ1, it holds ||k||F ≤ δ2. Therefore, the expansion (2.5) yields, for h ∈ E such that ||h||E ≤ δ1:

g ◦ f(x+ h) = g(y) + dgy(k) + ||k||F rg(k)

= g ◦ f(x) + dgy

(
dfx(h) + ||h||Erf (h)

)
+ ||dfx(h) + ||h||Erf (h)||F rg

(
dfx(h) + ||h||Erf (h)

)
= g ◦ f(x) + dgy

(
dfx(h)

)
+ ||h||E dgy

(
rf (h)

)
+ ||dfx(h) + ||h||Erf (h)||F rg

(
dfx(h) + ||h||Erf (h)

)
= g ◦ f(x) + dgf(x)

(
dfx(h)

)
+ ||h||E r̃f (h),

where we have defined the remainder:

r̃f (h) =

{
0 if h = 0,

dgy(rf (h)) +
∣∣∣∣∣∣dfx ( h

||h||E

)
+ rf (h)

∣∣∣∣∣∣
F
rg

(
dfx(h) + ||h||Erf (h)

)
otherwise.

To complete the proof of the theorem, we simply need to show that the remainder r̃f (h) tends to 0 in G
as h→ 0. The definition of this quantity features a sum of two contributions, which we analyze separately:

• Since rf (h)→ 0 as h→ 0 and dgy is a continuous mapping from F to R, we have:

dgy(rf (h))→ 0 as h→ 0.

• Since dfx : E → R is a continuous linear mapping, there exists a constant C > 0 independent of h
such that

∀h ∈ E \ {0} ,
∣∣∣∣∣∣∣∣dfx( h

||h||E

)∣∣∣∣∣∣∣∣
F

≤ C.

Besides, since rf (h) → 0 as h → 0, there exists δ3 > 0 such that rf is bounded on B(0, δ) (by a

constant C̃):

∀||h||E ≤ δ, ||rf (h)||F ≤ C̃.
It follows from the triangle inequality that:

∀h ∈ E \ {0} , ||h||E ≤ δ3 ⇒
∣∣∣∣∣∣dfx ( h

||h||E

)
+ rf (h)

∣∣∣∣∣∣
F
≤

∣∣∣∣∣∣dfx ( h
||h||E

)∣∣∣∣∣∣
F

+ ||rf (h)||F
≤ C + C̃

Finally, since dfx(h) → 0 and ||h||Erf (h) → 0 as h → 0 in E, and since rg(k) → 0 as k → 0 in F ,
we obtain by composition of limits that

rg

(
dfx(h) + ||h||Erf (h)

)
→ 0 as h→ 0.
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Hence, ∣∣∣∣∣∣∣∣dfx( h

||h||E

)
+ rf (h)

∣∣∣∣∣∣∣∣
F

rg

(
dfx(h) + ||h||Erf (h)

)
h→0−−−→ 0,

Summarizing, we have proved that r̃f (h)→ 0 as h→ 0, and the proof is complete. �

The following example is fundamental, as it often allows to reduce the study of a function f from an open
subset U of a normed vector space E into another normed vector space F to that of a function g from an
interval I ⊂ R into F .

Example 2.2. Let (E, || · ||E) and (F, || · ||F ) be two normed vector spaces, and let U ⊂ E be open. Let
f : U → F be a function which is n times differentiable on U , and let h ∈ E be such that the whole segment
{x+ th, t ∈ [0, 1]} is contained in U . Let us define the composite function g : [0, 1]→ F by

∀t ∈ [0, 1], g(t) = f(x+ th),

that is, g = f ◦ `, where ` : [0, 1] → U is given by `(t) = x + th. The chain rule Theorem 2.1 allows to
conclude that g is differentiable on (0, 1) and that its derivative reads:

∀t ∈ (0, 1), g′(t) = dfx+th(h).

2.3. Partial Fréchet derivatives

Sometimes, the function f under scrutiny depends on two (or more) variables belonging to different normed
vector spaces, and it is desirable to take derivatives with respect to only one of them.

Definition 2.3. Let (E1, || · ||E1), (E2, || · ||E2) and (F, || · ||F ) be three normed vector spaces, and let U ⊂ E1,
V ⊂ E2 be open subsets. A function f : U × V → F is said to possess a partial differential (or partial
Fréchet derivative) with respect to the first variable at some point (x, y) ∈ U × V if the partial mapping
U 3 z 7→ f(z, y) ∈ F is Fréchet differentiable at z = x, i.e. if there exists a continuous linear mapping
L1 : E1 → F such that

∀ε > 0, ∃δ > 0, ||h||E1
≤ δ ⇒ ||f(x+ h, y)− f(x, y)− L1(h)||F

||h||E1

≤ ε.

This mapping L1 is denoted by ∂f
∂x (x, y) ∈ L(E1;F ).

Likewise, one defines the partial derivative ∂f
∂y (x, y) ∈ L(E2;F ) on f with respect to the second variable.

In the above context, it is quite simple to verify that, if f : U × V → F is Fréchet differentiable at some
point (x, y) ∈ U×V , then it has partial differentials ∂f

∂y (x, y) and ∂f
∂y (x, y) with respect to both variables. The

converse statement does not hold true: f may very well possess partial differentials ∂f
∂y (x, y) and ∂f

∂y (x, y)

without being differentiable with respect to the pair (x, y), see Exercise 2.1. Stronger assumptions are
actually required for partial differentiability to provide information about the total differentiability of a
function.

The next proposition makes the previous discussion rigorous.

Proposition 2.2. Let (E1, || · ||E1
), (E2, || · ||E2

) and (F, || · ||F ) be three normed vector spaces, and let
U ⊂ E1, V ⊂ E2 be open subsets. Let f : U × V → F be a function and let (x0, y0) ∈ U × V .

(i) If f is Fréchet differentiable at (x0, y0), then it admits partial Fréchet derivatives ∂f
∂y (x, y) and ∂f

∂y (x, y),

which are respectively given by:

∀h ∈ E1,
∂f

∂x
(x0, y0)(h) = df(x0,y0)(h, 0), and ∀k ∈ E2,

∂f

∂y
(x0, y0)(h) = df(x0,y0)(0, k).

(ii) Assume that there exist open neighborhoods U ′ ⊂ U and V ′ ⊂ V of x0 and y0 respectively such that the
partial derivatives

U ′ × V ′ 3 (x, y) 7→ ∂f

∂x
(x, y) ∈ L(E1;F ) and U ′ × V ′ 3 (x, y) 7→ ∂f

∂y
(x, y) ∈ L(E2;F )

exist and define continuous mappings. Then f is Fréchet differentiable at (x0, y0) and its derivative
reads:

∀(h, k) ∈ E1 × E2, df(x0,y0)(h, k) =
∂f

∂x
(x0, y0)(h) +

∂f

∂y
(x0, y0)(k).
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Proof. (i): From the definition of the differentiability of f at (x0, y0), for all ε > 0, there exists a number
δ > 0 such that

∀h ∈ E1, k ∈ E2, ||h||E1
+ ||k||E2

≤ δ ⇒
∣∣∣∣∣∣∣∣f(x0 + h, y0 + k)− f(x0, y0)− df(x0,y0)(h, k)

||h||E1
+ ||k||E2

∣∣∣∣∣∣∣∣ ≤ ε.
In particular, this implies that for all ε > 0, there exists δ > 0 such that

∀h ∈ E1, ||h||E1
≤ δ ⇒

∣∣∣∣∣∣∣∣f(x0 + h, y0)− f(x0, y0)− df(x0,y0)(h, 0)

||h||E1
+ ||k||E2

∣∣∣∣∣∣∣∣ ≤ ε,
which proves that the partial mapping x 7→ f(x, y0) is Fréchet differentiable at x = x0, with Fréchet derivative
E1 3 h 7→ df(x0,y0)(h, 0). The corresponding statement related to the partial differentiation of f with respect
to the second variable follows in a similar way.

(ii): This point is more delicate, and it relies on the generalized version of the Mean Value Theorem 1.1 to
the case of functions taking values in an arbitrary normed vector space. It is proposed as Exercise 4.1. �

Remark 2.7. The above definition and proposition are easily generalized to the case of a function f :
E1 × . . . En → F of n ≥ 3 variables in different normed vector spaces (E1, || · ||E1

), . . . (En, || · ||En
).

2.4. Other notions of derivatives

The notion of Fréchet derivative that we have been discussing in the previous two sections is only one among
the various means to appraise the first-order behavior of a function between normed vector spaces. Other,
weaker notions of derivatives are available, that we now present, together with their connections with Fréchet
derivatives.

Definition 2.4. Let (E, || · ||E) and (F, || · ||F ) be two normed vector spaces, and U ⊂ E be open. Let
f : U → F be a function.

(i) The function f has a one-sided directional derivative at some point x ∈ U and in a direction h ∈ E if
the limit

f ′(x;h) := lim
t→0
t>0

f(x+ th)− f(x)

t

exists and is finite.
(ii) The function f is called Gateaux-differentiable at x ∈ U if it has a one-sided directional derivative at

x in all the directions h ∈ E, and if the mapping

E 3 h 7−→ f ′(x;h) ∈ F
is a linear continuous mapping. The Gateaux derivative f ′G(x) ∈ L(E;F ) is then defined by

∀h ∈ E, f ′G(x)(h) = f ′(x;h).

The difference between the notions of (one-sided) directional differentiability and Gateaux differentiability
is fairly simple to appraise. Directional differentiability only evaluates how the function f behaves in all
directions of space, when the latter are considered independently from one another. Gateaux differentiability
additionally demands that these behaviors somehow “agree with each other” (i.e. the mapping h 7→ f(x;h)
should be linear and continuous). One should bear in mind that a function can possess directional derivatives
in all directions without being Gateaux differentiable, as is revealed in the following example.

Example 2.3. The function f : R → R defined by f(x) = |x| is differentiable at x = 0 in all directions
since:

lim
t→0
t>0

f(0 + th)− f(0)

t
=

{
h if v ≥ 0,
−h otherwise.

and this calculation yields f ′(0;h) = |h|. Since the mapping h 7→ f(x;h) is not linear, f is not Gateaux
differentiable at x = 0.
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The definitions of Fréchet and Gateaux differentiability admittedly look quite similar, but they actually
differ from their assumptions about the remainder term o(h). Both notions require f to be differentiable at
x in all directions h ∈ E, and that the resulting derivative be a linear and continuous mapping of h. When
f is only required to be Gateaux differentiable, the rate at which f(x + th) = f(x) + tf ′(x : h) + o(t) is
approximated by its first-order expansion f(x) + tf ′(x;h) (i.e. the size of the remainder o(t)) depends on
the direction h, whereas when f is Fréchet differentiable, this rate is uniform in all directions h ∈ E.

Proposition 2.3. Let (E, || · ||E) and (F, || · ||F ) be two normed vector spaces, and U ⊂ E be open. If a
function f : U → F is Fréchet differentiable at some point x ∈ U , then it is also Gateaux differentiable at x.

Proof. Since f is Fréchet differentiable at x, there exist δ > 0 and a function rf : E → F such that
limh→0 rf (h) = 0 and

∀h ∈ E, ||h||E ≤ δ ⇒ f(x+ h) = f(x) + dfx(h) + ||h||Erf (h).

Hence, for any fixed direction h ∈ E, and for t > 0 small enough, it holds:∣∣∣∣f(x+ th)− f(x)

t
− dfx(h)

∣∣∣∣ = |rf (th)| t→0−−−→ 0,

so that f has directional derivatives in all directions and f ′(x;h) = dfx(h). Clearly, this implies that f is
Gateaux differentiable at x, with Gateaux derivative f ′G(x) = dfx. �

The fact that not all Gateaux differentiable functions are Fréchet differentiable is illustrated in the next
example.

Example 2.4 (One function which is Gateaux differentiable without being Fréchet differentiable). Let us
consider the function f : R2 → R defined by the following formula, see Fig. 8:

f(x1, x2) =

{
1 if (x1;x2) 6= (0, 0) and x2 = x2

1,
0 otherwise.

For any given direction h = (h1, h2) ∈ R2, and for t > 0 small enough, it is clear that t|h2| > t2h2
1, and so,

for t small enough, f(0 + th) = 0. As a result, f is differentiable in the direction h, with one-sided derivative
f ′(0;h) = 0. It follows immediately that f is Gateaux-differentiable at x = 0, and that f ′G(0) = 0. However,
f is not Fréchet differentiable at 0 since it is not even continuous at this point.

Intuitively, the expansion f(0 + h) = f(0) + tf ′(0;h) + o(t) holds for any fixed direction h ∈ R2, but o(t)
depends on h, and it converges to 0 slower and slower as h tends to a horizontal direction h = (h1, 0).
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f(x) = 0

Figure 8. Illustration of the Gateaux differentiable function which is not Fréchet differen-
tiable presented in Example 2.4.
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Some sort of a converse to Proposition 2.3 holds however, with slightly stronger assumptions. The proof
requires some of the tools developed in Section 3, and it is therefore proposed as Exercise 3.6.

Proposition 2.4. Let (E, || · ||E) be a normed vector space, U ⊂ E be open, and let (F, || · ||F ) be a Banach
space. Assume that f : U → F is Gateaux differentiable in the neighborhood V of a given point x ∈ U , and
that the mapping induced by the Gateaux derivative V 3 z 7→ f ′G(z) ∈ L(E;F ) is continuous. Then f is
Fréchet differentiable at x, and dfx = f ′G(x).

Remark 2.8. When f is a convex function, it is possible to define yet another notion of derivative which
is very useful in convex analysis: the notion of subdifferential.

2.5. The finite-dimensional case

We now turn to specialize the previous concepts and results to the particular case where the considered
normed vector spaces are finite-dimensional. Throughout this section, we shall consider functions f from an
open subset U of E = Rd, taking values in F = Rn, both spaces being equipped with their canonical basis,
the associated canonical inner product 〈·, ·〉 and the induced norm | · |. More precisely, we shall write

∀x = (x1, . . . , xd) ∈ Rd, f(x) = f(x1, . . . , xd) = (f1(x1, . . . , xd), . . . , fn(x1, . . . , xd)),

where f1, . . . , fn : U → R are the components of the Rn-valued function f .

Definition 2.5. Let U ⊂ Rd be an open subset, and let f : U → Rn be a function. For x = (x1, . . . , xd) ∈ U
and i = 1, . . . , d, f is said to have a ith partial derivative at x if the partial mapping

R 3 t 7−→ f(x1, . . . , xi−1, xi + t, xi+1, . . . , xd) ∈ Rn

is differentiable at t = 0 in the usual sense, that is, if each of the component functions t 7→ fp(x1, . . . , xi−1, xi+
t, xi+1, . . . , xd) is differentiable in the usual sense, p = 1, . . . , n.

Remark 2.9. This definition of partial derivatives extends mutatis mutandis to the case where f takes values
in an (infinite-dimensional) arbitrary normed vector space F .

The relation between the partial derivatives of a function f as above and its differential is supplied by
Proposition 2.2, whose finite-dimensional instance is provided below.

Proposition 2.5. Let U ⊂ Rd be an open subset, and let f : U → Rn be a function. Then,

(i) If f is Fréchet differentiable at some point x = (x1, . . . , xd) ∈ U , it admits partial derivatives ∂f
∂xi

(x),
i = 1, . . . , d, which are given by:

∂f

∂xi
(x) = dfx(ei), where ei is the ith vector in the canonical basis of Rd.

(ii) Let x ∈ U be a point which has an open neighborhood U ′ ⊂ U such that the partial derivatives

U ′ 3 x 7→ ∂f

∂xi
(x) ∈ Rn,

exist and define continuous mappings for i = 1, . . . , d. Then f is Fréchet differentiable at x and its
differential reads:

∀h = (h1, . . . , hd) ∈ Rd, dfx(h) =

d∑
i=1

∂f

∂xi
(x)hi.

Remark 2.10. In the physics literature, it is customary to denote by {dxi}i=1,...,d the dual basis of the

canonical basis {ei}i=1,...,d of Rd, that is, {dxi} is the basis of the dual space (Rd)∗ defined by:

∀h = (h1, . . . , hd) ∈ Rd, dxi(h) = hi,

so that dxi(ej) = 1 if i = j and 0 otherwise. With this notation, the differential dfx of a differentiable
function f : U ⊂ Rd → R at some point x ∈ U can be rewritten:

dfx =

d∑
i=1

∂f

∂xi
(x) dxi.
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Let us now specialize some of the previous general concepts and results to the case of finite dimensional
spaces.

Definition 2.6. Let U be an open subset of the Euclidean space Rd.

• Let ϕ : U → R be a scalar-valued, differentiable function at some point x ∈ U . The gradient of ϕ at
x is the vector ∇ϕ(x) ∈ Rd defined by

∇ϕ(x) =

(
∂ϕ

∂x1
(x), . . . ,

∂ϕ

∂xd
(x)

)
.

• Let f : U → Rn be a vector-valued, differentiable function at some point x ∈ U . The Jacobian matrix
∇f(x) of f at x is the n× d matrix defined by

∇f(x) =


∂f1
∂x1

(x) . . . ∂f1
∂xd

(x)
...

...
∂fn
∂x1

(x) . . . ∂fn
∂xd

(x)

 .

In other terms, for i = 1, . . . , n and j = 1, . . . , d, the (i, j) entry of the matrix ∇f(x) equals ∂fi
∂xj

(x).

• Let f : U → Rd be a vector field which is differentiable at some point x ∈ U . The divergence of f is
the number div(f)(x) defined by

div(f)(x) =
∂f1

∂x1
(x) + . . .+

∂f1

∂xd
(x).

From the physical point of view, div(f) is a measure of the local concentration or dilation induced by
the vector field f ; see Section 8 for more details on the subject.

With these notations,

• Let ϕ : U → R be a scalar-valued function which is differentiable at x ∈ U ; the differential dϕx of ϕ
at x reads:

∀h ∈ Rd, dϕx(h) = 〈∇ϕ(x), h〉.
• Let f : U → Rn be a vector-valued function which is differentiable at x ∈ U ; the differential dfx of
f at x satisfies:

∀h ∈ Rd, dfx(h)︸ ︷︷ ︸
vector in Rn

= ∇f(x)︸ ︷︷ ︸
n×d matrix

h︸︷︷︸
vector in Rd

.

Remark 2.11. However ubiquitous in the literature, there is an unfortunate ambiguity in these notations.
When ϕ : U → R is a real-valued function defined on an open subset U ⊂ Rd, ∇ϕ(x) may either denote the

vector ∇ϕ(x) ∈ Rd, or the 1 × d Jacobian matrix with entries (∇ϕ(x))1j = ∂ϕ
∂xj

(x). Usually, unless stated

otherwise, the former meaning is often retained.

Remark 2.12. Other, important differential operators can be devised from the derivatives of a vector field
on Rd, see notably Exercises 2.9 and 4.6 about the strain tensor and the curl operator.

Let us finally reformulate the chain rule in Theorem 2.1 in this particular case.

Theorem 2.2 (Chain rule in finite-dimensional spaces). Let d, n and p be integers, and U ⊂ Rd, V ⊂ Rn
be two open subsets. Let f : U → Rn and g : V → Rp be two functions such that f(U) ⊂ V , and let x ∈ U be
such that f is differentiable at x and g is differentiable at f(x). Then the composite mapping g ◦ f : U → Rp
is differentiable at x and its Jacobian matrix ∇(g ◦ f)(x) reads

∇(g ◦ f)(x)︸ ︷︷ ︸
p×d matrix

= ∇g(f(x))︸ ︷︷ ︸
p×n matrix

∇f(x)︸ ︷︷ ︸
n×d matrix

.

A handful corollary of this result is the following, whose proof is left as an exercise for the reader:
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Corollary 2.1. Let U be an open subset of Rd, and let ϕ : U → R be a differentiable function. Let f : I → Rd
be a function which is differentiable on an interval I of R, such that f(I) ⊂ U . Then the composite mapping
g := ϕ ◦ f is a differentiable function I → R, whose derivative reads:

∀t ∈ I, g′(t) =
∂ϕ

∂x1
(f(t))f ′1(t) + . . .+

∂ϕ

∂xd
(f(t))f ′d(t).

Example 2.5 (Chain rule and backpropagation). Let us consider the following situation. We introduce
differentiable functions f1 : Rd1 → Rd2 , f2 : Rd2 → Rd3 , . . ., fn : Rdn → Rdn+1 , and a final scalar-valued
differentiable function ϕ : Rdn+1 → R. We aim to calculate the gradient (i.e. the collection of all partial
derivatives) of the composite function f = ϕ ◦ fn ◦ . . . ◦ f1 : Rd1 → R.

Such a situation typically models a neural network with (n + 1) layers: for each i = 1, . . . n + 1, di is
the number of neurons of the ith layer; ϕ is the activation function, delivering the output of the network f ,
which approximates a quantity of interest. One then aims to calculate the gradient of f in order to optimize
the response of this model.

From the chain rule of Theorem 2.1, the differential of f at a point x ∈ Rd1 reads:

∀h ∈ Rd1 , dfx = dϕfn◦...◦f1(x) ◦ dfnfn−1◦...◦f1(x) ◦ . . . ◦ df1x.

In particular, for each i = 1, . . . , d1, the partial derivative ∂f
∂xi

(x) equals:

(2.6)
∂f

∂xi
(x) =

(
dϕfn◦...◦f1(x) ◦ dfnfn−1◦...◦f1(x) ◦ . . . ◦ df1x

)
(ei).

The calculation of any of these partial derivatives requires first to multiply the Jacobian matrix ∇f1(x) with
the vector ei ∈ Rd1 , then to multiply the Jacobian matrix ∇f2(f1(x)) with the result, etc. The calculation
of the gradient ∇f(x) is then very large, it demands that this procedure be repeated d1 times.

A more efficient calculation can be conducted by taking advantage of the fact that ϕ (and thus f) is a
scalar-valued function. One easily verifies that the gradient of f reads:

∇f(x)︸ ︷︷ ︸
vector with size d1

= ∇fT1 (x)︸ ︷︷ ︸
d1×d2 matrix

∇f2(f1(x))T . . .∇fn(fn−1 ◦ . . . f1(x))T︸ ︷︷ ︸
dn×dn+1 matrix

∇ϕ(fn ◦ . . . f1(x))︸ ︷︷ ︸
vector with size dn+1

,

see for instance Exercise 2.4. The calculation of the full gradient ∇f(x) by this method, called backpropa-
gation, is more efficient, since it has the same cost as that of the calculation of one single partial derivative
of f with the naive formula (2.6).

2.6. Exercises

Exercise 2.1 (The existence of partial derivatives at one point without any additional assumption about their
continuity is very weak). Let the function f : R2 → R be defined by

∀x(x1, x2) ∈ R2, f(x1, x2) =

{
x2
2

x1
if x1 6= 0

0 if x1 = 0.

(i) Show that the partial derivatives ∂f
∂x1

(0, 0) and ∂f
∂x2

(0, 0) exist and calculate them.

(ii) Show that f is not continuous at (0, 0) (in particular, f is not Fréchet differentiable at (0, 0)).

Exercise 2.2. Let f : R2 → R be a function of class C1.

(i) Let g : R → R be defined by g(t) = f(3 − 2t, t2); show that g is of class C1 on R and calculate its
derivative g′(t).

(ii) Let h : R2 → R be defined by h(x1, x2) = f(x2
1 + x2, x1x2). Show that h is of class C1 on R2 and

calculate its gradient ∇h(x).

Exercise 2.3.

(i) Show that the function f : R2 → R defined by f(x1, x2) = ex1x2(x1 + x2) is differentiable on R2 and
calculate its gradient.

(ii) Show that the function f : R3 → R2 defined by f(x1, x2, x3) = (x2
1 − 1

2x
2
3, sinx1 cosx2) is differentiable

on R3 and calculate its Jacobian matrix.
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(iii) Show that the function f : R2 → R2 defined by f(x1, x2) = (log(1 + x2
2), x1x2) is differentiable on R2

and calculate its Jacobian matrix.

Exercise 2.4. Let d and n be two integers ≥ 1, and let f : Rd → Rn and ϕ : Rn → R be differentiable
functions. Show that the composite mapping g := ϕ ◦ f : Rd → R is differentiable, and that its gradients
reads:

∀x ∈ Rd, ∇g(x) = ∇f(x)T∇ϕ(x).

Exercise 2.5. Let (E, || · ||E), (F, || · ||F ), (G, || · ||G) and (H, || · ||H) be normed vector spaces, and let U be
an open subset of U . We introduce functions u : U → F and v : U → G which are differentiable at some
point x0 ∈ U , as well as a bilinear continuous mapping b : F ×G→ H. Show that the function w : U → H
defined by

∀x ∈ U, w(x) = b(u(x), v(x))

is differentiable at x0, and calculate its derivative.

Exercise 2.6. Let (E, ||·||E) be a normed vector space and let d ≥ 1. We consider the mapping f : Rd×E → E
defined by:

∀x = (x1, . . . , xd) ∈ Rd, u ∈ E, f(x, u) = |x|2u.
Show that f is differentiable on Rd × E and calculate its derivative.

Exercise 2.7 (Homogeneous functions and Euler’s identity). Let (E, || · ||E) and (F, || · ||F ) be normed vector
spaces, and let U := E \{0}. One function f : U → F is called homogeneous of degree α ∈ R if the following
identity holds:

∀x ∈ U, t > 0, f(tx) = tαf(x).

(i) Show that if f : U → R is differentiable and homogeneous of degree α, it holds:

∀x ∈ U, dfx(x) = αf(x).

(ii) Conversely, let f : U → R be a differentiable function such that dfx(x) = αf(x) for all x ∈ U . Show
that f is homogeneous with degree α.

[Hint: For an arbitrary given point x ∈ U , define g : R → F by g(s) = f(sx) and find out an
ordinary differential equation satisfied by g. ]

Exercise 2.8 (The differential of the determinant). The purpose of this exercise is to prove that the differential
of the mapping

det : Md(R) 3M 7→ det(M) ∈ R
at any point A ∈Md(R) is

(2.7) d(det)A(H) = tr
(

com(A)TH
)
.

(i) Show that the subset of Md(R) composed of invertible matrices is dense in Md(R).
(ii) Show that the mapping det is of class C1 on Md(R).
(iii) Calculate the differential of M 7→ det(M) at the point M = Id.
(iv) Deduce from the previous question that the differential of det at any invertible matrix A is given by

(2.7).
(v) Use the results of (i) and (ii) to conclude that the above expression actually holds at all matrices

A ∈Md(R).

Exercise 2.9 (About strain and curl). The purpose of this exercise is to introduce and provide a physical
intuition of the strain and curl operators for vector fields in the three-dimensional space. Let u : R3 → R3

be a vector field of class C1;

• The strain tensor e(u) associated to u is the 3× 3 matrix field defined by:

∀x ∈ R3, e(u)(x) =
1

2

(
∇u(x) +∇u(x)T

)
.
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• The curl of u is the vector field curl(u) defined by:

∀x ∈ R3, curl(u)(x) =

∣∣∣∣∣∣∣∣
∂
∂x1

∂
∂x2

∂
∂x3

∧

∣∣∣∣∣∣∣∣∣
u1(x)

u2(x)

u3(x)

=


∂u3

∂x2
(x)− ∂u2

∂x3
(x)

∂u1

∂x3
(x)− ∂u3

∂x1
(x)

∂u2

∂x1
(x)− ∂u1

∂x2
(x)

 .

(i) Show that for all point x ∈ R3, the following expansion holds:

u(x+ h) = u(x) + e(u)(x)h+
1

2
curl(u)(x) ∧ h+ o(h).

[Remark: Roughly speaking, e(u) and curl(u) can be interpreted as follows: the eigenvalues of the
symmetric matrix e(u) quantify the amount of compression or stretching induced by u in the associated
principal directions, while curl(u) is a vector oriented in the direction of the rotation induced by u, with
modulus proportional to the rotation angle, see §1.2 in [5] for more details.]

(ii) Show that div(curl(u)) = 0.

Exercise 2.10. Let (E, || · ||)E and (F1, || · ||F1
), . . ., (Fn, || · ||Fn

) be normed vector spaces. Let f : E → F1×Fn
be a mapping, whose components are denoted by

∀x ∈ E, f(x) = (f1(x), . . . , fn(x)).

Show that f is Fréchet differentiable at a point x0 in E if and only if each component function fi is
differentiable at x0, and then

∀h ∈ E, dfx(h) = (df1,x(h), . . . ,dfn,x(h)).

3. A reminder of integral calculus

In this section, we sketch the main results attached to the Lebesgue integration theory. After a brief overview
of the construction of the Lebesgue integral in Section 3.1, we recall the dominated convergence theorem, the
Fubini theorem, and the change of variables theorem. Eventually, we detail the construction of a Riemann-
like integral for functions taking values in a Banach space.

3.1. A few reminders about the Lebesgue measure and the Lebesgue integral

Let us start this section with a few concepts from abstract measure theory.

Definition 3.1. Let X be a non empty set. A σ-algebra in X is a collection E of subsets of X such that

• E contains the empty set ∅ and X itself;
• For all sets E1, E2 ∈ E, the reunion E1 ∪ E2, the intersection E1 ∩ E2 and the complement X \ E1

belong to E.
• For any countable collection En ∈ E, n = 0, . . ., the reunion ∪∞n=0En also belongs to E.

If E is a σ-algebra in X, the pair (X, E) is called a measure space.

Proposition-Definition 3.1. Let X be a non empty set, and let X be any collection of subsets of X; there
exists a σ-algebra in X which is the smallest σ-algebra containing X (in the sense that it is included in any
σ-algebra containing X ); it is called the σ-algebra generated by X .

Sketch of proof. One verifies that for any (possibly uncountable) collection {Ei}i∈I of σ-algebras in X, the
intersection ∩i∈IEi is still a σ-algebra in X. Hence, the intersection of all the σ-algebras containing X is
clearly that with the desired properties. �

Definition 3.2. Let (X, E) be a measure space. A positive measure defined on E is a function µ : E → [0,∞]
(possibly taking infinite values) such that µ(∅) = 0 and µ is σ-additive, i.e. for all sequences En of pairwise
disjoint elements of E, one has:

µ

( ∞⋃
n=0

En

)
=

∞∑
n=0

µ(En).
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The rest of this section unfolds in the Euclidean space Rd, which we equip with a particular σ-algebra.

Definition 3.3. The σ-algebra generated by the collection of open subsets of Rd is called the Borel σ-algebra
of Rd, and is denoted by B(Rd). The sets E ∈ B(Rd) are called Borel subsets of Rd.

Let us now proceed with the definition of the Lebesgue measure on (Borel subsets of) Rd. One classical
construction hinges on the following rationale: we have a good intuition of what should be the measure of
a product of intervals, of the form A =

∏n
i=1[ai, bi] ⊂ Rd; a difficult result allows then to see that there is

only one positive measure on the Borel subsets of Rd which has this property. Precisely, we shall admit the
following theorem.

Theorem 3.1. There exists a unique positive measure µ on B(Rd) such that

For all hypercube A =

d∏
i=1

[ai, bi] ⊂ Rd, µ(A) =

d∏
i=1

(bi − ai).

This measure is called the Lebesgue measure on Rd. In the following, we denote by |E| the Lebesgue measure
of a Borel subset E ∈ B(Rd).

We now come to the definition of negligible subsets and of Lebesgue measurable subsets of Rd.

Definition 3.4.

• A subset N ⊂ Rd is called negligible if there exists a Borel subset E ⊂ Rd with |E| = 0 such that
N ⊂ E.

• A subset A ⊂ Rd is called Lebesgue measurable if there exist a Borel subset E ∈ B(Rd) and a negligible
set N such that A = E ∪N . The measure of such a set A is then defined to be |E|, and one easily
verifies that this value does not depend on the choice of E and N such that A = E ∪N .

• One property is said to hold almost everywhere if there exists a negligible set N ⊂ Rd such that it
holds for all points x ∈ Rd \N .

• One function f : Rd → R is called Lebesgue measurable if for every open subset U ⊂ R, the set
f−1(U) ⊂ Rd is Lebesgue measurable.

We next turn to the definition of the integral with respect to the Lebesgue measure.

Definition 3.5.

• A simple function f : Rd → R is a function of the form

f =

N∑
n=0

αn1An ,

where the An are Lebesgue measurable subsets of Rd, n = 0, . . . , N .
• Let f : Rd → [0,∞) be a non negative, simple function. The integral of f is defined by:∫

Rd

f(x) dx :=

N∑
n=0

αn|An|.

• Let f : Rd → R be a non negative function. The integral of f is the (possibly infinite) real value
defined by∫

Rd

f(x) dx := sup

{∫
Rd

v(x) dx, v is a non negative simple function, v ≤ u
}
.

• One measurable function f : Rd → R is said to be integrable if∫
Rd

|f(x)| dx <∞.

In this case, the integral of f is defined by:∫
Rd

f(x) dx =

∫
Rd

f+(x) dx−
∫
Rd

(−f−(x)) dx,

where f+ = max(0, f) is the positive part of f and f− = min(0, f) is its negative part.
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• Let A ⊂ Rd be a measurable subset. The integral of a non negative, measurable function f : A →
[0,∞) is defined by ∫

A

f(x) dx =

∫
Rd

1A(x)f(x) dx.

Likewise, a measurable function f : A→ [0,∞) is called integrable if 1Af is integrable, and we set∫
A

f(x) dx =

∫
Rd

1A(x)f(x) dx.

The vector space of integrable functions on A is denoted by L1(A).

Remark 3.1. The above concepts are easily extended to the case of Rn-valued functions f : A→ Rn, n ≥ 2.
Such a function f = (fi)i=1,...,n is called integrable if each component fi is, and the integral

∫
A
f dx is defined

as the vector in Rn with components (∫
A

f(x) dx

)
i

=

∫
A

fi(x) dx.

Remark 3.2. Abstract measure and integration theory play a crucial role in the field of probability. In a
nutshell, a probability measure on Rd is a positive measure P on Rd with total mass P(Rd) = 1. A subset
A ∈ Rd is called an event (as a collection of outcomes x ∈ Rd), and its probability equals P(A). When
f : Rd → R is a quantity of interest, the integral

∫
Rd f dP is the expectation of f .

3.2. The Lebesgue dominated convergence theorem and some of its avatars

The perhaps most fundamental result in integration theory is the celebrated Lebesgue dominated convergence
theorem, which conveniently allows to intertwine limits and integrals.

Theorem 3.2 (Dominated convergence theorem). Let fn : Rd → R be a sequence of measurable functions
which converges almost everywhere to a function f : Rd → R. We assume that there exists a non negative,
integrable function h : Rd → R such that

∀n ≥ 0, for a.e. x ∈ Rd, |fn(x)| ≤ h(x),

so that in particular, all the functions fn are integrable. Then, f is also integrable, and one has:∫
Rd

|fn(x)− f(x)| dx n→∞−−−−→ 0, and

∫
Rd

fn(x) dx
n→∞−−−−→

∫
Rd

f(x) dx.

Remark 3.3.

• Let A ⊂ Rd be an arbitrary Lebesgue measurable subset; by applying the dominated convergence
theorem with χAfn (resp. χAf) instead of fn (resp. f), the same conclusion as in Theorem 3.2
obviously holds with A as integration domain.

• A similar statement to that of Theorem 3.2 holds when the considered sequence of functions is indexed
with a real parameter ε > 0 tending to 0 instead of an integer n→∞.

The next result allows to take derivatives under the integral sign. It is a fairly simple consequence of the
Lebesgue dominated convergence theorem, and we present its proof as an instructive exercise We refer to
Exercise 3.5 about an interesting situation where the conclusion of the theorem fails when one of its subtle
assumptions is violated.

Theorem 3.3 (Differentiation under the integral sign). Let A ⊂ Rd be a measurable subset, and let I ⊂ R
be an open interval. Let f : I ×A be a function; we assume that there exists a negligible subset N ⊂ A such
that the following hypotheses are satisfied:

(i) For every t ∈ I, the partial mapping x 7→ f(t, x) is integrable on A;

(ii) The partial derivative ∂f
∂t (t, x) exists at every point (t, x) ∈ I × (A \N);

(iii) There exists a positive, integrable function h : A→ R such that

∀t ∈ I, ∀x ∈ (A \N),

∣∣∣∣∂f∂t (t, x)

∣∣∣∣ ≤ h(x).
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Then the function F : I → R defined by

F (t) :=

∫
A

f(t, x) dx

is differentiable on I and its derivative reads:

F ′(t) =

∫
A

∂f

∂t
(t, x) dx.

Proof. Let t ∈ I be fixed, and let sn be an arbitrary sequence of real numbers such that sn → 0 as n→∞.
Then, a simple calculation yields:

F (t+ sn)− F (t)

sn
=

∫
A

gn(x) dx, where gn(x) :=
f(t+ sn, x)− f(t, x)

sn
.

We aim to apply the Lebesgue dominated convergence Theorem 3.2 to calculate the limit of the above
expression. To achieve this, we first note that, by assumption (ii), for almost every point x ∈ A\N , it holds:

gn(x)
n→∞−−−−→ ∂f

∂t
(t, x);

in particular, the sequence of functions gn converges a.e. to the function ∂f
∂t (t, ·). Let us now verify the

second assumption of Theorem 3.2. For all n ≥ 0 and a.e. x ∈ A \N , the Mean Value Theorem 1.1 yields
the existence of a number θn,x ∈ (0, 1) such that

gn(x) =
f(t+ sn, x)− f(t, x)

sn
=
∂f

∂t
(t+ θn,xsn, x), and so |gn(x)| ≤ h(x),

where we have used assumption (iii).
The assumptions of Theorem 3.2 are then fulfilled, and its application allows to conclude. �

3.3. The Fubini theorem

In this section, we briefly discuss multiple integrals. Let p, q ≥ 1 and let us consider a function f : (x, y) ∈
Rp × Rq 7→ f(x, y) ∈ R. The three Euclidean spaces Rp, Rq and Rp × Rq ≈ Rp+q are equipped with the
Lebesgue measure; the integration of f over the product space Rp × Rq can a priori be realized in three
different ways:

• One integrates first in the y variable for fixed x ∈ Rp, thus defining the function Rp 3 x 7→∫
Rq f(x, y) dy ∈ R, and then integrates the latter in the x variable; this leads to the quantity∫

Rp

(∫
Rq

f(x, y) dy

)
dx.

• Symmetrically, one integrates first in the x variable for fixed y ∈ Rq, and then integrates the resulting
function Rq 3 y 7→

∫
Rq f(x, y) dx ∈ R in the y variable; this leads to the quantity∫

Rq

(∫
Rp

f(x, y) dx

)
dy.

• One integrates directly f with respect to the couple (x, y) over the product space Rp × Rq, which
results in the quantity ∫

Rp×Rq

f(x, y) dxdy.

The Fubini theorem states that, under mild assumptions, the three procedures lead to the same result.

Theorem 3.4 (Fubini theorem). Let f(x, y) be a measurable function defined on the product space Rp×Rq.
(i) If f is non negative, then for almost all x ∈ Rp, the partial mapping Rq 3 y 7→ f(x, y) is measurable.

The induced mapping Rp 3 x 7→
∫
Rq f(x, y) dy ∈ R ∪ {∞} is well-defined for a.e. x ∈ Rp and it

induces a non negative mapping which is also measurable (possibly taking infinite values). Likewise,
the mapping Rq 3 y 7→

∫
Rp f(x, y) dx ∈ R ∪ {∞} is well-defined and measurable. Then,∫

Rp

(∫
Rq

f(x, y) dy

)
dx =

∫
Rq

(∫
Rp

f(x, y) dx

)
dy =

∫
Rp×Rq

f(x, y) dxdy,
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in the sense that one of the above quantities is finite if and only if the other two are, and their values
are then equal.

(ii) If f ∈ L1(Rp×Rq), then the partial mappings y 7→ f(x, y) and x 7→ f(x, y) are in L1(Rq) and L1(Rp),
respectively. The mappings x 7→

∫
Rq f(x, y) dy and y 7→

∫
Rp f(x, y) dx are in L1(Rp) and L1(Rq),

respectively and:∫
Rp

(∫
Rq

f(x, y) dy

)
dx =

∫
Rq

(∫
Rp

f(x, y) dx

)
dy =

∫
Rp×Rq

f(x, y) dxdy,

Remark 3.4. The first part of this statement is referred to as Tonelli’s theorem. It is often the most flexible
form of the Fubini theorem in applications.

3.4. The change of variable formula

We eventually recall one last fundamental result in integration theory, namely the change of variables theo-
rem, as a key tool for simplifying either the integrand or the domain of an integral.

Theorem 3.5 (Change of variables in integrals). Let U be a Borel subset of Rd, and let ϕ : U → ϕ(U) be a
diffeomorphism of class C1. Then, a function f : ϕ(U)→ R belongs to L1(ϕ(U)) if and only if f ◦ ϕ belongs
to L1(U), and it holds:

(3.1)

∫
ϕ(U)

f dx =

∫
U

(f ◦ ϕ)|det∇ϕ| dx.

This formula has an intuitive interpretation, which is illustrated on Fig. 9. Let us recall that any invertible
d× d matrix M admits a polar decomposition:

M = OP,

where

• O is a unitary matrix, i.e. OTO = Id; a standard result from linear algebra describes the structure of
such matrices: O is a composition of rotations and reflections in an appropriate coordinate system.

• P is a symmetric positive definite matrix. Writing P under diagonal form,

P = Õ


λ1 0

. . .

0 λd

 ÕT , with ÕÕT = Id and λi ≥ 0,

we see that P expresses compressions or stretchings in the orthonormal directions of the column
vectors of Õ, with amplitudes λi.

It follows that |detM | = detP = λ1 . . . λd, i.e. the change of volume entailed by the linear mapping M is
that induced by the compression-stretching expressed by P .

Returning to the statement of Theorem 3.5, let ∇ϕ(x) = O(x)P (x) be the polar decomposition of the
invertible matrix ∇ϕ(x). Then P (x) is the matrix which accounts for the local stretching induced by ∇ϕ(x),
and |det∇ϕ(x)| = detP (x).

3.5. Integration of vector-valued functions

We have hitherto been dealing with the integration of real-valued functions on the Borel subsets of Rd. This
theory can be adapted in a straightforward way to handle integrals of Rn-valued functions defined on Borel
subsets in Rd, working component-wise, see Remark 3.1.

However, for a variety of purposes, it is of great interest to be able to integrate so-called vector-valued
functions, taking values in a Banach space (E, || · ||E). In this section, we provide one possible construction
of such integrals, which is described in details in Chap. 2 in [9]; it mimicks the Riemann construction of
the integral of a real-valued function, and is thereby not the most general construction, but it is enough to
deal with continuous functions from an interval [a, b] ⊂ R into E. The construction can be omitted on first
reading; all the reader needs to keep in mind is that “everything works as for the integral of real-valued
functions”, as reflected by Proposition-Definition 3.2.

Let us start by introducing a few notations and definitions.
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'(x)

Figure 9. The change of variables Theorem 3.5 in integral calculus features a diffeomor-
phism ϕ : U → V of class C1. The Jacobian term |det(∇ϕ)| featured in the formula (3.1)
reflects the local distortion of the volume element in Rd (in red) caused by ϕ.

• Let [a, b] ⊂ R be a compact interval of R: −∞ < a ≤ b < ∞. A partition P of [a, b] is a collection
of points {x0, x1, . . . , xI} in [a, b] such that

a = x0 < x1 < . . . < xI = b.

• For any such partition, we define ∆xi := |xi − xi−1|, i = 1, . . . , I; the size of the partition is then
m(P) := sup

i=1,...,I
∆xi.

• Let P be a partition of [a, b] and let ξ = {ξ1, . . . , ξI} be a collection of points such that

(3.2) ξi ∈ [xi−1, xi] for i = 1, . . . , I.

The Riemann sum RP,ξ(f) associated to a continuous function f : [a, b] → E is the element of E
defined by:

RP,ξ(f) =

I∑
i=1

∆xif(ξi).

Definition 3.6. The Riemann sums RP,ξ(f) of f admit a limit ` ∈ E as the size of partitions m(P) tends
to 0 if, for all ε > 0, there exists a number δ > 0 such that for all partition P = {x0, . . . , xI} with size m(P)
and for any choice of points ξi ∈ [xi−1, xi], the following estimate holds:

||RP,ξ(f)− `||E ≤ ε.
The next proposition defines the (Riemann) integral of a continuous function f : [a, b] → E as the limit

of its Riemann sums, and gathers of the main properties of this notion.

Proposition-Definition 3.2. Let (E, || · ||E) be a Banach space and let f : [a, b] → E be a continuous
function. Then the Riemann sums RP,ξ(f) have a limit in E as the size m(P) of the partition tends to 0,

that we denote by
∫ b
a
f(t) dt ∈ E. The so-defined Riemann integral of f over [a, b] satisfies the following

properties:

(i)

∣∣∣∣∣
∣∣∣∣∣
∫ b

a

f(t) dt

∣∣∣∣∣
∣∣∣∣∣
E

≤
∫ b

a

||f(t)||Edt.

(ii) For all c ∈ [a, b], it holds: ∫ b

a

f(t) dt =

∫ c

a

f(t) dt+

∫ b

c

f(t) dt.
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(iii) The function g : t 7→
∫ t
a
f(s) ds is a primitive of f .

(iv) For all continuous linear mapping ` ∈ E∗, it holds:

(3.3)

〈
`,

∫ b

a

f(t) dt

〉
=

∫ b

a

〈`, f(t)〉 dt.

Proof. The results of the proof rely on an important preliminary calculation. Since f : [a, b] → E is
continuous, by the Heine Theorem 1.4, it is uniformly continuous on this interval. Hence, for each ε > 0,
there exists δ > 0 such that

(3.4) ∀s, t ∈ [a, b], |t− s| ≤ δ ⇒ ||f(t)− f(s)||E ≤ ε.
Let P = {x0, . . . , xN} and Q = {y0, . . . , yM} be two partitions of f with size max(m(P),m(Q)) ≤ δ. We
introduce the common subdivision T = {zk}k=1,...,K of P and Q, whose points zk are the reunion of the xi
and the yj , arranged in increasing order. For any index i = 1, . . . , I, we denote by Ki ⊂ {1, . . . ,K} the set
of indices k = 1, . . . ,K such that xi is the closest to zk among the points of P. The sets Ki, i = 1, . . . , I,
form a partition of {1, . . . ,K} and for each k = 1, . . . ,K, we denote by ik the unique index in {1, . . . , I}
such that k ∈ Kik .

Let ξi and τk be arbitrary points satisfying ξi ∈ [xi−1, xi], τk ∈ [zk, zk+1] for i = 1, . . . , I and k = 1, . . . ,K.
We estimate the difference

||RP,ξ(f)−RT ,τ (f)||E =

∣∣∣∣∣
∣∣∣∣∣
I∑
i=1

∆xif(ξi)−
K∑
k=1

∆zkf(τk)

∣∣∣∣∣
∣∣∣∣∣
E

=

∣∣∣∣∣
∣∣∣∣∣
I∑
i=1

∑
k∈Ki

∆zkf(ξi)−
K∑
k=1

∆zkf(τk)

∣∣∣∣∣
∣∣∣∣∣
E

=

∣∣∣∣∣
∣∣∣∣∣
K∑
k=1

∆zkf(ξik)−
K∑
k=1

∆zkf(τk)

∣∣∣∣∣
∣∣∣∣∣
E

≤
K∑
k=1

∆zk ||f(ξik)− f(τk)||E .

Combining the facts that for each k = 1, . . . ,K, we have |ξik − τk| ≤ δ, and that
∑K
k=1 ∆zk = (b − a), we

obtain
||RP,ξ(f)−RT ,τ (f)||E ≤ (b− a)ε.

By the same token, we also have, for any points ζj ∈ [yj−1, yj ]:

||RQ,ζ(f)−RT ,τ (f)||E ≤ (b− a)ε.

As a result, the triangle inequality yields:

(3.5) ||RP,ξ(f)−RQ,ζ(f)||E ≤ ||RP,ξ(f)−RT ,τ (f)||E + ||RT ,τ (f)−RQ,ζ(f)||E ≤ 2(b− a)ε.

We are now in position to show that the Riemann sums RP,ξ(f) of f have a limit in the sense of Defini-
tion 3.6, and to this end, we rely on the Cauchy criterion. Let Pn be any sequence of partitions of [a, b] with
size m(Pn) tending to 0 as n→∞, and let ξn be any sequence of associated points via (3.2). Let ε > 0 be
given, and let δ > 0 be such that (3.4) holds. Then there exists n0 ∈ N such that m(Pn) ≤ δ for n ≥ n0,
and so, by the above preliminary calculation:

∀m,n ≥ n0, ||RPn,ξn(f)−RPm,ξm(f)||E ≤ 2(b− a)ε.

Thus, the sequence RPn,ξn(f) is a Cauchy sequence of elements of E, and so it converges to some limit ` ∈ E.
It remains to prove that this limit does not depend on the choice of the particular sequence of partitions Pn
and points ξn. Let Pn, ξn and Qn, ζn be such that

RPn,ξn(f)
n→∞−−−−→ `1, and RQn,ζn(f)

n→∞−−−−→ `2.

For a given ε > 0, let δ > 0 be such that (3.4) holds. For n large enough, we have m(Pn) ≤ δ and m(Qn) ≤ δ,
and so, using again our preliminary calculation:

||RPn,ξn(f)−RQn,ζn(f)||E ≤ 2(b− a)ε.
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Taking limits as n→∞, we have ||`1 − `2||E ≤ 2(b− a)ε, and since ε is arbitrary, it follows that `1 = `2.

Let us now prove (i): For any partition P = {x0, . . . , xI} of [a, b], and any associated points ξi ∈ [xi−1, xi],
we have by the triangle inequality ∣∣∣∣∣

∣∣∣∣∣
I∑
i=1

∆xif(ξi)

∣∣∣∣∣
∣∣∣∣∣
E

≤
I∑
i=1

∆xi ||f(ξi)||E ,

where the right-hand side is nothing but a Riemann sum associated to the continuous function R 3 t 7→
||f(t)||E ∈ R. Passing to the limit as the size of the partition tends to 0 yields the desired result.

We next prove (ii): Let n ≥ 1 be given; we introduce the regular partitions Pn1 = {xn0 , . . . xnn} and Pn2 =
{yn0 , . . . ynn} of the intervals [a, c] and [c, b]:

∀i = 0, . . . , n, xni = a+ i
c− a
n

, and ∀j = 0, . . . , n, ynj = c+
b− c
n

.

We also introduce the points ξni and ζnj defined by

∀i = 1, . . . , n, ξni = a+
2i− 1

n
(c− a), and ∀j = 1, . . . , n, ζnj = c+

2j − 1

n
(b− c).

Then, Pn := {xn0 , . . . xnn, yn1 , . . . , ynn} defines a partition of [a, b] where c explicitly appears. For k = 1, . . . , 2n,
let us denote τnk = xnk if k = 1, . . . , n and τnk = ynk−n if k = n + 1, . . . , 2n; it follows from the previous
definitions that:

(3.6) RPn,τn(f) = RPn
1 ,ξ

n(f) +RPn
2 ,ζ

n(f).

On another hand, the preliminary calculation reveals that

RPn
1 ,ξ

n(f)
n→∞−−−−→

∫ c

a

f(t) dt, RPn
2 ,ζ

n(f)
n→∞−−−−→

∫ b

c

f(t) dt, and RPn,τn(f)
n→∞−−−−→

∫ b

a

f(t) dt.

The desired identity follows from taking limits in (3.6).

Let us now prove (iii): Since f is uniformly continuous on [a, b], again, for all ε > 0, there exists δ > 0 such
that (3.4) holds. Let us then write

g(t+ h)− g(t)

h
=

1

h

∫ t+h

t

f(s) ds.

Now, if |h| ≤ δ, then P := {t, t+ h} is a partition of [t, t + h] with size m(P) ≤ δ, and so, as we have seen
in (3.5): ∣∣∣∣∣

∣∣∣∣∣
∫ t+h

t

f(s) ds− hf(t)

∣∣∣∣∣
∣∣∣∣∣
E

≤ 2hε.

Hence, ∣∣∣∣∣∣∣∣g(t+ h)− g(t)

h
− f(t)

∣∣∣∣∣∣∣∣
E

≤ 2ε,

which is the desired result.

(iv): The proof of this point is very similar to that of the above three points: at first, the desired relation

(3.3) is proved when
∫ b
a
f(t) dt is replaced by any Riemann sum associated to f ; then, taking limits as the

size of partitions tends to 0 allows to conclude. Details are left to the reader. �

Remark 3.5. Other, more “powerful” notions of integration for functions taking values in Banach spaces
can be devised; let us mention, in particular, the theory of Bochner integral, which follows the philosophy of
Lebesgue integration and inherits many of its assets with respect to the present construction inspired from
Riemann integration, see Appendix E in [7] for more details on this subject.
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3.6. Exercises

Exercise 3.1.

(i) Let ϕ : R→ R be a function of class Ck for some k ≥ 1, such that ϕ(0) = 0. Show that there exists a
function ψ of class Ck−1 such that

∀x ∈ R, ϕ(x) = xψ(x).

[Hint: Write ϕ(x) = ϕ(x)− ϕ(0) =
∫ x

0
ϕ′(t) dt and use a change of variables in the last integral.]

(ii) More generally, let ϕ : Rd → R be a function of class Ck for some k ≥ 1, such that ϕ(0) = 0. Show that
there exist functions ψi : Rd → R of class Ck−1 such that

∀x ∈ Rd, ϕ(x) =

d∑
i=1

xiψi(x).

Exercise 3.2 (Polar change of variables and calculation of the integral I :=
∫
R e
−x2

dx). (i) Show that the
mapping induced by the change from polar to Cartesian coordinates

T (r, θ) = (r cos θ, r sin θ),

from (0,∞)× (−π, π) into R2 \ {(−c, 0), c ∈ [0,∞)} is a diffeomorphism of class C1.
(ii) Calculate I2 by using the Fubini theorem and a change of variables.
(iii) Conclude about the value of I.

Exercise 3.3 (Spherical change of coordinates and calculation of volumes). This exercise unfolds in the setting
of the three-dimensional space R3.

(i) Show that the mapping induced by the change from spherical to Cartesian coordinates

T (r, θ, ϕ) = (r sin θ cosϕ, r sin θ sinϕ, r cos θ),

from [0,∞)× [0, π]× [0, 2π) is a diffeomorphism of class C1, and calculate its Jacobian matrix ∇T and
the determinant det∇T (ee Fig. 10 for an illustration).

(ii) Infer the following change of variables formula: for any function f ∈ L1(R3), the function f ◦ T also
belongs to L1(R3) and ∫

R3

f(x) dx =

∫ ∞
0

∫ π

0

∫ 2π

0

f ◦ T r2 sin θ drdθdϕ.

(iii) Show that the volume of the unit ball B :=
{
x = (x1, x2, x3) ∈ R3, x2

1 + x2
2 + x2

3 = 1
}∫

B
dx =

4

3
π.

(iv) Let E :=
{
x = (x1, x2, x3) ∈ R3,

x2
1

a2 +
x2
2

b2 +
x2
3

c2 = 1 ∈ Rd,
}

be the ellipsoid with semi-axes equal to a,

b and c. Show that the volume of E equals 4
3πabc.

Exercise 3.4 (The Markov identity). Let f : Rd → R be an integrable, non negative function. Show the
Markov inequality: ∣∣{x ∈ Rd, f(x) ≥ α

}∣∣ ≤ 1

α

∫
Rd

f(x) dx.

Exercise 3.5. The goal of this exercise is to show that the conclusion of Theorem 3.3 fails when one of its
assumptions is not satisfied. Let ϕ : [0, 1] → R be a continuous function, and let f : [0, 1] → [0, 1] → R be
the function defined by:

∀t, x ∈ [0, 1], f(t, x) =

{
ϕ(x) if x ≤ t,

0 if t > x.

In particular, there does not exist a negligible subset N ⊂ [0, 1] such that the mapping t 7→ f(t, x) is

differentiable on [0, 1] for all x ∈ [0, 1] \N . For all t ∈ [0, 1], the partial derivative t 7→ ∂f
∂t (t, x) exists and

equals 0, except when x = t. Calculate the function F (t) =
∫ 1

0
f(t, x) dx and its derivative; observe that, in

particular, F ′(t) may not vanish.
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Figure 10. Illustration of the spherical coordinates in R3.

Exercise 3.6. Prove Proposition 2.4: let U be an open subset of a normed vector space (E, || · ||E), (F, || · ||F )
be a Banach space; a function f : U → F is Gateaux differentiable in the neighborhood V of a point x ∈ U ,
and we assume that the mapping induced by the Gateaux derivative V 3 x 7→ f ′G(x) ∈ L(E;F ) is continuous.
Show that f is Fréchet differentiable at x, and dfx = f ′G(x).

[Hint: For fixed x ∈ U , h ∈ E, introduce the function ϕ : [0, 1] → F defined by ϕ(t) = f(x + th), then

estimate the quantity ϕ(1)− ϕ(0)− ϕ′(0) by expressing ϕ(1)− ϕ(0) =
∫ 1

0
ϕ′(t) dt.]

4. Differential calculus II: some more advanced topics

As we have mentioned in the foreword to Section 2, the differentiability of a function f : E → F between
two normed vector spaces at some point x0 ∈ E can be interpreted as the fact that f can be approximated
by a first-order polynomial, up to a rest which is “small” when f is only considered near x0, see (2.2). In
this section, we extend this idea to higher-order Taylor formulas, approximating f with increased accuracy
by higher-order polynomials, involving higher-order derivatives of f . This raises the need to define such
higher-order derivatives for functions between normed vector spaces, which is the topic of Section 4.2.
Before entering into the core of the matter, we discuss in Section 4.1 the generalization of the Mean Value
Theorem 1.1 to the context of functions between normed vector spaces, as a key technical tool for many
purposes.

4.1. The Mean Value theorem

The Mean Value Theorem 1.1, that we have presented in Section 1.2.2 states that the finite difference

quotient f(b)−f(a)
b−a of a function f : [a, b]→ R which is continuous on [a, b] and differentiable on (a, b) exactly

equals the value of the derivative f ′(c) of f at some intermediate point c ∈ (a, b). Unfortunately, such a
result cannot possibly hold as soon as the arrival space for f is no longer R, as is revealed by the following
example.

Example 4.1. Let f : [0, 2π] → C be defined by f(t) = eit. Then, obviously, f(2π)−f(0)
2π−0 = 0, while the

derivative f ′(t) = ieit does not vanish on [0, 2π].

Fortunately, a weaker version of the Mean Value theorem stays valid in the more general context of interest
in this section, which is most often sufficient for our purposes. This general result reads as follows:

Theorem 4.1. Let (F, || · ||F ) be a normed vector space, and let [a, b] ⊂ R be a compact interval. Let
f : [a, b] → F be a continuous mapping which is differentiable on (a, b); we assume that there exists a
function ϕ : [a, b]→ R which is continuous on [a, b] and differentiable on (a, b) such that:

∀t ∈ (a, b), ||f ′(t)||F ≤ ϕ′(t).
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then, it holds:

(4.1) ∀t, s ∈ [a, b], ||f(t)− f(s)||F ≤ |ϕ(t)− ϕ(s)|.
Proof. At first, we note that, without loss of generality, we may limit ourselves to proving (4.1) with s = a.
In turn, it is actually enough to verify that for all ε > 0,

(4.2) ∀t ∈ [a, b], ||f(t)− f(a)||F ≤ ϕ(t)− ϕ(a) + ε(t− a) + ε.

Indeed, if (4.2) holds true for all ε > 0, then for any given t ∈ [a, b], letting ε > 0 tend to 0 yields (4.1).
Let us then prove that (4.2) holds. Fixing ε > 0, we consider the set:

A := {t0 ∈ (a, b], ∀a ≤ t ≤ t0, ||f(t)− f(a)||F ≤ ϕ(t)− ϕ(a) + ε(t− a) + ε} .
Since f and ϕ are continuous on [a, b], the set A contains the values a + η for some small enough η > 0.
Hence, A being non empty and bounded subset of [a, b], it admits a supremum θ := supA. By the continuity
of f and ϕ at θ, we see that

(4.3) ||f(θ)− f(a)||F ≤ ϕ(θ)− ϕ(a) + ε(θ − a) + ε.

In order to prove (4.2), it is enough to prove that θ = b. To this end, we argue by contradiction, assuming
that θ < b. At first, expressing the differentiability of f at θ, we see that there exists δ > 0 such that:

(4.4) ∀t ∈ [a, b] s.t. |t− θ| ≤ δ, ||f(t)− f(θ)− f ′(θ)(t− θ)||F ≤
ε

2
|t− θ|.

Likewise, since ϕ is differentiable at θ, up to decreasing the value of δ, we have:

(4.5) ∀t ∈ [a, b] s.t. |t− θ| ≤ δ, |ϕ(t)− ϕ(θ)− ϕ′(θ)(t− θ)| ≤ ε

2
|t− θ|.

Hence, for all t ∈ [a, b] with |t− θ| ≤ δ, we have by (4.4) and the triangle inequality:

||f(t)− f(θ)||F ≤ ||f ′(θ)||F |t− θ|+ ε
2 |t− θ|

≤ ϕ′(θ)|t− θ|+ ε
2 |t− θ|,

and using now (4.5) and the triangle inequality:

||f(t)− f(θ)||F ≤ |ϕ(t)− ϕ(θ)|+ ε|t− θ|.
Hence using once more the triangle inequality and (4.3), for all t ∈ [θ, θ + δ), we have, eventually:

||f(t)− f(a)||F ≤ ||f(t)− f(θ)||F + ||f(θ)− f(a)||F
≤ |ϕ(t)− ϕ(θ)|+ ε|t− θ|+ ϕ(θ)− ϕ(a) + ε(θ − a) + ε
≤ ϕ(t)− ϕ(a) + ε(t− a) + ε.

We have thus proved the inclusion [θ, θ + η) ⊂ A, which contradicts the definition of θ as the supremum of
A. Hence, (4.2) holds, and it leads to the desired inequality (4.1). �

Corollary 4.1. Let U ⊂ E be a convex open subset of a normed vector space (E, || · ||E) and let (F, || · ||F )
be another normed vector space. Let f : U → F be a differentiable mapping such that there exists k > 0 with

∀x ∈ U, ||dfx||L(E;F ) ≤ k.
Then,

∀x, y ∈ U, ||f(y)− f(x)||F ≤ k||y − x||E .
Proof. As usual, we reduce to the one-dimensional case. Let x, y ∈ U be given; we consider the function
g : [0, 1]→ F defined by

g(t) = f(x+ t(y − x)),

which is possible because U being convex, the whole segment {(1− t)x+ ty, t ∈ [0, 1]} is included in U .
The function g is continuous on [0, 1], and an application of the chain rule of Theorem 2.1 reveals that it is
differentiable on (0, 1), with derivative

∀t ∈ (0, 1), g′(t) = dfx+t(y−x)(y − x).

This entails:

||g′(t)||F ≤ ||dfx+t(y−x)||L(E;F )||y − x||E ≤ k||y − x||E .
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Then, applying Theorem 4.1 with ϕ(t) = k||x− y||E t, it follows

||g(1)− g(0)||F = ||f(y)− f(x)||F ≤ k||y − x||E ,
as desired. �

Corollary 4.2. Let (E, || · ||E) and (F, || · ||F ) be two normed vector spaces, and let U ⊂ E be a connected
open subset of E. If f : U → F is a differentiable mapping such that dfx = 0 for all x ∈ U , then f is
constant on U .

Proof. Let x0 ∈ U be fixed; we introduce the non empty subset

S := {x ∈ U, f(x) = f(x0)} .
Since f is continuous on U , S is a closed subset of U . Let now x ∈ S, and let r > 0 be small enough so
that the open ball B := B(x, r) is contained in U . Since B is convex and dfx = 0 for x ∈ B, Corollary 4.1
implies that

∀z ∈ B, ||f(z)− f(x)||F = 0.

Hence, f(z) = f(x) = f(x0) on B, so that B ⊂ S. Summarizing, we have proved that S is a non empty
subset of the connected set U , which is at the same time closed and open. Hence, S = U , thus terminating
the proof. �

4.2. Higher-order derivatives

We now turn to the definition of the higher-order derivatives of functions between normed vector spaces,
starting with that of second-order derivatives.

As in the familiar context of a function f , from an open interval I ⊂ R into R, the second-order derivative
appraises how the differential mapping x 7→ dfx depends on the base point x. More precisely, let (E, || · ||E),
(F, || · ||F ) be two normed vector spaces, U ⊂ E be open, and let f : U → F be a Fréchet differentiable
function on U . As we have seen, the Fréchet derivative of f induces a mapping

(4.6) df : U 3 x 7−→ dfx ∈ L(E;F ),

that is, to each point x ∈ U , df associates the linear continuous mapping dfx ∈ L(E;F ) supplied by
Proposition-Definition 2.1. Since df is a mapping from an open subset of a normed vector space into the
normed vector space L(E;F ), one may consider its differentiation.

Definition 4.1. Let (E, || · ||E), (F, || · ||F ) be two normed vector spaces, and let U ⊂ E be open. A
differentiable mapping f : U → F is called twice differentiable at some point x ∈ U if f is differentiable on a
neighborhood V ⊂ U of x, and if the mapping df : V → L(E;F ) in (4.6) is Fréchet differentiable at x. The
associated differential is called the second-order derivative of f at x and is denoted by d2fx ∈ L(E;L(E;F )).

Let us clarify notations: for all h, k ∈ E, d2fx(h) ∈ L(E;F ) is the differential of the mapping U 3 x 7→
dfx ∈ L(E;F ) in the direction h, and d2fx(h)(k) is the element of F resulting from the evaluation of this
mapping at k.

By nature, the second-order derivative of a function f : U → F at x ∈ U belongs to L(E;L(E;F )), i.e. it
is a continuous linear mapping from E into the space L(E;F ) of operators. The following lemma allows to
identify it with a continuous bilinear mapping from E × E into f .

Lemma 4.1. Let (E1, || · ||E1
), (E2, || · ||E2

) and (F, || · ||F ) be three normed vector spaces. The mapping
I : L(E1;L(E2;F ))→ L(E1, E2;F ) defined by

∀f ∈ L(E1;L(E2;F )), I(f)(x1, x2) = F (x1)(x2),

is an isometry.

Proof. At first, let us make precise the definition of I: if f is a continuous linear mapping from E1 into
L(E2;F ), then for all x1 ∈ E1, f(x1) belongs to L(E2;F ), i.e. f(x1) is a continuous linear mapping from
E2 into F . Hence, f(x1)(x2) defines an element of F , which depends on x1 and x2 in a linear way.
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Let us now turn to the proof, which is a simple, albeit a little tedious handling of the definition of operator
norm. The very definition of the operator norm yields:

∀x1 ∈ E1, x2 ∈ E2, ||f(x1)(x2)||F ≤ ||f(x1)||L(E2;F )||x2||E2

≤ ||f ||L(E1;L(E2;F ))||x1||E1
||x2||E2

,

which proves that
||I(f)||L(E1,E2;F ) ≤ ||f ||L(E1;L(E2;F )).

To prove that I is an isomorphism, we simply exhibit the inverse mapping. For any bilinear mapping
g ∈ L(E1, E2;F ), we define J (g) ∈ L(E1;L(E2;F )) by the formula:

∀x1 ∈ E1, J (g)(x1) is the continuous linear mapping in L(E2;F ) defined by

∀x2 ∈ E2, J (g)(x1)(x2) = g(x1, x2).

Again, the definition of the operator norm yields:

∀x1 ∈ E1, x2 ∈ E2, ||J (g)(x1)(x2)||F ≤ ||g||L(E1,E2;F )||x1||E1
||x2||E2

,

and so
∀x1 ∈ E1, ||J (g)(x1)||L(E2;F ) ≤ ||g||L(E1,E2;F )||x1||E1 ,

which finally shows that
||J (g)||L(E1;L(E2;F )) ≤ ||g||L(E1,E2;F ).

This completes the proof. �

We shall thenceforth equivalently see the second-order derivative of a function f : U → F at x ∈
U as the operator-valued mapping d2fx ∈ L(E;L(E;F )) produced by the Definition 4.1 of second-order
differentiability, or as the bilinear mapping E × E → F supplied by Lemma 4.1.

Example 4.2. Let (E, || · ||E) and (F, || · ||F ) be two normed vector spaces.

(i) If f : E → F is a continuous linear mapping, we have seen in Example 2.1 that is first-order derivative
at any x ∈ E reads

∀h ∈ E, dfx(h) = f(h),

that is, the mapping df : E → L(E,F ) is constant, equal to f . As a result, d2fx = 0.
(ii) Let b : E × E → F be a continuous bilinear mapping, and let f : E → F be the quadratic function

defined by f(x) = b(x, x). We have seen in Example 2.1 that the differential of f at any point x ∈ E
reads:

∀h ∈ E, dfx(h) = b(h, x) + b(x, h).

A simple verification reveals that f is twice differentiable on E, with second-order derivative given by:

∀h, k ∈ E, d2fx(h)(k) = b(h, k) + b(k, h).

We now provide two interpretations that may shed some light on the quite abstract definition of second-
order derivatives.

Lemma 4.2. Let (E, || · ||E) and (F, || · ||F ) be two normed vector spaces, and let U ⊂ E be open. Let
f : U → F be a twice differentiable function at some point x ∈ U , and let k ∈ E be a fixed direction. Then
the mapping g : U → F defined by g(x) = dfx(k) is differentiable at x and its derivative reads

dgx(h) = d2fx(h, k).

Proof. Let us simply consider, for all h ∈ E,

rg(h) := g(x+ h)− g(x)− d2fx(h, k)

= dfx+h(k)− dfx(k)− d2fx(h)(k).

By definition of the operator norm, we have:

||rg(h)||F ≤ ||dfx+h − dfx − d2fx(h)||L(E;F )||k||E .
Now, for any ε > 0, the definition of second-order differentiability states that there exists a number δ > 0
such that

∀h ∈ E, ||h||E ≤ δ ⇒ ||dfx+h − dfx − d2fx(h)||L(E;F ) ≤ ε||h||E .
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Hence,

∀h ∈ E, ||h||E ≤ δ,
||rg(h)||F
||h||E

≤ ε||k||E ,

which means exactly that g is Fréchet differentiable at x, with derivative h 7→ d2fx(h, k). �

Lemma 4.3. Let (E, || · ||E) and (F, || · ||F ) be two normed vector spaces, and let U ⊂ E be open. Let
f : U → F be a twice differentiable function at some point x ∈ U . The following formula holds:

d2fx(h, k) =
d

dt

(
d

ds
f(x+ th+ sk)

∣∣∣∣
s=0

)∣∣∣∣
t=0

.

Proof. This result is an immediate consequence of the previous Lemma 4.2 since

d

ds
f(x+ th+ sk)

∣∣∣∣
s=0

= dfx+th(k), and
d

dt
dfx+th(k)

∣∣∣∣
t=0

= d2fx(h, k).

�

One remarkable property of the second-order derivative is its symmetry when it is seen as a bilinear
mapping from E × E to F .

Theorem 4.2 (Schwarz theorem). Let (E, || · ||E) and (F, || · ||F ) be two normed vector spaces, and let U ⊂ E
be open. Let f : U → F be a twice differentiable function; then the second-order derivative d2fx ∈ L(E,E;F )
is a symmetric, continuous bilinear form.

Proof(*). We start with a lemma, whose proof is postponed for clarity

Lemma 4.4. Let f : U → F be a twice differentiable function at some point x ∈ U , and let δ > 0 be such
that B(x, δ) ⊂ U . Let the quantity A : B(x, δ)×B(x, δ)→ F be defined by

A(h, k) := f(x+ h+ k)− f(x+ h)− f(x+ k) + f(x).

Then,

lim
(h,k)→(0,0)

||A(h, k)− d2fx(h, k)||F
||h||2E + ||k||2E

= 0.

In loose terms, Lemma 4.4 states that d2fx(h, k) is close to the quantity A(h, k), up to leading order in
terms of h and k. Since the latter is symmetric in the variables h and k, the expected symmetry of d2fx(h, k)
follows easily. More precisely, let us write

d2fx(h, k)− d2fx(k, h) = d2fx(h, k)−A(h, k) +A(k, h)− d2fx(k, h).

Let ε > 0 be given; using Lemma 4.4 and the triangle inequality, there exists δ > 0 such that

||h||E ≤ δ and ||k||E ≤ δ ⇒ ||d2fx(h, k)− d2fx(k, h)||F ≤ ε
(
||h||2E + ||k||2E

)
.

Now, for any h 6= 0 and k 6= 0, let us define h̃ := δ h
||h||E and k̃ := δ k

||k||E , which satisfy ||h̃||E ≤ δ and

||k̃||E ≤ δ. Hence, we obtain

||d2fx(h̃, k̃)− d2fx(k̃, h̃)||F ≤ ε
(
||h̃||2E + ||k̃||2E

)
.

Since all the quantities involved in the previous inequality are bilinear in terms of h and k, multiplying both
sides by 1

δ ||h||E ||k||E yields:

∀h, k ∈ E, ||d2fx(h, k)− d2fx(k, h)||F ≤ ε
(
||h||E ||k||E + ||k||E ||h||E

)
≤ ε
(
||h||2E + ||k||2E

)
;

since ε is arbitrary, this implies that d2fx(h, k) = d2fx(k, h). �

We now provide the proof of the missing link in the above argument.
47



Proof of Lemma 4.4. Let us consider the mapping B : B(x, δ)×B(x, δ)→ F given by:

B(h, k) = A(h, k)− d2fx(h, k)

= f(x+ h+ k)− f(x+ h)− f(x+ k) + f(x)− d2fx(h, k).

The function B is differentiable with respect to the second variable at any (h, k) ∈ B(x, δ)×B(x, δ), and its
partial derivative reads

∂B

∂k
(h, k)(k̂) = dfx+h+k(k̂)− dfx+k(k̂)− d2fx(h, k̂).

Let us rewrite this expression as:

∂B

∂k
(h, k)(k̂) =

(
dfx+h+k(k̂)− dfx(k̂)− d2fx(h+ k, k̂)

)
−
(

dfx+k(k̂)− dfx(k̂)− d2fx(k, k̂)
)
.

Now, let ε > 0 be given; by the definitions of operator norm and second-order differentiability, there exists
δ > 0 such that for ||h||E ≤ δ and ||k||E ≤ δ, the first term in the above right-hand side can be estimated as:∣∣∣∣∣∣dfx+h+k(k̂)− dfx(k̂)− d2fx(h+ k, k̂)

∣∣∣∣∣∣
F
≤

∣∣∣∣dfx+h+k − dfx − d2fx(h+ k)
∣∣∣∣
L(E;F )

||k̂||E
≤ ε||h+ k||E ||k̂||E .

By the same token, up to decreasing the value of δ > 0, one has:

∀h, k ∈ E, ||h||E ≤ δ, ||k||E ≤ δ,
∣∣∣∣∣∣dfx+k(k̂)− dfx(k̂)− d2fx(k, k̂)

∣∣∣∣∣∣
F
≤ ||k||E ||k̂||E .

Combining both inequalities, we see that

∀h, k ∈ E, ||h||E ≤ δ, ||k||E ≤ δ ⇒
∣∣∣∣∣∣∣∣∂B∂k (h, k)

∣∣∣∣∣∣∣∣
L(E;F )

≤ ε
(
||h||E + ||k||E

)
.

We now apply the generalized mean value Theorem 4.1 (and more precisely, Corollary 4.1) to the function
k 7→ B(h, k): For all ||h||E ≤ δ and ||k||E ≤ δ,

||B(h, k)||L(E;F ) = ||B(h, k)−B(h, 0)||L(E;F ) ≤ ε
(
||h||E + ||k||E

)
||k||E .

This terminates the proof of the lemma. �

The above Definition 4.1 of the second-order derivative of a function f : U → F can be generalized
to derivatives up to an arbitrary order. For brevity, we solely provide the main definitions and properties
attached to this notion.

Definition 4.2. Let f : U → F be a function and let n ≥ 1. f is called n times differentiable at some point
x ∈ U if there exists an open neighborhood V of x such that f is differentiable on V , and if the mapping
V 3 x 7→ dfx, from V into L(E;F ) is (n− 1) times differentiable at x.

The function f is said to be of class Cn on U if it is differentiable on U , and if the derivative x 7→ dfx ∈
L(E;F ) is of class Cn−1.

The following result defines the higher-order derivatives of a function in terms of symmetric, multilinear
mappings.

Theorem-Definition 4.1. Let (E, || · ||E) and (F, || · ||F ) be two Banach spaces, and let U ⊂ E be open.
For any integer n ≥ 1, one function f : U → F is n times differentiable at some point x ∈ U if there exist

• A neighborhood V ⊂ U of x;
• For all p ≤ n− 1, a mapping Lp : V → Ls(Ep;F );
• An n-linear symmetric continuous mapping `n ∈ Ls(En;F ).

such that:

• L1 coincides with the first-order differential df : V → L(E;F ) of f ;
• For all p ≤ n− 2, Lp is Fréchet differentiable on V and for all y ∈ V :

∀h1, . . . , hp+1 ∈ E, Lp+1(y)(h1, . . . , hp+1) =
∂gp

∂y
(h1, . . . , hp, hp+1),

where we have defined gp : Ep × V by gp(h1, . . . , hp, y) := Lp(y)(h1, . . . , hp).
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• Ln−1 is Fréchet differentiable at x and

∀h1, . . . , hn ∈ E, `n(h1, . . . , hn) =
∂gn−1

∂y
(h1, . . . , hn−1, hn),

where we have defined gn−1 : En−1 × V by gn−1(h1, . . . , hn−1, y) := Ln−1(y)(h1, . . . , hn−1).

For p = 1, . . . , n − 1, the symmetric p-linear continuous mapping Lp(x) ∈ Ls(Ep;F ) is called the pth order
differential of f at x and the symmetric n-linear continuous mapping `n ∈ Ls(En;F ) is called the nth order
differential of f at x.

Let us now observe that the stability of the differentiable character of functions by composition expressed
in the chain rule of Theorem 2.1 carries over to the setting of higher-order differentiability.

Theorem 4.3 (Chain rule for higher-order derivatives). Let (E, || · ||E), (F, || · ||F ) and (G, || · ||G) be three
normed vector spaces, and let U ⊂ E and V ⊂ F be open subsets. Let f : U → F and g : V → G be two
functions; we assume that f(U) ⊂ V so that the composite mapping g ◦f : U → G is well-defined. For n ≥ 1,

(i) If x ∈ U is a point such that f is n times differentiable at x and g is n times differentiable at f(x),
then, g ◦ f : U → G is n times differentiable at x.

(ii) If f is of class Cn on U and g is of class Cn on V , then g ◦ f is of class Cn on U .

Proof. On several occurrences in the proof, we shall rely on the fact that the mapping

L(E;F )× L(F ;G) −→ L(E;G)
(u, v) 7−→ v ◦ u

is bilinear and continuous, and thus of class C∞, see Example 4.2. We now prove both statements of the
theorem by induction on n ≥ 1.

Case n = 1: If f and g are differentiable at x and f(x), respectively, the chain rule of Theorem 2.1 shows
that the composite mapping g ◦ f is differentiable at x, and that is derivative reads:

d(g ◦ f)x = dgf(x) ◦ dfx,

so that (i) holds for n = 1. If f and g are of class C1 on U and V respectively, both mappings

U 3 z 7→ dfz ∈ L(E;F ) and V 3 y 7→ dgy ∈ L(F ;G)

are continuous. Since U 3 z 7→ f(z) ∈ V is also continuous, it follows that U 3 z 7→ dgf(z) ∈ L(F ;G) is also
continuous. From our preliminary remark, it follows that

U 3 x 7→ dgf(x) ◦ dfx ∈ L(E;G)

is continuous, so that g ◦ f is of class C1 on U , as desired.

Case n ≥ 2: Let us assume that f and g are n times differentiable at x and f(x), respectively. By definition,

there exist open neighborhoods Ũ ⊂ U and Ṽ ⊂ V of x and f(x), respectively, such that the mappings

Ũ 3 z 7→ dfz ∈ L(E;F ) and Ṽ 3 y 7→ dgy ∈ L(F ;G)

are differentiable.Thus, up to decreasing the size of Ũ so that f(Ũ) ⊂ Ṽ , g ◦ f is differentiable on Ũ , with
differential

∀z ∈ Ũ , d(g ◦ f)z = dgf(z) ◦ dfz.

Here, by assumption, z 7→ dfz ∈ L(E;F ) is (n − 1) times differentiable at x, y 7→ dgy ∈ L(F ;G) is (n − 1)
times differentiable at f(x) and z 7→ f(z) is (n − 1) times differentiable at x; by the induction hypothesis,

Ũ 3 z 7→ dgf(z) ∈ L(F ;G) is (n− 1) times differentiable at x, and again, by our preliminary remark,

Ũ 3 x 7→ dgf(x) ◦ dfx ∈ L(E;G)

(n− 1) times differentiable at x. This shows (i). The proof of (ii) is conducted in a similar way. �
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Example 4.3 (Example 2.2 continued). Let (E, || · ||E) and (F, || · ||F ) be two normed vector spaces, and let
U ⊂ E be open. For some n ≥ 1, let f : U → F be a function which is n times differentiable on U . Let also
h ∈ E be such that the whole segment {x+ th, t ∈ [0, 1]} is contained in U , so that the composite function
g : [0, 1]→ F defined by

∀t ∈ [0, 1], g(t) = f(x+ th)

is well-defined; the latter reads g = f ◦ `, where ` : [0, 1] → U is given by `(t) = x + th. The chain rule
Theorem 4.3 reveals that g is n times differentiable on (0, 1). We have seen in Example 2.2 that is first-order
derivative reads:

∀t ∈ (0, 1), g′(t) = dfx+th(h).

Lemma 4.2 shows that, if n ≥ 2, the second-order derivative of g equals:

∀t ∈ (0, 1), g′′(t) = d2fx+th(h, h).

By induction, using Theorem-Definition 4.1 about the nature of the nth-order differential of f , we obtain
that the nth-order derivative of g is:

∀t ∈ (0, 1), g(n)(t) = dnfx+th(h, . . . , h︸ ︷︷ ︸
n times

).

We conclude this section by adapting the previous concepts to the particular case where U is an open
subset of the Euclidean space E = Rd, and (F, || · ||F ) is an arbitrary normed vector space.

As we have seen in Section 2.5, if f : U → F is differentiable at some point x ∈ U , it admits partial
derivatives ∂f

∂xi
(x) at x, which are defined by:

∂f

∂xi
(x) = lim

t→0

f(x+ tei)− f(x)

t
, i = 1, . . . , d.

The differential dfx ∈ L(Rd;F ) has then the following expression:

∀h = (h1, . . . , hd) ∈ E, dfx(h) =

d∑
i=1

∂f

∂xi
(x)hi.

If f : U → F is now assumed to be twice differentiable at x, there exists a neighborhood V of x in U
where f is differentiable, so that the partial derivatives z 7→ ∂f

∂xi
(z) are well-defined on V . In addition, f

admits second-order partial derivatives ∂2f
∂xi∂xj

(x) at x, defined by:

∂2f

∂xi∂xj
(x) = lim

t→0

∂f
∂xj

(x+ tei)− ∂f
∂xj

f(x)

t
, i, j = 1, . . . , d.

The second-order derivative of f at x then reads:

∀h = (h1, . . . , hd), k = (k1, . . . , kd) ∈ Rd, d2fx(h, k) =

d∑
i=1

∂2f

∂xi∂xj
(x)hikj ,

and the Schwarz Theorem 4.2 states that the second-order partial derivatives of f at x are symmetric, i.e.:

∂2f

∂xi∂xj
(x) =

∂2f

∂xj∂xi
(x), i, j = 1, . . . , d.

It is easy to carry over this discussion to define higher-order partial derivatives for a sufficiently differentiable
function f : U → F , and to express is higher-order differential in terms of those.

Let us eventually introduce two useful differential operators in this finite-dimensional context.

Definition 4.3. Let U be an open subset of Rd and let f : U → R be a twice differentiable function at some
point x ∈ U .

• The Hessian of f at x is the d× d matrix ∇2f(x) gathering its second-order partial derivatives:

∀i, j = 1, . . . , d, (∇2f(x))ij =
∂2f

∂xi∂xj
(x).
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• The Laplacian ∆f(x) of f at x is:

∆f(x) = div(∇f)(x) = tr
(
∇2f(x)

)
=

d∑
i=1

∂2f

∂x2
i

(x).

4.3. Taylor-Young’s formula

In this section, we initiate our discussion about Taylor’s formulas. As we have hinted at, the differentiability
of a function f : U ⊂ E → F between two normed vector spaces at some point x ∈ U is associated to the
following approximation of f in the vicinity of x:

For h ∈ E “small enough”, f(x+ h) = f(x) + dfx(h) + o(||h||E);

in other words, f(x+h) is approximated by the affine function h 7→ f(x) + dfx(h) near x, up to a remainder
o(||h||E) which is “small” at first-order.

The purpose of Taylor’s formulas is to provide more precise approximations of f(x + h), by nth-order
polynomial functions, involving the nth-order derivatives of f at x, up to a “smaller” remainder o(||h||nE).

Several versions of Taylor’s formula are available. The one that we discuss in the present section is the
most general one: it applies to functions defined between arbitrary normed vector spaces (in particular, it
does not require any completeness assumption about E or F ), and it assumes minimal regularity about the
considered function f . The conclusion is, however, fairly weak insofar as pretty much nothing is known
about the remainder term o(||h||nE).

Theorem 4.4. Let (E, || · ||E) and (F, || · ||F ) be two normed vector spaces, and let U ⊂ E be an open subset.
Let f : U → F be a function which is n times differentiable at some point x ∈ U . Then, it holds:

(4.7) f(x+ h) =

n∑
p=0

1

p!
dpfx(h, . . . , h) + o(||h||nE).

Remark 4.1. Let us recall the precise meaning of the formulation (4.7): for any ε > 0, there exists δ > 0
such that

(4.8) ∀h ∈ E, ||h||E ≤ δ ⇒
∣∣∣∣∣
∣∣∣∣∣f(x+ h)−

n∑
p=0

1

p!
dpfx(h, . . . , h)

∣∣∣∣∣
∣∣∣∣∣
F

≤ ε||h||nE .

Proof∗. The proof goes by induction on the order n of the formula.

For n = 1: Formula (4.7) with n = 1 is exactly the definition of the differentiability of f at x, see Proposition-
Definition 2.1.

Let now n ≥ 1 be fixed; we assume that the statement of the theorem holds up to the order n, for any
function which is n times differentiable between any normed vector spaces.

Let f : U → F be a function which is (n+ 1) times differentiable at x ∈ U , and let δ > 0 be so small that

B(x, δ) ⊂ U . We define the function r : B(x0, δ)→ F by

r(h) = f(x+ h)−
n+1∑
p=0

1

p!
dpxf(h, . . . , h).

Observing that the mapping h 7→ dfpx(h, . . . , h) is a symmetric, p-linear continuous mapping, it follows that
r is differentiable in the neighborhood of 0 in E with differential

∀k ∈ E, drh(k) = dfx+h(k)−
n+1∑
p=1

p
p!df

p
x( h, . . . , h︸ ︷︷ ︸

(p−1) times

, k)

= dfx+h(k)−
n∑
p=1

1
p!d

p(dfx(k))(h, . . . , h︸ ︷︷ ︸
p times

),

see Example 2.1 (v). When passing from the first line to the second one, we have used the definition of
the (p + 1)th-order derivative of f at x as the pth-order derivative of the differential df at x, see Theorem-
Definition 4.1; the notation dp(dfx(k)) stands for the pth order differential of the mapping z 7→ dfz(k) at x
for fixed k.
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Applying the induction hypothesis to the mapping df : U → L(E;F ), we see that, for all ε > 0, up to
decreasing the value of δ, it holds

∀h ∈ E, ||h||E ≤ δ ⇒
∣∣∣∣∣
∣∣∣∣∣dfx+h −

n∑
p=0

1

p!
dp(dfx+·)(h, . . . , h)

∣∣∣∣∣
∣∣∣∣∣
L(E;F )

≤ ε||h||nE ,

which means exactly that

∀h ∈ E, ||h||E ≤ δ ⇒ ∀k ∈ E,
∣∣∣∣∣
∣∣∣∣∣dfx+h(k)−

n∑
p=0

1

p!
dp+1fx(h, . . . , h, k)

∣∣∣∣∣
∣∣∣∣∣
F

≤ ε||h||nE ||k||E .

In turns, this implies

∀h ∈ E, ||h||E ≤ δ ⇒ ||drh||L(E;F ) ≤ ε||h||nE .
Using the Mean Value inequality of Corollary 4.2, we now see that

∀h ∈ E, ||h||E ≤ δ ⇒ ||r(h)− r(0)||F ≤ ε||h||nE ||h||E ,
which is the desired result (4.8). �

4.4. The Taylor-Lagrange formula

The second version of Taylor’s formula that we now present demands a little more regularity of the considered
function f : U → F than the Taylor Young’s formula of Theorem 4.4, but it offers a better understanding of
the remainder term.

Theorem 4.5. Let (E, || · ||E) and (F, || · ||F ) be two normed vector spaces, and let U ⊂ E be an open subset.
Let f : U → F be a function which is (n+ 1) times differentiable on U . Let x ∈ U and h ∈ E be so that the
whole segment {x+ th, t ∈ [0, 1]} is contained in U . Then, it holds:

(4.9)

∣∣∣∣∣
∣∣∣∣∣f(x+ h)−

n∑
p=0

1

p!
dpfx(h, . . . , h)

∣∣∣∣∣
∣∣∣∣∣
F

≤ M

(n+ 1)!
||h||n+1

E ,

where M > 0 is any bound such that

sup
t∈[0,1]

||dn+1fx+th||L(En+1;F ) ≤M.

Proof. Let us define the functions g,m : [0, 1]→ F by

∀t ∈ [0, 1], g(t) = f(x+ th), and m(t) =

n∑
p=0

(1− t)p
p!

g(p)(t).

Since f is (n+ 1) times differentiable on U , m is differentiable on (0, 1), and a simple calculation yields:

∀t ∈ (0, 1), m′(t) = −
n∑
p=1

(1− t)p−1

(p− 1)!
g(p)(t) +

n∑
p=0

(1− t)p
p!

g(p+1)(t)

= −
n−1∑
p=0

(1− t)p
p!

g(p+1)(t) +

n∑
p=0

(1− t)p
p!

g(p+1)(t)

=
(1− t)n
n!

g(n+1)(t).

The calculation conducted in Example 4.3 allows to estimate the (n+ 1)th order derivative of g as:

∀t ∈ (0, 1), ||g(n+1)(t)||F ≤
(

sup
t∈[0,1]

||dn+1fx+th||L(En+1;F )

)
||h||n+1

E ≤M ||h||n+1
E ,

and so

∀t ∈ (0, 1), ||m′(t)||F ≤ ϕ′(t), where ϕ(t) =
(1− t)n+1

(n+ 1)!
M ||h||n+1

E .
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Now applying the Mean Value Theorem 4.1, we obtain that:

||m(1)−m(0)||F ≤
M

(n+ 1)!
||h||n+1

E ,

which is exactly the desired estimate (4.9). �

Remark 4.2. In the setting of Theorem 4.5, when the arrival space F is R, a slightly more precise result
holds about the remainder term. Indeed, applying the Mean Value Theorem 1.1 for real-valued functions in
the above proof instead of the generalized version Theorem 4.1 leads to the following conclusion: there exists
a real value s ∈ (0, 1) such that:

f(x+ h) =

n∑
p=0

1

p!
f (p)(x)hp +

1

(n+ 1)!
f (n+1)(x+ sh)hn+1.

4.5. The integral version of Taylor’s formula

We eventually discuss yet another avatar of Taylor’s formula, which requires a little more regularity than
the previous ones, but where the remainder term is explicit: it takes the form of an integral involving the
derivatives of the considered function f . For this reason, the result only holds when the arrival space F is a
Banach space, so that the construction of Section 3.5 of the integral of F -valued functions be available.

Theorem 4.6 (Taylor’s formula with integral rest). Let (E, || · ||E) be a normed vector space, (F, || · ||F ) be
a Banach space and let U ⊂ E be open. Let f : U → F be a function of class Cn+1 for some n ≥ 0. Then,
for any point x ∈ U and vector h ∈ E such that the whole segment {x+ th, t ∈ [0, 1]} is contained in U , the
following expansion holds:

(4.10) f(x+ h) =

n∑
p=0

1

p!
dpfx(h, . . . , h) +

∫ 1

0

(1− t)n
n!

dn+1fx+th(h, . . . , h) dt.

Proof. The proof is simple and useful, insofar as it allows to retrieve the correct formula without any risk
to get mixed up with indices. Let us define the function g : [0, 1]→ F by g(t) = f(x+ th); we have seen in
Example 4.3 that g is of class Cn+1 on (0, 1) and that for any 1 ≤ p ≤ n+ 1, it holds

∀t ∈ (0, 1), g(p)(t) = dpfx+th(h, . . . , h).

Hence, to prove the theorem, it is enough to verify that for any function g : [0, 1]→ F of class Cn+1 on (0, 1),
one has:

(4.11) g(1) =

n∑
p=0

1

p!
g(p)(0) +

∫ 1

0

(1− t)n
n!

g(n+1)(t) dt,

which we prove by induction on n ≥ 0.

• Case where n = 0: If g : [0, 1] → R is a function of class C1 on (0, 1), the properties of the integral
directly imply that

g(1) = g(0) +

∫ 1

0

g′(t) dt,

see Proposition-Definition 3.2 (iii). This equality is exactly the desired formula (4.11) in the case
where n = 0.

• Let n ≥ 0 be given, and let g : [0, 1]→ F be a function of class Cn+2 on (0, 1). Since g is in particular
of class Cn+1 on (0, 1), the induction hypothesis implies that:

(4.12) g(1) =

n∑
p=0

1

p!
g(p)(0) +

∫ 1

0

(1− t)n
n!

g(n+1)(t) dt,
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Since g(n+1) is a function of class C1 on (0, 1), an integration by parts in the last integral in the
above right-hand side yields∫ 1

0

(1− t)n
n!

g(n+1)(t) dt =

[
− (1− t)n+1

(n+ 1)!
g(n+1)(t)

]1

0

−
∫ 1

0

− (1− t)n+1

(n+ 1)!
g(n+2)(t) dt

=
1

(n+ 1)!
g(n+1)(0) +

∫ 1

0

(1− t)n+1

(n+ 1)!
g(n+2)(t) dt.

Injecting this expression into (4.12), we obtain the desired formula (4.10) at the order (n+ 1).

�

4.6. Exercises

Exercise 4.1 (Proof of Point (ii) of Proposition 2.2). Let (E1, || · ||E1
), (E2, || · ||E2

) and (F, || · ||F ) be three
normed vector spaces, and let U ⊂ E1, V ⊂ E2 be open subsets. Let f : U × V → F be a function and
let (x0, y0) ∈ U × V . We assume that there exist open neighborhoods U ′ ⊂ U and V ′ ⊂ V of x0 and y0

respectively such that the partial derivatives

U ′ × V ′ 3 (x, y) 7→ ∂f

∂x
(x, y) ∈ L(E1;F ) and U ′ × V ′ 3 (x, y) 7→ ∂f

∂y
(x, y) ∈ L(E2;F )

e Show that f is Fréchet differentiable at (x0, y0) and that its derivative reads:

∀(h, k) ∈ E1 × E2, df(x0,y0)(h, k) =
∂f

∂x
(x0, y0)(h) +

∂f

∂y
(x0, y0)(k).

[Hint: For h ∈ E1 and k ∈ E2 small enough, write:

f(x0 + h, y0 + k)− f(x0, y0)− ∂f

∂x
(x0, y0)(h)− ∂f

∂y
(x0, y0)(k) =(

f(x0 + h, y0 + k)− f(x0, y0 + k)− ∂f

∂x
(x0, y0)(h)

)
+

(
f(x0, y0 + k)− f(x0, y0)− ∂f

∂y
(x0, y0)(k)

)
.

The second parenthesis in the above right-hand side can be treated directly thanks to the definition of the
partial differentiability of f with respect to the second variable. As for the first parenthesis, consider the
function g, defined on a small enough ball B(0, δ) ⊂ E1 into F by

g(h) = f(x0 + h, y0)− ∂f

∂x
(x0, y0)(h)

and apply Corollary 4.1 with the continuity of the partial derivative (x, y) 7→ ∂f
∂x (x, y) ∈ L(E1;F ). ]

Exercise 4.2 (Trapeze integration formula). Let (E, || · ||E) be a Banach space and let f : [a, b] → E be a
function of class C2. Show that there exists a constant C > 0 which does not depend on f such that∣∣∣∣∣

∣∣∣∣∣
∫ b

a

f(t) dt− (b− a)
f(a) + f(b)

2

∣∣∣∣∣
∣∣∣∣∣
E

≤ C sup
s∈[a,b]

||f ′′(s)||E(b− a)3.

Exercise 4.3. Let (E, || · ||E) be a Banach space, and let U ⊂ E be open. Let f : U → R be differentiable,
and let C ⊂ U be a convex subset.

(i) Show that f is convex on C if and only if

∀x, y ∈ C, f(y) ≥ f(x) + dfx(y − x).

(ii) Show that, if f is convex on C, one has, for all x, y ∈ C and for all 0 < s < t < 1,

f(x+ s(y − x))− f(x)

s
≤ f(x+ t(y − x))− f(x)

t
.

(iii) Show that f is strictly convex on C if and only if

∀x, y ∈ C, f(y) > f(x) + dfx(y − x).

(iv) We now assume that f is twice differentiable on U . Show that f is convex on C if and only if

∀x, y ∈ C, d2fx(y − x, y − x) ≥ 0.
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(v) Show that f is strictly convex on C if and only if

∀x, y ∈ C, d2fx(y − x, y − x) > 0.

Exercise 4.4 (Jacobi’s identity). Let (E, || · ||E) be a normed vector space, and let U ⊂ E be open. Let u,
v : U → E be two functions of class C2.

(i) Show that the mapping g : U → E defined by

g(x) = dvx(u(x))− dux(v(x))

is of class C1 on U . This function is denote by g := [u, v] in the following.
(ii) For any functions u, v, w : U → E of class C2, we define

Φ(u, v, w)(x) = d2ux(v(x), w(x))− dvx(dux(w(x)))− dwx(dux(v(x))).

Show that Φ is trilinear and symmetric in its arguments u, v and w.
(iii) Calculate [[u, v], w] in terms of Φ(u, v, w) and Φ(v, u, w).
(iv) Deduce from the result that

[[u, v], w] + [[v, w], u] + [[w, u], v] = 0.

Exercise 4.5. We recall that the length of a curve γ is defined by

`(γ) =

∫ 1

0

|γ′(t)| dt.

We define

F (u) = `(u ◦ γ).

Show that F is Fréchet differentiable at u = 0, and that its Fréchet derivative reads:

dF0(h) =

∫ 1

0

〈
e(h(γ(t)))

γ′(t)
|γ′(t)| ,

γ′(t)
|γ′(t)|

〉
|γ′(t)| dt

Exercise 4.6. Let U ⊂ R3 be a connected open set, and let u : U → R3 be a vector field of class C2 with null
strain, i.e. e(u) = 1

2

(
∇u+∇uT

)
= 0 on U .

(i) Show that all the second-order derivatives of u vanish on U , i.e.

∀i, j, k = 1, . . . , 3,
∂2uk
∂xi∂xj

= 0.

(ii) Infer from the previous question and one of the Taylor’s formulas that there exist an antisymmetric
matrix M ∈M3(R) and a vector b ∈ R3 such that

∀x ∈ R3, u(x) = Mx+ b.

5. The fixed point theorem and some applications

This section is perhaps a little more conceptual than the previous, calculus-oriented ones. It is devoted
to the so-called Banach fixed point theorem, sometimes referred to as the Contraction Mapping Principle,
which is a central result in the theory of complete spaces. We present this theorem and some of its variants
in Section 5.1, before turning to two (among many) interesting illustrations, in the analysis of the Newton-
Raphson method, and the proof of the Cauchy-Lipschitz theorem, in Sections 5.2 and 5.3 respectively.

5.1. Statement and proof of the fixed point theorem

Let us start with a definition.

Definition 5.1. Let X be a closed subset of a Banach space (E, || · ||E). A function T : X → X is called a
contraction if it is Lipschitz continuous with ratio k < 1, that is

(5.1) ∀x, y ∈ X, ||T (x)− T (y)||E ≤ k||x− y||E .
We now state and prove the Banach fixed point theorem in the context of a closed subset of a Banach

space, however the result holds true in the more general context of a complete metric space.
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Theorem 5.1. Let X be a closed subset of a Banach space (E, || · ||E), and let T : X → X be a contraction.
Then T admits a unique fixed point x∗ ∈ X, i.e. a point x∗ ∈ X such that

T (x∗) = x∗.

The latter is the limit of any sequence of the form {Tn(x)}n≥0, where x ∈ X is arbitrary.

Proof. Let us first observe that T has at most one fixed point. Indeed, if x, y ∈ X are two points such that
T (x) = x and T (y) = y, it follows from the contraction property (5.1) that

||x− y||E = ||T (x)− T (y)||E ≤ k||x− y||E ;

since k < 1, this imposes that x = y.
Let us now turn to the existence of a fixed point for T . As suggested by the statement, taking any x ∈ X,

we shall prove that the sequence of iterates Tn(x) is a Cauchy sequence in X, and thus converges to some
x∗ ∈ X. We shall then see that this limit x∗ is one fixed point of T .

Let us then consider a point x ∈ X; a simple calculation shows that, for all n, p ≥ 0,

||Tn+p(x)− Tn(x)||E ≤ kn||T p(x)− z||E
≤ kn

p−1∑
i=0

||T i+1(x)− T i(x)||E

≤ kn
p−1∑
i=0

ki||T (x)− (x)||E

≤ kn
∞∑
i=0

ki||T (x)− (x)||E

= kn

1−k ||T (x)− (x)||E .
Since k < 1, it follows from this estimate that the sequence Tn(x) is a Cauchy sequence of elements of X;
as E is complete and X is closed, it thus converges to an element x∗ ∈ X, as desired.

We are left to show that x∗ is one fixed point of T . Since T is a continuous function, we see that

T (x∗) = T
(

lim
n→∞

Tn(x)
)

= lim
n→∞

Tn(T (x)) = lim
n→∞

Tn+1(x) = x∗,

which terminates the proof. �

Remark 5.1. In a practical application where T is differentiable on the Banach space E, the contraction
property (5.1) required by the Banach fixed point Theorem 5.1 is often established by estimating the differential
of the function T , and applying the mean value Theorem 4.1.

Remark 5.2. The fixed point Theorem 5.1 lends itself to an interesting algorithmic implementation, which
is ubiquitous in numerical analysis. Under its assumptions, the unique fixed point x∗ ∈ X of T can be
calculated as the limit of the following iterative procedure:

• Initialization: Let x0 = x be any point in X;
• For n = 0, . . .: The next iterate xn+1 is obtained by applying T to xn: xn+1 = T (xn).

It is even possible to quantify the convergence rate of this method:

∀n ≥ 0, ||xn − x∗||E ≤
kn

1− k ||T (x)− x||E ,

see Exercise 5.1.

The Banach fixed point Theorem 5.1 is often applied via the following strengthened version, which is a
mere corollary of the above statement.

Corollary 5.1. Let X be a closed subset of a Banach space (E, || · ||E), and let T : X → X be a function.
Assume that there exists n ≥ 1 such that Tn is a contraction; then T has a unique fixed point in X.

Proof. The function Tn being a contraction, it has a unique fixed point x∗ ∈ X by virtue of Theorem 5.1.
Hence, if x ∈ X is a fixed point of T , it holds T (x) = x, and so Tn(x) = x. This implies that x = x∗, which
reveals that T has at most one fixed point in X.
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On the other hand, the fixed point x∗ of Tn satisfies Tn(x∗) = x∗, and so

T (Tn(x∗)) = Tn(T (x∗)) = T (x∗).

Hence, T (x∗) is another fixed point of Tn. Since there exists exactly one such fixed point, one has necessarily
T (x∗) = x∗. We have proved that x∗ is also a fixed point of T , which completes the proof. �

We now state without proof a stronger version of the above fixed point Theorem 5.1, where the contraction
operator now reads T : Λ × X → X: T additionally depends on a parameter λ ∈ Λ, and under suitable
assumptions, the mapping T (λ, ·) : X → X has a unique fixed point x∗(λ) ∈ X for any given value λ. The
main conclusion of the next statement is that the mapping λ 7→ x∗(λ) is “as regular” as the mapping T
itself.

Theorem 5.2. Let X be a closed subset of a Banach space (E, || · ||E), and let Λ be an open subset of another
Banach space (F, || · ||F ). We consider the fixed point equation

(5.2) T (λ, x) = x,

where the function T : Λ×X → X is of class Cp for some p ≥ 0. We assume that there exists a real number
k < 1 such that for all λ ∈ Λ, x 7→ T (λ, x) is a contraction with ratio k. Then for all λ ∈ Λ, (5.2) has a
unique solution x∗(λ) ∈ X, and the mapping

Λ 3 λ 7→ x∗(λ) ∈ X
is of class Cp.

5.2. Application I: convergence of the Newton-Raphson algorithm

In this section, we briefly discuss the Newton-Raphson method. The latter is a fundamental idea for finding
zeroes of a function f , defined from a Banach space E into itself. An elementary convergence proof of this
method can be achieved by means of the fixed point Theorem 5.1. Although the conclusion is not optimal,
the material of this section is a good application example of this key idea.

Let U be an open subset of a Banach space (E, || · ||E), and let f : U → E be a function. We search for
zeroes of f , that is, points x∗ ∈ E such that

(5.3) f(x∗) = 0.

Let us first provide a formal, non rigorous sketch of the Newton-Raphson method. We assume that f has
a zero x∗ that we aim to find. The Newton-Raphson method is a local, iterative procedure to achieve this
goal: starting from a point x0 ∈ U which is “close enough” from x∗, it produces a sequence xn, n = 0, . . . of
iterates which are hopefully closer and closer to x∗. The first iterate x1 is sought under the form x1 = x0 +h,
where h is a “small perturbation”; the latter is characterized by the requirement that it should solve the
linearized version of the equation f(x0 + h) = 0 at x0, that is:

f(x0) + dfx0
(h) = 0,

where we recall that the differential dfx0
: E → E of f at x0 is a continuous linear mapping. Assuming that

dfx0 is invertible, the above equation has a unique solution h = −df−1
x0

(f(x0)), so that x1 equals:

x1 = x0 − df−1
x0

(f(x0)).

Iterating this procedure we get the sketch described in Algorithm 1.

Algorithm 1 The Newton-Raphson method.

initialization: Point x0 ∈ U “close enough” from x∗.
for n = 0, ..., until convergence: do
xn+1 = T (xn), where T (x) = x− df−1

x (f(x)).
end for
return xn

Obviously, the well-posedness of this strategy hinges on a number of assumptions. In particular, f has to
be differentiable at all the iterates xn, and the differential dfxn : E → E has to be an invertible mapping.
Precisely, the convergence of the method is guaranteed by the following theorem.
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Theorem 5.3. Let U be an open subset of a Banach space (E, || · ||E), and let f : U → E be a function of
class C2. Assume that there exists a point x∗ ∈ U such that

f(x∗) = 0, and the differential dfx∗ ∈ L(E;E) is an isomorphism.

Then there exists δ > 0 such that for all x0 ∈ B(x∗, δ), the sequence xn of iterates produced by the Newton-
Raphson Algorithm 1 is well-defined, and converges to x∗.

Proof. Our first task is to verify that the mapping T featured in the definition of the Newton-Raphson
Algorithm 1 is well-defined. To achieve this, we use the fact that f is, in particular, a function of class C1

on U , so that the mapping
U 3 x 7→ dfx ∈ L(E;E)

is continuous. Since dfx∗ ∈ L(E;E) is invertible and since the subset of invertible mappings of L(E;E) is
open (a fact which is proved thanks to Neumann series, see Exercise 1.8), there exists δ > 0 such that for

all x in the closed set X := B(x∗, δ), the mapping dfx is also invertible. We may then define the mapping
T : X → E by the formula

∀x ∈ X, T (x) = x− df−1
x (f(x)),

which is of class C1 on a neighborhood of X because f is of class C2. With this definition, the sought zero
x∗ of f obviously satisfies the fixed point equation x∗ = T (x∗). We shall then verify that, up to decreasing
the value of δ (and updating accordingly the definition of the set X), T is a contraction mapping from X
into itself. The fixed point Theorem 5.1 will then yield the conclusion of the present theorem.

Let us calculate, for h ∈ E, ||h||E ≤ δ:

(5.4)

T (x∗ + h)− T (x∗) = h− df−1
x∗+h(f(x∗ + h))

= h− df−1
x∗+h(f(x∗ + h)− f(x∗))

= h− df−1
x∗+h(dfx∗(h))− dfx∗+h(rf (h))

= h− df−1
x∗+h(dfx∗+h(h)) + df−1

x∗+h(dfx∗+h(h)− dfx∗(h))− dfx∗+h(rf (h))

where we have introduced the first-order expansion of f at x∗ to pass from the second to the third line of
the above series of equalities:

f(x∗ + h) = f(x∗) + dfx∗(h) + rf (h), where rf (h)→ 0 as h→ 0.

Using the fact that f is twice differentiable at x∗ together with Lemma 4.2, we also obtain the following
estimate:

dfx∗+h(h)− dfx∗(h) = o(||h||E),

and since the mapping X ∈ x 7→ df−1
x ∈ L(E;E) is continuous (again, see Exercise 1.8, we obtain:

df−1
x∗+h(dfx∗+h(h)− dfx∗(h)) = o(||h||E).

Eventually, (5.4) rewrites:

T (x∗ + h)− T (x∗) = h− df−1
x∗+h(dfx∗+h(h)) + o(||h||E)

= h− h+ o(||h||E)
= o(||h||E).

As a result, we see that the differential of T at x∗ reads dTx∗ = 0. Since the mapping X 3 x 7→ dTx ∈ L(E;E)
is continuous, up to decreasing the value of δ, we have:

∀x ∈ X, ||dTx||L(E;E) ≤
1

2
.

We now apply Corollary 4.1 of the mean value theorem, which reveals that:

(5.5) ∀x, y ∈ X, ||T (x)− T (y)||E ≤
1

2
||x− y||E .

The first conclusion of this estimate, obtained by letting y = x∗ = T (x∗) in the above estimate, is that:

∀x ∈ B(x∗, δ), ||T (x)− x∗||E ≤
1

2
||x− x∗||E ≤ δ,

and so T maps X into itself. In addition, (5.5) expresses the fact that T is a contraction of X into itself,
with ratio 1

2 . It follows from the fixed point Theorem 5.1 that T has a unique fixed point in X, which is
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Figure 11. Any solution t 7→ y(t) to the ordinary differential equation (5.6) (red line) stays
in a security cylinder.

necessarily x∗. The latter is the limit of any sequence of the form Tn(x), for x ∈ X, which is the desired
result. �

Remark 5.3. As we have hinted at, the analysis of this section is not optimal: the convergence rate of xn
to x∗ supplied by the analysis, see Remark 5.2 and Exercise 5.1, is actually “weaker” than that provided by
a more careful analysis, see §6.1.2 in [2] about this matter.

5.3. Application II: the Cauchy-Lipschitz theorem

In this section, we make a short foray into the field of differential equations; our purpose is to illustrate
another use of the fixed point Theorem 5.1, as the pivotal ingredient of the proof of the famous Cauchy-
Lipschitz theorem. We refer to the monograph [6] for a much more in-depth treatment of ordinary differential
equations.

The situation of interest in this section is the following: let I be an open interval of R, d ≥ 1 and let
U ⊂ Rd be an open set. Let f : I × U → Rd be a continuous function; for a given couple (t0, y0) ∈ I × U of
initial data, we consider the ordinary differential equation:

(5.6)

{
y′(t) = f(t, y(t)),
y(t0) = y0.

Let us first make precise what we intend by solving this equation.

Definition 5.2. A solution to the ordinary differential equation (5.6) on an open interval J ⊂ I containing
t0 is a function y : J → U of class C1 such that:

y(t0) = y0, and ∀t ∈ J, y′(t) = f(t, y(t)).

We now introduce the notion of security cylinder attached to the differential equation (5.6), which roughly
speaking accounts for a combination of a subinterval of I (in time) and a subregion of U (in space) such that
any solution to (5.6) over the given time region stays inside the space region, see Fig. 11.

Definition 5.3. Let (t0, y0) ∈ I × U be given; a security cylinder around (t0, y0) for the equation (5.6) is

a set of the form C = [t0 − τ, t0 + τ ] × B(y0, R), for some τ > 0 and R > 0, which enjoys the following
property: any solution to (5.6) on an open interval J ⊂ [t0 − τ, t0 + τ ] satisfies:

∀t ∈ J, y(t) ∈ B(y0, R).

This definition is not empty owing to the following lemma.
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Lemma 5.1. For any (t0, y0) ∈ I×U , there exist security cylinders around (t0, y0) attached to the differential
equation (5.6).

Proof. Let R > 0 be such that B(y0, R) ⊂ U . Let J ⊂ I be a time interval and let y : J → U be any solution
to the equation (5.6) on J . Then,

∀t ∈ J, y(t)− y0 =

∫ t

t0

y′(s) ds =

∫ t

t0

f(s, y(s)) ds,

and so
∀t ∈ J, |y(t)− y0| ≤ |t− t0|M ≤ τM, where we have defined M := sup

(t,y)∈C
|f(t, y)|.

Hence, choosing τ so small that τ ≤ R
M , the claim follows. �

The Cauchy-Lipschitz theorem is our next statement.

Theorem 5.4 (The Cauchy-Lipschitz theorem). Let I be an open interval of R and let U ⊂ Rd be an open
set. Assume additionally that the continuous function f : I × U → Rd is locally Lipschitz continuous in
the second variable: for all (t0, y0) ∈ I × U , there exist open neighborhoods J ⊂ I and V ⊂ U of t0 and y0

respectively, and a constant k > 0 such that

∀t ∈ J, ∀y1, y2 ∈ V, |f(t, y1)− f(t, y2)| ≤ k|y1 − y2|.
Let (t0, y0) ∈ I × U be arbitrary, and let C = [t0 − τ, t0 + τ ] × B(y0, R) be an associated security cylinder.
Then, the differential equation (5.6) has a unique solution y on (t0 − τ, t0 + τ).

Remark 5.4. By a compactness argument based on the Borel-Lebesgue property of Theorem 1.3, the locally
Lipschitz character of f is equivalent to the following fact: for any compact subsets A ⊂ I and K ⊂ U , there
exists a constant k > 0 such that:

∀t ∈ A, ∀y1, y2 ∈ K, |f(t, y1)− f(t, y2)| ≤ k|y1 − y2|.
Proof. At first, let us observe with Remark 5.4 that there exists a constant k > 0 such that the following
estimate holds:

(5.7) ∀t ∈ [t0 − τ, t0 + τ ], ∀y1, y2 ∈ B(y0, R), |f(t, y1)− f(t, y2)| ≤ k|y1 − y2|.
The first step in the proof consists in giving the ordinary differential equation (5.6) the equivalent form

of an integral equation. It is immediate to verify that a function y is solution to (5.6) on (t0 − τ, t0 + τ) if
and only if the following three conditions hold:

(i) The mapping t 7→ y(t) is continuous on (t0 − τ, t0 + τ);
(ii) For all t ∈ (t0 − τ, t0 + τ), y(t) ∈ U ;
(iii) y satisfies the following equation:

(5.8) ∀t ∈ (t0 − τ, t0 + τ), y(t) = y0 +

∫ t

t0

f(s, y(s)) ds.

We now solve (5.8) by applying a fixed point strategy to an adequate mapping, defined on a suitable set.
More precisely, let E be the space of continuous functions y : [t0 − τ, t0 + τ ]→ Rd equipped with the norm:

||y||E := sup
t∈[t0−τ ;t0+τ ]

|y(t)|.

We have already proved that E is a Banach space, see Exercise 1.7. Let us also define the closed subset of E

X = {y ∈ E, ∀t ∈ [t0 − τ, t0 + τ ], |y(t)| ≤ R} .
Introducing the mapping T : X → E given by

∀y ∈ X, ∀t ∈ [t0 − τ, t0 + τ ], T (y)(t) = y0 +

∫ t

t0

f(s, y(s)) ds;

the fact that C = [t0 − τ, t0 + τ ]×B(y0, R) is a security cylinder for the equation (5.6) and the data (t0, y0)
shows that T actually maps the set X into itself.
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In order to complete the proof, we eventually show that the composition Tn is a contraction mapping for
a certain integer n ≥ 1, which will allow us to apply Corollary 5.1. To achieve this, let y1, y2 ∈ X be two
functions; we estimate:

∀t ∈ [t0 − τ, t0 + τ ], T (y1)(t)− T (y2)(t) =

∫ t

t0

(
f(s, y1(s))− f(s, y2(s))

)
ds,

and so

∀t ∈ [t0 − τ, t0 + τ ], |T (y1)(t)− T (y2)(t)|≤
∫ t

t0

|f(s, y1(s))− f(s, y1(s))| ds ≤ |t− t0|k||y1 − y2||E ,

where we have used the Lipschitz estimate (5.7). Iterating this calculation, we obtain

∀t ∈ [t0 − τ, t0 + τ ], |T 2(y1)(t)− T 2(y2)(t)| ≤
∫ t

t0

|f(s, T (y1)(s))− f(s, T (y2)(s))| ds

≤
∫ t

t0

k2|s− t0|||y1 − y2||E ds

=
k2||y1 − y2||E |t− t0|2

2
.

By an easy induction argument, we obtain that, for all n ≥ 1, it holds

∀t ∈ [t0 − τ, t0 + τ ], |Tn(y1)(t)− Tn(y2)(t)|≤ kn|t− t0|n
n!

||y1 − y2||E ,

and so

||Tn(y1)− Tn(y2)||E ≤
knτn

n!
||y1 − y2||E .

Since kτn

n! < 1 for n sufficiently large, Corollary 5.1 allows to conclude the proof of the theorem. �

5.4. Exercises

Exercise 5.1. Let X be a closed subset of a Banach space (E, || · ||E) and let T : X → X be a contraction
with ratio k < 1. Let x ∈ X be arbitrary, and define the sequence xn ∈ X by:

x0 = x, and ∀n ≥ 0, xn+1 = T (xn).

Show that the following estimate holds:

∀n ≥ 0, ||xn − x∗||E ≤
kn

1− k ||T (x)− x||E ,

where x∗ ∈ X is the unique fixed point of T .
[Hint: Adapt the proof of Theorem 5.1.]

Exercise 5.2. Let (E, || · ||E) be a Banach space and let f, g : E → E be two contraction mappings from E
into itself. Show that there exist two points x0, y0 ∈ E such that:

y0 = f(x0) and x0 = g(y0).

6. The implicit function theorem and some of its applications

This section is devoted to the implicit function theorem and its close avatar, the local inverse theorem. These
key results in the setting of Banach spaces have countless applications in fields so diverse as differential
geometry, ordinary and partial differential equations, etc.

After the short Section 6.1 dedicated to an intuitive and non rigorous introduction to the main ideas, we
state the implicit function theorem in Section 6.2 and provide illustrative applications of the latter. The
local inverse theorem is then tackled in Section 6.3.
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6.1. Intuitive presentation

In a nutshell, the implicit function theorem is a key tool for proving the existence, uniqueness and regularity
of solutions to non linear equations depending on parameters. The typical application context is as follows:
we consider an equation of the form

(6.1) Search for u s.t. F(θ, u) = 0,

where

• The sought variable u belongs to a subset U of a Banach space E;
• The parameter θ belongs to a subset O of another Banach space Θ;
• The mapping F : O × U → F is non linear and takes values in a Banach space F .

Let us glean some intuition about what we should expect regarding the solvability of the equation (6.1)
by considering the particular case where all spaces are finite-dimensional, and the mapping F is linear. The
parameter θ belongs to Rm and the variable u is sought in Rn: for each value θ ∈ Rm, we search for the
solution u = u(θ) ∈ Rn to the equation

F(θ, u) = 0.

Since F : Rm × Rn → Rn is assumed to be linear, it can be written under the form

(6.2) F(θ, u) = Aθ +Bu,

where A is a matrix with size n ×m and B is a matrix with size n × n. In this setting, the resolution of
(6.1) is quite simple: assuming that B is an invertible matrix, (6.1) has a unique solution

u(θ) = −B−1Aθ.

The implicit function theorem is meant to generalize this pattern to the general context where θ and
u belong to infinite-dimensional Banach spaces, and F is a smooth, possibly non linear mapping. Similar
results to those of our model situation hold true, up to the following adaptations:

• The result applies locally, around one particular solution (θ0, u0) to the equation (6.1): for θ “close
enough” to the reference value θ0, (6.1) has a unique solution u which is “close enough” to u0;

• The linearized version of F with respect to the variable u at the point (θ0, u0) has to be a linear
isomorphism (this generalizes the above requirement that the block B be invertible in (6.2));

6.2. Statement of the implicit function theorem

Let us now state rigorously the implicit function theorem.

Theorem 6.1 (Implicit function theorem). Let (Θ, || · ||Θ), (E, || · ||E) and (F, || · ||F ) be three Banach spaces,
and let O ⊂ Θ and U ⊂ E be open subsets. Let

F : O × U → F

be a mapping of class Ck for some k ≥ 1. Let (θ0, u0) ∈ O × U satisfy F(θ0, u0) = 0; we assume that the
partial Fréchet derivative

∂F
∂u

(θ0, u0) : E → F

is a linear isomorphism. Then, there exist open subsets O0 ⊂ O and U0 ⊂ U as well as a mapping g : O0 → U0

of class Ck such that u0 = g(θ0) and

∀θ ∈ O0, u ∈ U0, F(θ, u) = 0 if and only if u = g(θ).

This result is illustrated on Fig. 12.

Remark 6.1. The derivative of the mapping g : O0 → U0 supplied by the implicit function Theorem 6.1
can be calculated owing to the following observation. We know that both mappings F : O × U → F and
g : O0 → U0 are of class Ck, and that the following relation holds:

∀θ ∈ O0, F(θ, g(θ)) = 0.

Taking derivatives in this equation and using the chain rule (see Theorem 2.1), we obtain

∀h ∈ Θ,
∂F
∂θ

(θ, g(θ))(h) +
∂F
∂u

(θ, g(θ))dθg(h) = 0.
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Figure 12. The implicit function theorem: the set of solutions (θ, u) to (6.1) consists of
the red curves in the (θ, u) plane; at (θ0, u0), the partial derivative ∂F

∂u (θ0, u0) is invertible
and for θ close to θ0, the equation F(θ, u) = 0 has a unique solution u close enough to u0;
at (θ1, u1), ∂F

∂u (θ0, u0) is not invertible, and several branches of solutions may meet.

By the assumption of Theorem 6.1, the partial derivative ∂F
∂u (θ0, g(θ0)) : E → F is invertible. Since the subset

of L(E;F ) consisting of invertible mappings is open (a fact which follows from the consideration of Neumann
series, see Exercise 1.8), it follows that, up to decreasing the open set O0, the mapping ∂F

∂u (θ, g(θ)) ∈ L(E;F )
is actually invertible for all θ ∈ O0. We thus obtain:

∀h ∈ Θ, dθg(h) = −
[
∂F
∂u

(θ, g(θ))

]−1(
∂F
∂θ

(θ, g(θ))(h)

)
.

We now provide a few typical applications of the implicit function Theorem 6.1.

Example 6.1 (Differentiability of the roots of a polynomial around a simple root). This first example aims
to show that the roots of a polynomial depend in a smooth way on its coefficients, as long as these roots are
simple. More precisely, let n ≥ 1; we consider the polynomial of degree n:

P (x) = a0 + a1x+ . . .+ anx
n,

which we assume to have simple roots z1, . . . , zn. Let us introduce the function F : Rn+1 × R defined by

∀(b0, . . . , bn) ∈ Rn+1, x ∈ R, F((b0, . . . , bn), x) = b0 + b1x+ . . . bnx
n.

By assumption, the non linear equation

Search for x ∈ R s.t. F((a0, . . . , an), x) = 0

has exactly n distinct solutions z1, . . . , zn. For any of these roots zi, the partial derivative of F with respect
to the last variable at ((a0, . . . , an), zi) reads:

∂F
∂x

((a0, . . . , an), zi) = a1 + 2a2zi + . . .+ nanz
n−1
i ,

which is a non zero real number as zi is a simple root of P .
63



<latexit sha1_base64="ty5oNjqqOUluvwR81xZLepBihD4=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyK+LgFvHiMaB6QLGF2MpsMmZ1dZnrFsOQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkQKg6777RRWVtfWN4qbpa3tnd298v5B08SpZrzBYhnrdkANl0LxBgqUvJ1oTqNA8lYwupn6rUeujYjVA44T7kd0oEQoGEUr3T/1vF654lbdGcgy8XJSgRz1Xvmr249ZGnGFTFJjOp6boJ9RjYJJPil1U8MTykZ0wDuWKhpx42ezUyfkxCp9EsbalkIyU39PZDQyZhwFtjOiODSL3lT8z+ukGF75mVBJilyx+aIwlQRjMv2b9IXmDOXYEsq0sLcSNqSaMrTplGwI3uLLy6R5VvUuqud355XadR5HEY7gGE7Bg0uowS3UoQEMBvAMr/DmSOfFeXc+5q0FJ585hD9wPn8AC+mNoA==</latexit>x1

<latexit sha1_base64="SKIo6DPB8UYlLsp053ZsY+cqOxs=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyG4OMW8OIxonlAsoTZSW8yZHZ2mZkVQ8gnePGgiFe/yJt/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWMbmZ+6xGV5rF8MOME/YgOJA85o8ZK90+9Sq9YcsvuHGSVeBkpQYZ6r/jV7ccsjVAaJqjWHc9NjD+hynAmcFrophoTykZ0gB1LJY1Q+5P5qVNyZpU+CWNlSxoyV39PTGik9TgKbGdEzVAvezPxP6+TmvDKn3CZpAYlWywKU0FMTGZ/kz5XyIwYW0KZ4vZWwoZUUWZsOgUbgrf88ippVsreRbl6Vy3VrrM48nACp3AOHlxCDW6hDg1gMIBneIU3RzgvzrvzsWjNOdnMMfyB8/kDDW2NoQ==</latexit>x2

<latexit sha1_base64="oWTlDl9FfUOC695xOUvO711hn5E=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mk+HErePHYgq2FNpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4EMwvp35D0+oNI/lvZkk6Ed0KHnIGTVWarr9csWtunOQVeLlpAI5Gv3yV28QszRCaZigWnc9NzF+RpXhTOC01Es1JpSN6RC7lkoaofaz+aFTcmaVAQljZUsaMld/T2Q00noSBbYzomakl72Z+J/XTU147WdcJqlByRaLwlQQE5PZ12TAFTIjJpZQpri9lbARVZQZm03JhuAtv7xK2hdV77Jaa9Yq9Zs8jiKcwCmcgwdXUIc7aEALGCA8wyu8OY/Oi/PufCxaC04+cwx/4Hz+AHlSjLQ=</latexit>

0

<latexit sha1_base64="rNE6QdB0GElSRGLOtq6MeMKP2BM=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0ikqMeCF48V7Ae0oWy2m3bpZhN2J0IJ/RFePCji1d/jzX/jts1BWx8MPN6bYWZemEph0PO+ndLG5tb2Tnm3srd/cHhUPT5pmyTTjLdYIhPdDanhUijeQoGSd1PNaRxK3gknd3O/88S1EYl6xGnKg5iOlIgEo2ilTj/MpOQ4qNY811uArBO/IDUo0BxUv/rDhGUxV8gkNabneykGOdUomOSzSj8zPKVsQke8Z6miMTdBvjh3Ri6sMiRRom0pJAv190ROY2OmcWg7Y4pjs+rNxf+8XobRbZALlWbIFVsuijJJMCHz38lQaM5QTi2hTAt7K2FjqilDm1DFhuCvvrxO2leuf+3WH+q1hlvEUYYzOIdL8OEGGnAPTWgBgwk8wyu8Oanz4rw7H8vWklPMnMIfOJ8/dPuPmQ==</latexit>•
<latexit sha1_base64="rNE6QdB0GElSRGLOtq6MeMKP2BM=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0ikqMeCF48V7Ae0oWy2m3bpZhN2J0IJ/RFePCji1d/jzX/jts1BWx8MPN6bYWZemEph0PO+ndLG5tb2Tnm3srd/cHhUPT5pmyTTjLdYIhPdDanhUijeQoGSd1PNaRxK3gknd3O/88S1EYl6xGnKg5iOlIgEo2ilTj/MpOQ4qNY811uArBO/IDUo0BxUv/rDhGUxV8gkNabneykGOdUomOSzSj8zPKVsQke8Z6miMTdBvjh3Ri6sMiRRom0pJAv190ROY2OmcWg7Y4pjs+rNxf+8XobRbZALlWbIFVsuijJJMCHz38lQaM5QTi2hTAt7K2FjqilDm1DFhuCvvrxO2leuf+3WH+q1hlvEUYYzOIdL8OEGGnAPTWgBgwk8wyu8Oanz4rw7H8vWklPMnMIfOJ8/dPuPmQ==</latexit>•

<latexit sha1_base64="E9oLidQpUjYyLyfzYnbsbgVakKo=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexK8HELePEY0TwgWcLspDcZMju7zMwKYcknePGgiFe/yJt/4yTZgyYWNBRV3XR3BYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2d++wmV5rF8NJME/YgOJQ85o8ZKD0nf65crbtWdg6wSLycVyNHol796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwms/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdK6qHqX1dp9rVK/yeMowgmcwjl4cAV1uIMGNIHBEJ7hFd4c4bw4787HorXg5DPH8AfO5w//qo2Y</latexit>p1

<latexit sha1_base64="6xXicQsPSTJ3d5aspsz3LGml/xg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lK8eNW8OKxoq2FNpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYW9/Y3Cpul3Z29/YPyodHbROnmvEWi2WsOwE1XArFWyhQ8k6iOY0CyR+D8c3Mf3zi2ohYPeAk4X5Eh0qEglG00n3Sr/XLFbfqzkFWiZeTCuRo9stfvUHM0ogrZJIa0/XcBP2MahRM8mmplxqeUDamQ961VNGIGz+bnzolZ1YZkDDWthSSufp7IqORMZMosJ0RxZFZ9mbif143xfDKz4RKUuSKLRaFqSQYk9nfZCA0ZygnllCmhb2VsBHVlKFNp2RD8JZfXiXtWtW7qNbv6pXGdR5HEU7gFM7Bg0towC00oQUMhvAMr/DmSOfFeXc+Fq0FJ585hj9wPn8AAT2NmQ==</latexit>p2

Figure 13. The folium S studied in Example 6.2.

By the implicit function Theorem 6.1, there exists a neighborhood U of (a0, . . . , an) in Rn+1, a neighbor-
hood V of zi in R and a function g : U → V of class C∞ such that for all (b0, . . . , bn) ∈ U , the polynomial
q(x) = b0 + b1x+ . . .+ bnx

n has a unique root g(b0, . . . , bn) in V (which thus depends in a smooth way on
(b0, . . . , bn)).

Example 6.2 (Regularity of a curve in 2d). In this example, we aim to study the set S ⊂ R2 defined by

S =
{
x = (x1, x2) ∈ R2, F(x1, x2) = 0

}
, where F(x1, x2) = x3

1 + x3
2 − 3x1x2.

This set, called the Descartes folium, is depicted on Fig. 13.
The function F is differentiable on R2 (actually, it is of class C∞), and its partial derivatives read:

∀x = (x1, x2) ∈ R2,
∂F
∂x1

(x1, x2) = 3(x2
1 − x2), and

∂F
∂x2

(x1, x2) = 3(x2
2 − x1).

A simple calculation shows that the only points x = (x1, x2) ∈ S where the partial derivative ∂F
∂x1

(x1, x2)
vanishes are:

0 = (0, 0) and p1 = (2
1
3 , 2

2
3 ).

Hence, for any point x = (x1, x2) ∈ S \
{

0, p1
}

, the partial Fréchet derivative

R 3 h 7→ ∂F
∂x1

(x1, x2)h ∈ R

is invertible; the implicit function Theorem 6.1 guarantees that there exist open neighborhoods U of x1 and
V of x2 and a function f : V → U of class C∞ such that

∀z1 ∈ U, z2 ∈ V, (z1, z2) ∈ S ⇔ z1 = f(z2).

Likewise, the only points in S where ∂F
∂x2

(x1, x2) vanishes are:

0 = (0, 0) and p2 = (2
2
3 , 2

1
3 ).

A similar argument as above shows that for any point x = (x1, x2) ∈ S \
{

0, p2
}

, there exist open neighbor-
hoods U of x1 and V of x2 and a function g : U → V of class C∞ such that

∀z1 ∈ U, z2 ∈ V, (z1, z2) ∈ S ⇔ z2 = g(z1).

The set S has a horizontal tangent line at p1, which is why the partial derivative ∂F
∂x1

vanishes at p1, but
∂F
∂x2

does not: roughly speaking, near p1, the x2 coordinate can be expressed in terms of the x1 coordinate

in a smooth way, but not the other way around. Likewise, S has a vertical tangent line at p2. The point
0 is more particular: both partial derivatives ∂F

∂x1
and ∂F

∂x2
vanish at that point, which reveals the singular

character of S at this point.
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Figure 14. Illustration of the set S considered in Example 6.3.

Example 6.3 (Regularity of a surface in 3d). Let F : R3 → R2 be the mapping of class C∞ defined by

∀x = (x1, x2, x3) ∈ R3, F(x1, x2, x3) =

(
x2

1 + x2
2 + x2

3 − 1
x2

1 + x2
2 − x2

)
.

We are interested in the study of the set S =
{
x = (x1, x2, x3) ∈ R3, F(x1, x2, x3) = 0

}
. Visually, S is the

intersection between the unit sphere of R3 and the cylinder with axis e3 and radius 1
2 , passing through the

point (0, 1
2 , 0), see Fig. 14.

A simple calculation yields the Jacobian matrix of F :

∀x = (x1, x2, x3) ∈ R3, ∇F(x1, x2, x3) =

(
2x1 2x2 2x3

2x1 2x2 − 1 0

)
.

Let p = (0, 1, 0) ∈ S. We observe that for any point x ∈ S \ {p}, the Jacobian matrix ∇F(x) has full rank
(its two rows are linearly independent). In particular, the mapping

R2 3 (h1, h2) 7→ ∂F
∂x1

(x1, x2, x3)h1 +
∂F
∂x3

(x1, x2, x3)h2 =

(
2x1h1 + 2x3h2

2x1h1

)
∈ R2

is a linear isomorphism. It follows from the implicit function Theorem 6.1 that there exists a neighborhood
U of (x1, x3) in R2 and V of x2 in R, as well as a mapping g : U → V of class C∞ such that:

∀(z1, z3) ∈ R2, z2 ∈ R, (z1, z2, z3) ∈ S ⇔ z2 = g(z1, z3).

The degeneracy of the Jacobian matrix ∇F at p accounts for the singularity of the set S at this point, where
several branches cross.

6.3. The local inverse theorem

The local inverse theorem gives a simple sufficient condition for a function to be invertible in the vicinity of
a point x0. Let us start with a definition.

Definition 6.1. Let (E, || · ||E) and (F, || · ||F ) be two normed vector spaces, and let U ⊂ E and V ⊂ F be
two open sets. One mapping f : U → V is called a diffeomorphism of class Ck between U and V for some
integer k ≥ 1 if f is a mapping of class Ck, if it realizes a bijection between U and V and if the inverse
mapping f−1 : V → U is also of class Ck.

The main result of interest in this section is the following.
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Theorem 6.2. Let (E, || · ||E) and (F, || · ||F ) be two Banach spaces, let U ⊂ E be an open subset, and
let f : U → F be a function of class Ck for some k ≥ 1. Let x0 ∈ U be a point such that the differential
dfx0

: E → F of f at x0 is a linear isomorphism. Then there exist two open neighborhoods U0 ⊂ U of x0 in
E and V0 of f(x0) in F such that f : U0 → V0 is a diffeomorphism of class Ck.

6.4. Exercises

Exercise 6.1. For t ∈ R, let us consider the system of equations x + y + z + t = 0
x2 + y2 + z2 + t = 2
x3 + y3 + z3 + t2 = 0

(i) Show that (x, y, z) = (0,−1, 1) is one solution to this system for t = 0.
(ii) Show that there exist neighborhoods U of 0 in R and V of (0,−1, 1) in R3, as well as a smooth function

f : U → V such that for all t ∈ U , this system has a unique solution in V given by (x, y, z) = f(t).
(iii) Calculate the derivative of the function f .

Exercise 6.2. Let (E, || · ||E) and (F, || · ||F ) be two Banach spaces, and let U ⊂ E be open. Let f : U → F
be a differentiable mapping whose differential is invertible at all points x ∈ U . Show that f(U) is an open
subset of F .

[A mapping such that the image of any open set is open is called an open mapping.]

Exercise 6.3 (The method of perturbations of identity). Let E be the vector space of vector fields θ : Rd → Rd
of class C1, which are bounded as well as their derivatives. A simple variation of Exercise 1.7 shows that E
is a Banach space when equipped with the norm

||θ||E := max
(

sup
x∈Rd

|θ(x)|, sup
x∈Rd

|∇θ(x)|
)
,

where we have introduced the matrix norm

∀M ∈Md(R), ||M || := sup
|x|=1

|Mx|, where |x| := (|x1|2 + . . .+ |xd|2)
1
2 is the Euclidean norm.

(i) Show that, when ||θ||E < 1, the mapping (Id + θ) : Rd → Rd is bijective.
[Hint: Apply the fixed point Theorem 5.1 with the mapping Ty : Rd 3 x 7→ y − θ(x) ∈ Rd, for an

arbitrary, fixed y ∈ Rd.]
(ii) Show that, still under the assumption ||θ||E < 1, (Id + θ) is a C1 diffeomorphism of Rd.

[Hint: Use the local inverse Theorem 6.2.]

7. A first encounter with optimality conditions for optimization problems

In this section, we use the previous concepts of differential calculus to analyze optimization problems – a
(very) wide subject that we only broach for the sake of illustrating our developments. More precisely, we
formulate first- and second-order conditions for a point to be one local minimum of a function f defined on
a subset of a normed vector space in terms of the derivatives of f .

7.1. Local minimizers of unconstrained optimization problems in normed vector spaces

In this first section, we deal with an unconstrained minimization problem of a function f , that is, a problem
of the form

inf
x∈X

f(x),

where X is a subset of a normed vector space and f : X → R is a function. Let us start with some definitions.

Definition 7.1. Let (E, || · ||E) be a normed vector space, X ⊂ E be a subset of E, and let f : X → R be a
function. Then,

• f is said to have a local minimum at some point x0 ∈ X if there exists an open subset U in E
containing x0 such that:

∀x ∈ U ∩X, f(x0) ≤ f(x).

This local minimum is strict if the above inequality is strict for x 6= x0.
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• f has a global minimum at x0 ∈ X if

∀x ∈ X, f(x0) ≤ f(x).

This global minimum is strict if the above inequality is strict for x 6= x0.

Without further assumption on the considered function f and the subset X, there is no guarantee that a
minimizer (even local) of f on X should exist. In practice, one is often satisfied with finding local minimizers
of f (if any); as we shall see, the task of characterizing those is easier than global minimizers, since one can
rely on the derivatives of f to this end. See nevertheless Exercises 7.1 to 7.3 for situations where a function
f can be proved to have global minimizers.

Theorem 7.1. Let U be an open subset of a normed vector space (E, || · ||E), and let f : U → R be a
function. Assume that f has a local minimizer x ∈ U and that f is differentiable at x; then dfx = 0 in E∗.

Proof. Since x is a local minimizer of f on U , there exists an open neighborhood V ⊂ U of x such that:

∀y ∈ V, f(x) ≤ f(y).

Let us fix a direction h ∈ E; there exists δ > 0 such that x+ th belongs to V for 0 < t < δ, and so

(7.1) ∀0 < t ≤ t0, f(x) ≤ f(x+ th).

Subtracting f(x) from both sides and dividing by t > 0 we obtain:

f(x+ th)− f(x)

t
≥ 0;

now letting t tend to 0 yields:

f ′(x;h) = 0,

where we recall that f ′(x;h) stands for the one-sided directional derivative of f at x in the direction h ∈ E,
see Definition 2.4. Since f is differentiable at x and h ∈ E is arbitrary, the claim follows. �

In the above statement, the requirement that the considered local minimizer x be interior to the domain of
definition of f is crucial, it makes it possible to test the minimal character of x with respect to perturbations
x+ th of x in arbitrary directions h ∈ E, see (7.1). The terminology “unconstrained minimization” for the
above setting comes from this feature. Actually, the exact same argument allows to prove the following more
general statement, which is illustrated on Fig. 15.

Theorem-Definition 7.1. Let K be a subset of a normed vector space (E, || · ||E), and let f : K → R be a
function. One direction h ∈ E is admissible at some point x ∈ K if there exists δ > 0 such that

∀ 0 ≤ t < δ, x+ th ∈ K.
If x is a local minimum of f over K, and if f is Gateaux-differentiable at x, it holds

(7.2) f ′(x;h) ≥ 0 for any admissible direction h ∈ E.
Let us provide two examples where the above statement takes on a more explicit form:

• If K is a convex subset of the normed vector space (E, || · ||E), then for any point y ∈ K the direction
(y−x) is admissible at x since the whole segment {(1− t)x+ ty, t ∈ [0, 1]} is contained in K. Hence,
if x is a local minimizer of the Gateaux-differentiable function f over K, (7.2) rewrites:

∀y ∈ K, f ′(x; y − x) ≥ 0.

• If K is an affine subspace of E, i.e. of the form

K = {x0 + z, z ∈ F} for some point x0 ∈ E and a vector subspaceF ⊂ E,
then (7.2) rewrites:

∀h ∈ F, f ′(x;h) ≥ 0.

We now turn to additional necessary conditions for a point x to be a local minimizer of a function,
involving the second-order derivatives of f . Under some appropriate assumptions, these may besides turn
out to be sufficient.
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Figure 15. (a) When the considered local minimum x is interior to the domain of definition
U of f , all directions h ∈ E are admissible: for t > 0 small enough, x + th belongs to U ;
(b) when the domain of definition U is not open, x may lie on its boundary, in which case
all directions (such as that h3) are not admissible.

Theorem 7.2. Let U be an open subset of a normed vector space (E, || · ||E) and let f : U → R be a function.
We assume that f has a local minimum at some point x ∈ U and that it is twice differentiable at x. Then,
the following conditions hold:

(7.3) ∀h ∈ E, dfx(h) = 0 and d2fx(h, h) ≥ 0.

Conversely, if f is twice differentiable at some point x ∈ U and if

(7.4) ∀h ∈ E, dfx(h) = 0 and ∃c > 0 s.t. ∀h ∈ E, d2fx(h, h) ≥ c||h||2E ,
then f has a strict local minimum at x.

The conditions (7.3) (resp. (7.4)) are often referred to as the necessary (resp. sufficient) second-order
conditions for local optimality.

Proof. Let us first show that the conditions (7.3) hold, under the assumption that f has a local minimum
at x ∈ U . We have already seen with Theorem 7.1 that dfx = 0 in this case. Besides, since f is twice
differentiable at x, the Taylor Young’s formula from Theorem 4.4 at order 2 yields the existence of a real
number δ > 0 and a function rf : E → R such that:

rf (h)→ 0 as h→ 0 and ∀h ∈ E, ||h||E ≤ δ, f(x+ h) = f(x) +
1

2
df2
x(h, h) + ||h||2Erf (h).

Let now h ∈ E be a fixed direction. Since by assumption x is a local minimum for f , up to decreasing the
value of δ, we have:

∀0 < t < δ, f(x+ th) ≥ f(x), and so
t2

2
df2
x(h, h) + t2||h||2Erf (th) ≥ 0.

Dividing both sides of the above inequality by t2 and letting t tend to 0, we obtain the desired relation (7.3).

Conversely, let us assume that the conditions (7.4) hold at some point x ∈ U . Again, since f is twice
differentiable at x, the Taylor Young’s formula at order 2 yields the existence of a number δ > 0 and a
function rf : E → R such that rf (h)→ 0 as h→ 0, and

(7.5)
∀h ∈ E, ||h||E ≤ δ, f(x+ h) = f(x) + dfx(h) + 1

2d2fx(h, h) + ||h||2Erf (h)
≥ f(x) + c||h||2E + ||h||2Erf (h).
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Now, let ε < c be fixed; since rf (h) → 0 as h → 0, up to decreasing the value of δ, one has |rf (h)| ≤ ε as
soon as ||h||E ≤ δ. Then, the estimate (7.5) becomes:

∀h ∈ E, ||h||E ≤ δ, f(x+ h) ≥ f(x) + (c− ε)||h||2E .
In particular, for ||h||E ≤ δ, h 6= 0, we see that f(x + h) > f(x), which means that f has a strict local
minimum at x. �

7.2. Local minimizers of constrained optimization problems

The previous section has mainly focused on deriving necessary and sufficient local optimality conditions at
points x which are interior to the domain of definition of the considered function f . As we have seen, for
these results to hold, it is necessary that x can be perturbed in all directions h ∈ E.

Situations where this is not possible are usually much more delicate to handle; they fall into the general
framework of constrained optimization. We shall see in this section that, when the set where the optimized
variable x is sought has a particular structure, appropriate necessary conditions can be derived. More
precisely, we shall investigate optimization problems of a function f : U → R defined on an open set U ⊂ E,
where the set C for the optimization variable x arises as the set of zeroes of certain constraint functions
g1, . . . , gp : U → R:

min
x∈C

f(x), where C := {x ∈ U, g1(x) = . . . = gp(x) = 0} .

Remark 7.1. It is possible to deal with more general constraint sets, including inequality constraints of the
form:

h1(x) ≤ 0, . . . , hq(x) ≤ 0,

for some suitable functions h1, . . . , hq : U → R. Since the treatment of such constraints is more technical,
we prefer to stick to equality constraints in this course.

Definition 7.2. Let U be an open subset of a normed vector space (E, || · ||E), let f, g1, . . . , gp : U → R be
functions, and let the set C ⊂ U be defined by C = {x ∈ U, g1(x) = . . . = gp(x)}. One says that f has a
local minimum at some point x0 ∈ U under the constraints g1(x) = . . . = gp(x) = 0 if x ∈ C and there exists
an open neighborhood V ⊂ U of x0 such that

∀x ∈ V ∩ C, f(x) ≥ f(x0).

The following result, that we shall admit, yields a necessary conditions for optimality.

Theorem 7.3. Let U be an open subset of a Banach space (E, || · ||E), and let f, g1, . . . , gp : U → R
be functions of class C1. Let us assume that f has a local minimum at x0 ∈ C under the constraints
g1(x0) = . . . = gp(x0) = 0, and that the constraints are qualified at x0 in the sense that:

{dg1,x0
, . . . ,dgp,x0

} is a linearly independent family in E∗.

Then, then there exist λ1, . . . , λp ∈ R such that

(7.6) dfx0
= λ1dg1,x0

+ . . .+ λpdgp,x0
.

Remark 7.2. When the ambient vector space E has finite dimension, say E = Rd, the necessary condition
(7.6) can be rewritten in terms of the gradients of f , g1, . . . , gp at x0: there exist λ1, . . . , λp ∈ R such that:

∇f(x0) = λ1∇g1(x0) + . . .+ λp∇gp(x0).

The fact that the relation (7.6) encodes the local optimality of f at x0 under the constraints g1(x) = . . . =
gp(x) = 0 can be understood in multiple ways. On the one hand, let us assume that the relation (7.6) holds
at some point x0 ∈ C for some λ1, . . . , λp ∈ R. Obviously, if we are to modify (decrease) the value of f at
first order, a direction h has to be chosen such that dfx0(h) < 0. But then, by (7.6), one of the quantities
dgi,x0(h) has to be different from 0, meaning that the point x0 +h will leave the set of constraints C. Hence,
the only means to improve the value of f from x0 is to get out of the set of constraints, which agrees with
the intuition of optimality. Another, geometric interpretation of (7.6) is exemplified on Fig. 16.
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C

Figure 16. Optimization of a function f : R3 → R under two constraints induced by
functions g1, g2 : R3 → R. Each constraint corresponds to a hypersurface in R3 (in yellow
and blue), with normal vectors oriented along ∇g1 and ∇g2; the constraint set C is the
intersection of these hypersurfaces (red line). A point x0 ∈ C is a local minimum for f if
the value of f cannot be decreased by moving tangentially to C: the only way to decrease the
value of f is to move “outside” the set of constraints, i.e. along ∇g1(x0) or ∇g2(x0).

7.3. Towards the calculus of variations

In this section, we propose an interesting calculation, which is fundamental in an area of mathematics called
the calculus of variations, and is meanwhile a good opportunity to handle the material of Sections 2 to 4.

Throughout this section, E is the vector space of functions of class C1 on the real interval [0, 1], equipped
with the norm

||u||E := sup(||u||∞, ||u′||∞);

let us recall from Exercise 1.7 that (E, || · ||E) is a Banach space.

We consider the function L : E → R defined by

(7.7) L(u) =

∫ T

0

j(t, u(t), u′(t)) dt,

where j : Rt × Ru × Rp → R is a function of class C1. The following result is devoted to the calculation of
the differential of L.

Proposition 7.1. Let u ∈ E be given; then the function L defined in (7.7) is Fréchet differentiable at u,
and its derivative reads:

(7.8) ∀h ∈ E, dLu(h) =

∫ T

0

(
∂j

∂u
(t, u(t), u′(t))h(t) +

∂j

∂p
(t, u(t), u′(t))h′(t)

)
dt.

If, in addition, u and j are of class C2 on their respective domains of definition, this implies, in particular,
that for any direction h ∈ E such that h(0) = h(T ) = 0, it holds:

(7.9) dLu(h) =

∫ T

0

(
∂j

∂u
(t, u(t), u′(t))− d

dt

(
∂j

∂p
(t, u(t), u′(t))

))
h(t) dt.

Proof. Let u ∈ E be fixed, and let h ∈ E be an arbitrary direction. For any time t ∈ [0, T ], the chain rule
of Theorem 2.1 reveals that the mapping

[0, 1] 3 s 7→ j(t, u(t) + sh(t), u′(t) + sh′(t)) ∈ R
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is of class C1, so that an application of the Taylor formula with integral remainder from Theorem 4.6 yields:

j(t, u(t) + h(t), u′(t) + h′(t))− j(t, u(t), u′(t)) =∫ 1

0

(
∂j

∂u
(t, u(t) + sh(t), u′(t) + sh′(t))h(t) +

∂j

∂p
(t, u(t) + sh(t), u′(t) + sh′(t))h′(t)

)
ds.

Hence, the difference L(u+ h)− L(u) equals:
(7.10)

L(u+ h)− L(u) =

∫ T

0

∫ 1

0

(
∂j

∂u
(t, u(t) + sh(t), u′(t) + sh′(t))h(t) +

∂j

∂p
(t, u(t) + sh(t), u′(t) + sh′(t))h′(t)

)
ds

=

∫ T

0

(
∂j

∂u
(t, u(t), u′(t))h(t) +

∂j

∂p
(t, u(t), u′(t))h′(t)

)
dt+

∫ T

0

A(t) dt,

where the first integral in the above right-hand side is exactly the quantity featured in (7.8); it defines a
linear and continuous mapping of the variable h ∈ E. We have also defined the remainder

A(t) :=

(∫ 1

0

∂j

∂u
(t, u(t) + sh(t), u′(t) + sh′(t)) ds− ∂j

∂u
(t, u(t), u′(t))

)
h(t)

+

(∫ 1

0

∂j

∂p
(t, u(t) + sh(t), u′(t) + sh′(t)) ds− ∂j

∂p
(t, u(t), u′(t))

)
h′(t)

=

∫ 1

0

((
∂j

∂u
(t, u(t) + sh(t), u′(t) + sh′(t))− ∂j

∂u
(t, u(t), u′(t))

)
h(t)

+

(
∂j

∂p
(t, u(t) + sh(t), u′(t) + sh′(t))− ∂j

∂p
(t, u(t), u′(t))

)
h′(t)

)
ds.

We now proceed to estimate this remainder; to this end, using the fact that j is of class C1 together with
Corollary 4.1, we see that for all ε > 0, there exists δ > 0 such that

(7.11) ∀t ∈ [0, T ], u1, u2 ∈ R and p1, p2 ∈ R,(
|u1 − u2| ≤ δ and |p1 − p2| ≤ δ

)
⇒
∣∣∣∣ ∂j∂u (t, u2, p2)− ∂j

∂u
(t, u1, p1)

∣∣∣∣+

∣∣∣∣∂j∂p (t, u2, p2)− ∂j

∂p
(t, u1, p1)

∣∣∣∣ ≤ ε.
As a result, if the direction h ∈ E satisfies ||h||E ≤ δ, so that for all t ∈ [0, T ], |h(t)| ≤ δ and |h′(t)| ≤ δ, we
obtain:

∀h ∈ E, ||h||E ≤ δ, ∀t ∈ [0, T ], |A(t)| ≤ ε||h||E .
Insertion of this estimate into (7.10) yields the desired expression (7.8). The second formula (7.9) follows
easily from an integration by parts. �

Remark 7.3. Functionals of the form (7.7) often show up in physics, where the bear the name of Lagrangian.
They represent the so-called action associated to the motion t 7→ u(t) of an objective in time. The least
action principle states that the motion adopted by a particle is that u which minimizes the action among all
admissible motions.

Using Theorem 7.1, we see that any local minimizer u ∈ E of L satisfies:

∀u ∈ dLu(h).

Assuming that j and u are of class C2, this implies that:

∀h ∈ E,
∫ T

0

(
∂j

∂u
(t, u(t), u′(t))− d

dt

(
∂j

∂p
(t, u(t), u′(t))

))
h(t) dt = 0,

and using the fact that a continuous function which vanishes when integrated against any continuous function
is necessarily null, it follows:

∀t ∈ [0, T ],
d

dt

(
∂j

∂p
(t, u(t), u′(t))

)
=
∂j

∂u
(t, u(t), u′(t)).

This equation, which is sometimes sufficient to characterize the motion u(t) is called the Euler-Lagrange
equation of the system.
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7.4. Exercises

Exercise 7.1 (Existence of global minimizers (I)). Let X be a compact subset of a normed vector space
(E, || · ||E) and let f : X → R be a continuous function. We consider the minimization problem

inf
x∈X

f(x).

(i) Show that there exists a minimizing sequence for this problem, that is, a sequence xn ∈ X such that

lim
n→∞

f(xn) = inf
x∈X

f(x).

(ii) Show that one may extract a subsequence xnk
from xn which converges to some point x∗ ∈ X.

(iii) Show that x∗ is a global minimizer of f on X.

[Hint: This technique for proving the existence of a global minimizer for a function f can be adapted and
generalized to various more challenging contexts; it is often referred to as the “direct method of the calculus
of variations” for proving existence of minimizers.]

Exercise 7.2 (Existence of global minimizers (II)). Let d ≥ 1 and let f : Rd → R be a continuous function
which is “infinite at infinity”, that is:

∀M > 0, ∃R > 0 s.t. ∀x ∈ Rd, |x| ≥ R ⇒ f(x) ≥M.

Show that f has a global minimizer on Rd.

Exercise 7.3. Let (E, || · ||E) be a normed vector space and let C ⊂ E be a convex subset. Let f : C → R be
a convex function which has a local minimum x∗ ∈ C. Show that x∗ is a global minimizer of f on C.

Exercise 7.4. Let a, b ∈ R, and let the function f : R2 → R be defined by

∀x = (x1, x2) ∈ R2, f(x) = (x1 − a)2(x2 − b)2.

(i) Calculate the first- and second-order derivatives of f .
(ii) Search for all the critical points of f , and search for its global and local minima.

Exercise 7.5. Let γ : [0, T ]→ Rd be a curve; we define its length by

L(γ) =

∫ T

0

√
1 + |γ′(t)|2 dt.

• Show that this definition is independent by change of parametrization.
• Show that the curve with minimum length between two points is a line segment.

8. Differential calculus in regular domains of Rd

This last part of the course is intended as a rough introduction to differential calculus in regular domains of
the Euclidean space Rd. This topic is ubiquitous in many fields of mathematics, such as the study of partial
differential equations, differential geometry, the calculus of variations, etc. It is admittedly quite technical,
and we have preferred to focus on the presentation of the main concepts and results, even it means omitting
intricated proofs.

8.1. Hypersurface in Rd and subdomains of Rd

The central notion in this section is that of hypersurface of class Ck in Rd, which can be defined in three
equivalent ways, as depicted on Fig. 17.

Definition 8.1. Let k ≥ 1; a subset S of Rd is called a hypersurface of class Ck if one of the following three
equivalent situations applies:

(i) (Graph representation): For any point x0 ∈ S, there exists an open neighborhood V of x0 in Rd, an
orthonormal basis (e1, . . . , ed) of Rd and a function ψ : Rd−1 → R of class Ck such that:

S ∩ V =

{
x =

d∑
i=1

xiei ∈ V s.t. xd = ψ(x1, . . . , xd−1)

}
.
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Figure 17. Three different representations for a hypersurface S ⊂ Rd: (a) Near the point
x0 ∈ S, the hypersurface S is the graph of a function ψ; (b) S ∩ V is the image σ(ω) of an
open subset ω ⊂ Rd−1 by a suitable parametrization mapping σ : ω → Rd ; (c) near x0, S
can be represented as the 0 isosurface of a function φ : Rd → R (isosurfaces associated to
values different from 0 are also depicted).

(ii) (Parametrization): For any point x0 ∈ S, there exists an open neighborhood V of x0 in Rd, an open
neighborhood ω of 0 in Rd−1 and a mapping σ : ω → Rd of class Ck such that S ∩ V = σ(ω);

(iii) (Definition by an implicit function): For any point x0 ∈ S, there exists an open neighborhood V of x0

in Rd and a function φ : V → R of class Ck such that:

(8.1) ∀x ∈ V, ∇φ(x) 6= 0, and S ∩ V = {x ∈ V, φ(x) = 0} .

Remark 8.1.

• The above Definition 8.1 precludes the possibility for a hypersurface S to have a boundary: visually,
S must be a “closed” surface, as exemplified on Fig. 18. It is possible to define a corresponding
notion of “open hypersurface” in Rd, but we shall not enter into these details.

• The above notion of hypersurface of class Ck falls into the general theory of submanifolds of Rd. More
precisely, a hypersurface S ⊂ Rd is a codimension 1 submanifold of Rd, but it is possible to define
submanifolds with higher codimension; for instance, a curve in R3 is a codimension 2 submanifold.

We now turn to the notion of orientation for a hypersurface of class Ck.

Proposition-Definition 8.1. Let S be hypersurface of class Ck of Rd for some k ≥ 1; according to the
implicit representation of S, for each point x0 ∈ S, there exists a neighborhood V of x0 in Rd and a function
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Figure 18. (a) S is a hypersurface (without boundary) in the sense of Definition 8.1;
(b) S is not a hypersurface in the sense of Definition 8.1 since it presents a boundary; in
particular, near the point x, S cannot be mapping diffeomorphically to an open subset of
Rd−1 (but rather to a half-ball).
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Figure 19. At every point x of a hypersurface of class Ck, the normal vector n(x) is
“orthogonal” to S; the tangent plane (in red) to S at x is the affine plane with normal
direction n(x) passing through x.

φ : V → R such that (8.1) holds. Then, the unit vector field ∇φ(x)
|∇φ(x)| is uniquely defined (i.e. independently of

the function φ chosen to represent S in a neighborhood of x0 as long as it satisfies (8.1)), up to a sign. One
says that S is oriented if there exists a selection of these vectors which is continuous on S. The resulting
vector field is denoted by n and is called the unit normal vector field to S.

Visually, for all x ∈ S, the normal vector n(x) is “perpendicular” to the surface S at x; it allows to
generalize the notion of tangent line to a curve to the case of a hypersurface, see Fig. 19.

Definition 8.2. Let S be an oriented hypersurface of class Ck in Rd for some k ≥ 1; the affine plane of Rd
passing through x and normal to n(x) is called the tangent plane to S at x.

We now turn to the notion of domain of Rd of class Ck, see Fig. 20.

Definition 8.3. Let Ω be an open subset of Rd; Ω is called a domain of class Ck for some k ≥ 1 if
∂Ω = ∂(R \Ω), and if its boundary ∂Ω is an oriented hypersurface of class Ck. Then, the unit normal vector
n(x) can always be chosen to point outward Ω.

In many applications, it is of utmost interest to be able to integrate on an oriented hypersurface, and
notably on the boundary ∂Ω of a regular domain. As we have seen in Section 3, this requires the datum of
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Figure 20. (a) Ω is not a regular domain, since it is not locally on one side of its boundary;
(b) Ω is not a regular domain, since it shows some sharp angles (corners): it is a Lipschitz
domain; (c) Ω is a (non connected) domain of class C1.

a suitable σ-algebra in S, and of a (positive) measure on the induced measure space. The adequate notion
to this end is that of surface measure, whose technical construction is omitted.

Definition 8.4. Let S be an oriented hypersurface of class Ck in Rd, for some k ≥ 1. There exists a positive
measure ds on the σ-algebra of S generated by its open subsets, which is called the surface measure on S,
and generalizes the notion of the length of a curve in R2 and surface in R3. In particular,

• The length `(γ) of a curve γ ⊂ R2 equals

`(γ) =

∫
γ

ds.

• The area A(S) of a piece of surface S ⊂ R3 equals

A(S) =

∫
S

ds.

Remark 8.2. The above definitions may change slightly from one textbook to the other; in particular,
domains are sometimes required to be connected subsets.

We finally arrive at the main theoretical result of this section, which is the celebrated Green’s formula.

Theorem 8.1 (Green’s formula). Let Ω ⊂ Rd be a bounded domain of class C1, and let u be a function of
class C1 on Ω (that is, u is the restriction to Ω of a function of class C1 on an open neighborhood of Ω). For
every index i = 1, . . . , d, one has: ∫

Ω

∂u

∂xi
dx =

∫
∂Ω

uni ds,

where n = (n1, . . . , nd) is the unit normal vector field to ∂Ω, pointing outward Ω.

Let us provide a few useful alternative version of this formula:

Corollary 8.1. Let Ω ⊂ Rd be a bounded domain of class C1.

• Let f : Ω→ Rd be a vector field of class C1; it holds:

(8.2)

∫
Ω

div(f) dx =

∫
∂Ω

〈f, n〉 ds,

where the divergence of f is defined by div(f)(x) =
d∑
i=1

∂fi
∂xi

(x), see Definition 2.6.

• Let f, g : Ω→ R be two functions of class C1; then, for any index i = 1, . . . , d, one has:

(8.3)

∫
Ω

∂f

∂xi
g dx =

∫
∂Ω

fgni ds−
∫

Ω

f
∂g

∂xi
dx.
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Remark 8.3. The Green’s formula is the natural generalization of the idea of integration by parts to the
case of functions of more than one real variable. Indeed, let Ω = (a, b) be an open interval of the real line,
and let f, g : [a, b]→ R be two functions of class C1. The classical integration by parts formula∫ b

a

f ′(x)g(x) dx =
(
f(b)g(b)− f(a)g(a)

)
−
∫ b

a

f(x)g′(x) dx

can be rewritten in a form very close to (8.3), if we introduce the “normal vector” n(b) = 1, n(a) = 1 to ∂Ω,
pointing outward Ω, and if we agree that integrating on the “boundary” of (a, b) amounts to summing over
its endpoints, we obtain: ∫

Ω

f ′(x)g(x) dx =

∫
∂Ω

f(x)g(x)n(x) ds−
∫

Ω

f(x)g′(x) dx,

which is exactly the one-dimensional counterpart to (8.3).

8.2. Application: establishing the thermal conductivity equation

In this section, we exemplify how the notions introduced in the previous section are naturally involved in the
mathematical modeling and treatment of physical phenomena. Here, we aim to derive the boundary-value
problem governing the equilibrium state of the temperature inside a cavity from the physical conservation
laws.

Let Ω be a bounded domain of class C1 of the Euclidean space Rd; physically, Ω accounts for a cavity
insulated from the outside, which is filled by a material with thermal conductivity γ > 0. Let u : Ω → R
denote the temperature field within Ω; we aim to characterize it by means of a boundary-value problem, i.e.
the combination of a partial differential equation inside Ω and a boundary condition. We proceed to this end
under the assumption that u is of class C2 on Ω, so that all the forthcoming developments are legitimate.

The key ingredient in the modeling of thermal phenomena is the heat flux j : Ω → Rd within Ω; this
vector field (that we also assume to be “regular enough”) allows to calculate the amount of energy crossing
any surface S ⊂ Ω, oriented by the normal vector n, via the formula:∫

S
〈j(x), n(x)〉 ds.

Note that, in particular, the quantity vanishes when the heat flux is tangential to the surface S (i.e. when
〈j(x), n(x)〉 = 0 on S).

The heat flux is related to the temperature u within Ω and the conductivity γ of the constituent material
via the famous Fourier’s law :

j(x) = −γ∇u(x), x ∈ Ω.

Intuitively, this law encodes the fact that the heat flux is oriented from the regions of Ω with large temperature
(the “hot” regions of Ω) to those with low temperature (the “cold” regions).

Let now f : Ω→ R be the heat source at play in the medium. By definition, the amount of heat produced
in an arbitrary subdomain ω ⊂ Ω equals: ∫

ω

f(x) dx.

We now suppose that the system is at equilibrium. This means that, for any subdomain ω ⊂ Ω, the
amount of heat produced inside ω must be equal to that leaving ω; this corresponds to the equality:∫

ω

f(x) dx =

∫
∂ω

〈j(x), n(x)〉 ds = −γ
∫
∂ω

∂u

∂n
(x) ds,

where we have introduced the normal derivative ∂u
∂n = 〈∇u, n〉 of u.

Now using the version (8.2) of Green’s formula, we obtain:

(8.4)

∫
ω

f(x) dx = −γ
∫
ω

∆u(x) dx,

where we recall that the Laplace operator ∆ is defined by ∆u = div(∇u), see Definition 4.3. Since the
relation (8.4) holds for all subsets ω ⊂ Ω, it follows that

−γ∆u = f in Ω.
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This is the expected partial differential equation governing u inside Ω.
We now seek to characterize the behavior of u on the boundary ∂Ω. To this end, we rely on the assumption

that Ω is insulated from the outer medium, which implies that the amount of energy −γ
∫
V
∂u
∂n ds crossing

every subregion V ⊂ ∂Ω should vanish. Hence,

γ
∂u

∂n
= 0 on ∂Ω.

Summarizing, we have shown that u satisfies the Laplace equation with homogeneous Neumann boundary
conditions: {

−γ∆u = f in Ω,
γ ∂u∂n = 0 on ∂Ω.

8.3. Exercises

Exercise 8.1. Let Ω ⊂ Rd be a bounded domain of class C1.

(i) Show that the volume of Ω equals:

|Ω| =
∫

Ω

dx =

∫
∂Ω

xini ds.

(ii) Show that the center of mass of Ω equals:

1

|Ω|

∫
Ω

x dx =
1

|Ω|

∫
∂Ω

d∑
i=1

x2
ini ds.

[Remark: These formulas are handful in practice, since they allow to calculate volume quantities from the
sole knowledge of the boundary ∂Ω.]
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σ-algebra, 34
generated by a collection of subsets, 34
of Borel subsets of Rd, 35

admissible direction, 67

Bolzano-Weierstrass theorem, 8
Borel-Lebesgue property, 9

canonical basis of Rd, 3
Cauchy sequence, 7
Cauchy-Lipschitz theorem, 59
Cauchy-Schwarz inequality, 13
chain rule, 26, 49

for higher-order derivatives, 49
change of variables in integrals, 38
class C1 (function), 24
closed set, 6
compact set, 8
continuity, 6

Lipschitz, 6
of a linear mapping, 10
of a multilinear mapping, 12
uniform, 6

contraction mapping, 55
convex set and function, 4

derivative
higher-order, 48
second-order, 45

diffeomorphism
of class C1, 24
of class Ck, 65

differential, 21
partial, 27

differentiation under the integral sign, 36
divergence of a vector field, 31
Domain of class Ck, 74
dominated convergence theorem, 36
dual space, 12

equivalent norms, 5
Euler-Lagrange equation, 71

Fixed Point theorem, 55
with parameter, 57

Fubini theorem, 37

Gateaux derivative, 28
gradient, 31
Green’s formula, 75

Hessian matrix, 50

Hilbert space, 13
hypersurface of class Ck, 72

oriented, 73

Implicit Function theorem, 61
integrable function, 35
integral, 35
isometry, 11
isomorphism, 11

Jacobian matrix, 31

Laplace operator, 50
Lebesgue measure, 35
linear mapping, 10
local inverse theorem, 65

Mean Value theorem
for real-valued functions, 4
for vector-valued functions, 43

measurable set, 35
measure space, 34
minimizer

global, 66
local, 66
under constraints, 69

multilinear mapping, 12
continuity, 12
symmetry, 12

negligible set, 35
Neumann series, 19
norm, 5
normal derivative, 76
normal vector, 73
normed vector space, 5

one-sided directional derivative, 28
open set, 6
optimality conditions

constrained case, 69
first-order, 67
second-order, 67

ordinary differential equation, 59

partial derivative
first-order, 30
higher-order, 50

polar coordinates, 42
positive measure, 34

Schwarz theorem, 47
security cylinder, 59
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simple function, 35
solution to a differential equation, 59
spherical coordinates, 42
surface measure, 75

tangent plane, 74
Taylor formula with integral rest, 53

Taylor-Lagrange formula, 52
Taylor-Young’s formula, 51
topology, 6
triangle inequality, 5

zero of a function, 57
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