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The Level Set Method was introduced in the seminal paper of Osher and Sethian [15] in 1988; however,
related ideas already existed in the literature; see e.g. [24]. It is now acknowledged as one method of choice
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when dealing with arbitrarily large motions of domains or surfaces (even when they involve topological
changes), from both the theoretical and numerical viewpoints.

These notes are a modest and inevitably biased introduction to the basic features of this method, without
any ambition of exhaustivity. they are mainly focused on practical and numerical aspects: in order to keep
the exposition elementary, insofar as possible, we have decided on several occasions not to insist on the
(deep) underlying mathematical theory.

These notes are organized as follows. Section 1 outlines the scope of the study and discusses the types of
evolving domains or surfaces we shall be dealing with. In Section 2, the level set framework is introduced,
namely the key idea of describing domains in an implicit way, via an auxiliary ‘level set’ function. At first,
Section 2.2 and Section 2.4 deal in a formal way with the connection between the ‘intuitive’ notion of an
evolving domain and the corresponding evolution equations for an associated level set function; Section 2.3
then attempts to provide a glimpse of the underlying mathematical theory; it may be omitted at first reading,
or by the uninterested reader.

In Section 3, we describe a typical use of the Level Set Method in the context of the resolution of a
concrete physical problem, without yielding to technicality. It is emphasized that, in numerical practice, the
Level Set Method relies on two main operations. Section 4 discusses numerical algorithms devoted to the
first of these operations, namely the resolution of the level set evolution equation. Then, Section 5 presents
numerical methods for the second operation of interest, - that of creating one level set function associated
to a given domain or surface -, among which the celebrated Fast Marching Method.

Several operations which are easy to perform when a conventional representation of domains is used may
result slightly more difficult in the level set framework; in Section 6, we discuss numerical methods for the
main such operations. Section 7 is then a pot-pourri of additional practical issues: the need for redistancing
is discussed, as well as the Narrow Band improvement, etc.

Numerical methods for tracking the evolution of domains are manifold. Section 8 briefly presents other
popular methods, together with their main differences with the Level Set Method.

We conclude this chapter with Section 9, in which several applications are referenced where it has been
successfully used, e.g. in numerical simulation, image processing, etc.

Before entering the core of the matter, let us mention that very good in-depth monographs exist on the
topic: the obvious and perhaps most complete reference is the book of Sethian [55]; see also that of Osher
and Fedkiw [44]. These may be fruitfully complemented with the more theoretic treaty [29].

1. GENERALITIES ABOUT DOMAIN, OR SURFACE EVOLUTION PROBLEMS

The Level Set Method is a general framework for the theoretical and numerical study of an evolving domain
Q(t) € R? (or equivalently of its boundary I'(¢) := 9€(t)) according to a velocity field (¢, z) — V (t,x) € R<.
The velocity field V' may account for motions of different natures, which can roughly be classified into three
categories:

(1) V may be externally prescribed, that is, independently from any feature of the domain (t). For
instance, one may imagine that 2(¢) is a small object, passively transported in a fluid with velocity
V. Of course, this coarse model overlooks any physical interaction between the object and the fluid.

(2) V may depend on local features of (t) or I'(t), such as the normal vector field n.(z) to I'(t) (pointing
outward €2(t)), or the mean curvature #¢(z) of I'(t)". Let us present two classical examples of such
motions, which will be frequently referred to throughout this chapter:

e In the model describing the propagation of a flame front introduced in [9, 53], Q(t) stands for a
burnt region, whose frontier I'(t) expands with constant, normal velocity ¢ > 0. In other words,
V reads:
(1.1) V(t,z) = cni(z).

e The mean curvature flow features the velocity field
(1.2) V(t,z) = —re(z)ne(z).

IThe second fundamental form II, (resp. the mean curvature x(z)) of the boundary T of € is oriented in the sense that it
is positive definite (resp. positive) when  is locally convex around z.
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Intuitively, T'(¢) evolves by resorption of its ‘bumpy’ regions (i.e. the regions where its mean
curvature is positive), and ‘corking’ of its ‘creases’ (the regions where its mean curvature is
negative). More rigorously, it can be proved that the mean curvature flow is the gradient flow
associated to the minimization of the perimeter functional.

(3) V may depend on global features of 2(t) and I'(¢). As an example, when I'(¢) represents the interface
between two fluids with different physical properties, V' arises as V (¢, -) = uq(), the solution to the
associated bifluid Navier-Stokes equations (see Section 3).

Motions pertaining to this last class are undoubtedly the most crucial ones from a physical or mechanical
perspective; unfortunately, they generally prove far too complicated to lend themselves to a rigorous analysis.
Therefore, most of this chapter deals with motions of the first two categories. As we shall see in Section 3
below, this is not a great loss of generality, at least when it comes to numerical applications, since, often, a
motion of this third kind is somehow reduced to a series of motions of the first two kinds.

2. THE LEVEL SET METHOD FOR DESCRIBING DOMAIN OR INTERFACE EVOLUTION

The Level Set Method relies on the representation of a domain Q C R in implicit form, that is, via a scalar
‘level set’ function ¢ : R? — R satisfying the properties (see Fig. 1 for an illustration):

d(x) <0 ifzeQ,
(2.1) dp(x) =0 ifzel:=99Q,
¢(z) >0 if x € Q.

In other words, (2 is the negative subdomain of ¢, and I' coincides with the 0 isovalue of ¢. Note that there
exists an infinity of level set functions associated to a common domain §2.

)

FIGURE 1. (Left) A domain Q C R?, (right) the graph of an associated level set function .

As we are about to see, this change in perspectives allows for a very convenient formulation of the evolution
of a domain in terms of a partial differential equation. Before getting into details, let us first discuss about
how geometric quantities attached to €2 may be directly calculated from the datum of a level set function ¢.

2.1. Level Set framework and geometry

Let © C R? be a bounded domain of class C!, ¢ : R? — R be an associated level set function (i.e. (2.1)
holds), such that V¢ # 0 on a neighborhood of T'. Note that such a function always exists, as a consequence
of a classical argument of partitions of unity, relying on the definition of a domain of class C*.

The unit normal vector n(z) to I, pointing outward € can be expressed in terms of ¢ as:

(2.2) Ve e, n(z) = Volz)

V()|
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Assuming © and ¢ to be additionnally of class C?, the second fundamental form II associated to I' has
the expression:

Vo(x) )
2.3 Ve eTl, ILL,=V( .
23 Vo)
In particular, the mean curvature k of T', that is, the trace of II reads:
. ( Vo(z)
(2.4) Ve el, r(z)=div < .
V()]

2.2. Surface evolution in the level set framework

We have hitherto been purposely evasive about what we precisely mean by ‘domain evolution’. In order to
appraise the difficulties inherent to this notion, let us start by a formal discussion around a model situation:
Q(t) ¢ R? is a smooth bounded domain, evolving over a time period (0,T), according to a smooth velocity
field V (¢, z), defined for ¢t € (0,T) and x € R%.

By this, it is natural to understand that, for any two times to,¢ € (0,T), 2(¢) may be obtained from (o)
by transporting its points in the direction pointed by V (see Fig. 2):

(2.5) Qt) = {x(xo,t,t0), To € Qto)},

where ¢t — x(z0, t, to) is the characteristic (or integral) curve of V' emerging from xg at ¢, the unique solution
of the ordinary differential equation:

(2 6) X/(.’,Uo,t, to) = V(ta X(Io,t7t0)) for ¢t > 07

. x(o, o, to) = Zo-

Let us point out that this notions is often encountered in the context of fluid mechanics, where the
characteristic curve t — x(xo,t,to) emerging from xz( at time ty describes the position of a particle flowing
along the velocity field V (¢, z), which lies at z¢ at time to.

FIGURE 2. One domain Q(t) evolving according to the velocity field V(t, x).

Now, for each time ¢, let ¢(¢,-) be a smooth level set function for Q(t), and let us see how the motion
of Q(t) translates in terms of ¢. Let to € (0,T) and 29 € I'(tg) be given, and let t — x(xq,t,t9) be the
associated trajectory, defined by (2.6). It stems from the definition (2.5) and (2.1) that:

vt € (0,T), o(t, x(xo,t t0)) = 0;

a direct application of the chain-rule then yields:

d

%((b(tax(xOyttO))) = %(t7x(x07t7t0)) + X/(x07t7t0) : V(b(t,X(an t7t0)) =0.
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Evaluating this identity at t = to, and since the argument holds for any to € (0,T), ¢ € T'(tg), we finally
obtain the so-called level set advection equation:
¢

(2.7) vt € (0,7), = € RY, o L2) + V(@) Vo[t z) = 0.

Note that (2.7) is not a usual advection equation, since V' generally depends on 2 - thus on ¢ -, except in
very specific cases (see the discussion in Section 1).

At this point, several comments are in order:

(1) Strictly speaking, we have only established (2.7) for pairs (¢,z) € (0,T) x R? such that = € T'(t).
However, imposing that every level set of ¢(t,-) (and not only the 0 level set) evolves according to
V(t,+), the previous argument leads precisely to (2.7).

(2) The normal vector n:(z) to I'(t) at x, pointing outward Q(t), reads n;(x) = |§igg\ Letv=V- %
be the normal component of V'; (2.7) then rewrites as the so-called level set Hamilton-Jacobi equation:

(2.8) vt e (0,T), x € R, %(t,x) +ou(t,z)|Vo(t,z)| = 0.

Again, this terminology is a bit misleading since, in general, (2.8) is not a usual Hamilton-Jacobi
equation.

(3) Equation (2.8) expresses the intuitive fact that only the normal component of V' plays a role in the
evolution of Q(t): its tangential part only accounts for a ‘convection’; or reparameterization of Q(¢).

(4) The Level Set Method requires the velocity field V'(¢,-) to be defined on the whole ambient space
R?, whereas, in many applications, it only makes sense on I'(¢) (see the examples given in the second
and third items in Section 1). When such is the case, V (¢, -) must be extended to R? (or at least to
a neighborhood of I'(t)). It is however not difficult to show (at least formally) that the evolution of
the 0 level set of ¢(t,-) (and only the 0 level set in this case) does not depend on how this velocity
is extended. We will see in Section 7.2 that the same issue arises in the numerical context.

Hence, the Level Set method offers a convenient reformulation of the motion of Q(¢): this difficult geometric
evolution problem translates into the Partial Differential Equations (2.7) and (2.8), posed in terms of the
auxiliary function ¢(t,-), which is often simpler to handle - especially from the numerical point of view.
This change in points ov view allows to account for rather arbitrary deformations of 2(t), including changes
in its topology (for instance, the merger of holes); these are indeed naturally addressed in this framework,
while they would be difficult to describe with a conventional representation of domains. Consider the
example depicted in Fig. 3: a domain (¢) initially composed of two disks evolves by ‘inflating’ until its two
components merge. The instant where Q(t) changes topology is very awkward to describe using a classical
representation of domains, and it is fairly natural with a level set description. We shall say more about this
point in the next Section 2.3.

2.3. A glimpse at the mathematical framework

However appealing, the above considerations are formal. To be more precise, they are legitimate as long as
the evolving domain Q(t) and the velocity field V (¢, x) are smooth. Unfortunately, even in the context of a
simple motion, intitiated with an arbitrarily smooth domain ©(0), Q(t) turns out to develop singularities.
Let us illustrate this crucial feature with two examples.

(1) This first example refers to the flame propagation model, presented in Section 1, and is excerpted
from [55] §2.3. The situation is that of Fig. 4: a smooth two-dimensional domain (0), whose
boundary I'(0) is locally described by the curve

[0,1] 2 s+ 7(s) = <15,1+COS(2W$)> € R

2

accounts for the initially burnt region. The flame front I'(¢) expands with unit normal velocity
(v(t,z) = ny(z) in the notation of the previous section), and several positions of the front are
depicted. At some time ¢t = t., I'(t) becomes singular: it is no longer smooth at the blue dot on
Fig. 4.



FIGURE 3. Inflation of a domain Q(t) initially composed of two disconnected disks; the upper
row shows the motion of the boundary T'(t), and the lower one, the corresponding evolution
of the graph of a corresponding level set function ¢(t,-).

FIGURE 4. Representation of (t) for t = 0,0.02,0.04, and t = 0.055 (from bottom to top),
in the flame propagation model. The initially burnt region Q(0) (in grey) is of class C*>;
however, a singularity (blue dot) appears at approximately t. = 0.055.



(2) Let us consider the mean curvature flow (1.2), initialized with the ‘dumbbell’ of Fig. 5 (left). It is
observed in [18] that Q(¢) evolves by shrinking, until two ends of its boundary I'(¢) join, as in Fig. 5
(right).

FIGURE 5. Ewolution of a three-dimensional dumbbell under the mean curvature flow (1.2).
The central part of the bar ends up pinching.

After Q(t) has developped a singularity, it is unclear how its motion should go on; in both examples
discussed above, the normal vector field n; and mean curvature ; of I'(¢), are no longer everywhere defined.

What is the ‘correct’ evolution of Q(t) for ¢t > ¢. is actually a matter of definition, and it is specific to
each particular situation. Let us elaborate on the first example discussed above: the perhaps most ‘natural’
way to characterize the motion of Q(¢) for ¢ > ¢. is to demand that all the points « € I'(¢) where the normal
vector nt(z) is well-defined go on moving independently with unit normal velocity. The subsequent evolution
of T'(t) is drawn on Fig. 6 (left): T'(¢) is now a self-intersecting curve. Another way to define this subsequent
evolution, which relies on the physical meaning of the problem, is to impose an ‘entropy criterion’: a point
burnt at one time tog stays burnt for t > ty. In more mathematical terms, for any two times ¢; < to, one has
Q(t1) C Q(t2). The resulting evolution of I'(¢) is represented on Fig. 6 (right).

<

FIGURE 6. (Left) The ‘swallowtail” pattern and (right) the ‘cusp’ pattern described by Q(t),
fort > t. in the flame propagation model.

Imposing a ‘natural’ behavior to 2(¢) once singularities have appeared is not simple in the general case.
Historically, several attempts were made to classify all the singularities which may arise in the course of such
evolutions, thus allowing to define a subsequent evolution in each case. Unfortunately, this task turned out
to be out of reach, especially in the three-dimensional context.

Another idea goes the other way around, and starts from the level set equations: (2.7) and (2.8) are
endowed with a generalized notion of ‘weak’ solutions, that somehow ‘encompasses some physics’; if ¢ (¢, x)
is such a weak solution, €2(¢) is then defined as the negative subdomain:

Q(t) = {z e R, ¢(t,x) <0}.

An adapted framework to many such problems turns out to be that of viscosity solutions, initially proposed
by M. G. Crandall and P.-L. Lions in [20], in a broader context than that of Equations of the form (2.7)
and (2.8); the interested reader may find a comprehensive introduction to this rich theory in [19].
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Definition 1. Let U C R? be an open set and H : RE x R, x Rg x S(R?) be a continuous function (the
Hamiltonian). Consider the general second-order Hamilton-Jacobi equation posed on (0,T) x U:
9¢

(2.9) 5 (b2) + H(z,0,V6,V?0)(t, ) = 0,

where V2¢ stands for the Hessian matriz of ¢.

o A function ¢ is a viscosity subsolution of (2.9) if it is upper semicontinuous on U, and, for any
function ¢ of class C* on U such that ¢ — ¢ reaches a local mazimum at x,
9¢

a(t’ ‘r) + H(l‘, (b(x)’ V@(x)v V2tp(x)) <0.

o A function ¢ is a viscosity supersolution of (2.9) if it is lower semicontinuous on U, and, for any
function ¢ of class C* on U such that ¢ — ¢ reaches a local minimum at x,
¢

5 (bo) + H(w, é(), V(z), V(@) > 0.

e ¢ is a viscosity solution of (2.9) if it is both a viscosity subsolution and a viscosity supersolution.

Remark 1.

e Equations of the form (2.7) and (2.8) directly fall into the framework of the above definition when
either the velocity V, or the normal velocity v is independent of ¢. Such is not the case of the mean
curvature flow equation (1.2), which demands a modification of the notion of viscosity solution [25].

e This definition does not allow to deal with a velocity field V' which depend on Q(t) (i.e. on ¢(t,-))
in a non local way, for instance in the case where it involves the solution of some partial differential
equation posed on (t) (see the third category in the classification of Section 1). We mention the
work [12] (continued in later articles) in which a notion of solutions to the level set equations is intro-
duced and analyzed qualitatively in cases where the velocity field V' arises from shape optimization
considerations.

Let us presently list several properties of the viscosity solution ¢ of an equation of the form (2.9), or of
the associated negative subdomain (t) = {x e R?, ¢(t,x) < O}. These properties attest to the ‘physical’
meaning of the notion of viscosity solution; note that they are hereafter formulated in a deliberately hazy
way, omitting the (very technical) assumptions. Let us solely mention that they hold for fairly general
Hamiltonian functions H (see [29], Chap. 4 for precise statements and proofs).

e Euxistence and unicity. The viscosity solution ¢ to (2.9) exists and is unique.

e Generalization of the notion of classical solution. If ¢ is of class C2, then it is also a solution of (2.9)
in the classical sense.

o Vanishing viscosity limit of solutions to ‘reqular’ equations. For small e > 0, let ¢.(¢, ) be the
smooth solution to the equation:

{ 651;5 (t, CC) - €A¢g(t, 17) + H(xa 0e, Vo, Vzgf)s)(t, I) =0,
¢e(t=0,) =t =0,") ’
e—0

obtained from (2.9) by adding the regularizing ‘vanishing viscosity’ term —eAg¢.. Then, ¢. — ¢,
uniformly on every compact subset of [0, 7] x R,

e Independence from the level set function characterizing the initial domain. Let Qg be a domain, and
®o, o be two associated level set functions (i.e. (2.1) holds). Let ¢(t,-), ¥(t,-) be the solutions
of (2.9) associated to the respective initial data ¢g, 1. Then, the domains described by ¢ and 1
coincide, i.e.

{x eR?, ¢(t,x) < 0} = {x eRY, p(t,x) < 0}.

e Monotonicity. Let € C Qg be two domains of R?, and Q(t), Q(t) be the evolving domains resulting
from the process described above; i.e. Q(t) (resp. €2(t)) is the negative subdomain of ¢(t,-) (resp.
®(t,-)), the solution to (2.9) with a level set function for ©(0) (resp. ©(0)) as initial data.

Then, Q(t) C Q(t).
8



Before closing this section, let us appraise the concrete meaning of this notion of solutions on the two
examples introduced above.
e As was proved in [9], the evolution of () in the flame propagation model after the first singularity
has appeared is that obtained by imposing the so-called ‘entropy criterion’ (see Fig. 4, right).
e In the case of the mean curvature flow, the two components joined by the singular point separate,
and each part shrinks independently to a point. Other interesting examples of domains evolving via
the mean curvature flow can be found in [15, 25] and the references therein.

2.4. Domain evolution as a boundary value problem: Eikonal equations

An interesting particular case of the general setting of Section 2.2 arises when Q(t) expands according to a
normal velocity, i.e. V(t,z) is of the form:
V(t,x) = c(x)n(x),
with ¢(x) > 0; this holds in particular in the model for flame propagation (1.1). The problem turns out to
be equivalently described by the stationary time function T : R%\ Q(0) — R, defined by:
T(x)=inf{t >0,z € Qt)},

that is, for € R%\ Q(0), T'(z) is the first time ¢ at which () reaches .

The derivation of a boundary value problem for 7" follows the same trail as that of the level set equations
(2.7) and (2.8): in a first step, it is rigorously established in the regions of space where all the quantities at
stake are smooth enough. Then, T is understood as the solution of this partial differential equation in an
adequately generalized sense.

Let 29 € R?, and assume that the functions T, ¢ are smooth in a vicinity U of 2. Using again the intuitive
notion of an evolving domain of Section 2.2, let x(t) := x(xo,t,to) be the integral curve of V emerging from
xo at t = to, which is defined on a neighborhood of tg by (2.6); recall that it satisfies the properties:

x(to) = zo, x(t) € T(t) and '(t) = c(z(t))n(x(t)).
On the other hand, it follows from the definition of T" that:
Qt)={zeR% T(z) <t}, I'(t) = {z eRY, T(z) =t};
as a consequence, a level set function associated to Q(¢) is
V(t,z) €[0,T] x R, ¢(t,x) :=T(zx) —t,

whence, from formula (2.2), ny(z) = %. Differentiating with respect to t in the relation T(x(t)) = ¢

and incorporating the Dirichlet boundary condition T'(z) = 0, for all z € T'(0), we end up with the Eikonal
equation:

cVT|=1 in R4\ Q(0)
(2.10) { T=0 onlI(0)

Actually, in the sequel, we will also get interested in the very similar case where Q(t) shrinks according

to a normal velocity ¢ (or R\ Q(t) expands with velocity c):
V(t,z) = —c(x) ny(x),
with ¢(x) > 0. The time function T : 2(0) — R is then defined by:
T(z) :inf{t >0,z € Rd\m}.
A similar argument reveals that T is now solution to the Eikonal equation:
o (st s

So as to select unambiguously a ‘physical’ behavior for T', solutions to (2.10) or (2.11) have to be taken
into account in a generalized setting, which once again happens to be that of viscosity solutions. Adapting
Definition 1 to the present stationary setting (we omit the details, referring again to [19]), the result of
interest is now the following (see e.g. [8]):



Theorem 1. Assume that Q(0) C R? is a bounded domain, and that the normal velocity c is positive and
continuous on 2(0). Then, there exists a unique viscosity solution to the Dirichlet problem (2.11).

Example 1. Let us briefly look into the interesting particular case of equation (2.11) where the normal
velocity field is constant, ¢ = 1. The unique viscosity solution to (2.11) is the Euclidean distance function
d(.,T) to T, defined by:
Ve €, d(z,T) = inf |z — y|.
yel
This fact accounts for the regular spacing out of the isovalues of distance functions, as can be seen on Fig. 7.

We will discuss this very important property once again in Section 5. See also the discussion in [50] Chap.
2, about the physical meaning of the viscosity solution in this particular case.

Q

V/

FIGURE 7. A domain (2, together with several isolines of the distance function to 0f2.

3. A MODEL APPLICATION OF THE LEVEL SET FRAMEWORK

As a preliminary to our discussion of the applications of the Level Set Method in scientific computing, we
describe a challenging, real-life problem where it find a natural application. We seize this opportunity to
motivate the need for the dedicated algorithms that are presented in the next sections. Throughout the
remainder of this chapter, we shall refer to this example to illustrate our purposes.

Let D C R? be a computational domain, divided into two phases €y and Q; := D\ Qo, filled with
different fluids with respective (homogeneous) densities and dynamic viscosities po, p1, and vg,v;. The
interface between the fluids is T' := 9Qq \ 9D; see Fig. 8. The domains g, Q; are moving in time, and we
aim at solving the bifluid incompressible Navier-Stokes equations over a time period (0,7, that is:

Pi (% + u; - Vui) —viAu; + Vp;, = f; for (t,z) € (0,T) x ;(t),

div(u;) =0 for (t,x) € (0,T) x ;(t),

(3.1) u;(t,x) =0 for (¢t,z) € (0,T) x 0D,
. UO(t, ) = ul(tv ) on F(t)a
(00 — 1) Nt = YRy on I'(t),
Ui(t = O, ) = ui,0(~) on Ql(O)

In the above system u; and p; are the velocity and pressure of the fluid in the phase ©;, and o; := v;(Vu; +
Vul) — p;I is the associated stress tensor. n;(-) (resp. ry(+)) is the unit normal vector to I'(t), pointing
outward (t) (resp. its mean curvature), f; stands for the applied body force (typically, gravity), and = is
the surface tension coefficient. The interface I' is consistently moving according to the velocity field w(t, -)
(recall that ug(t,-) and uq (¢, -) coincide on I'(¢)), and we assume that the initial domains and interface £2;(0),
i=1,2, and T'(0) are given.
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This example of a moving domain, whose physical and mathematical aspects are broached in Chapter 77,
is one among many where the velocity field depends on global features of this domain.
Let us first sketch the considered numerical setting.

0

Qo

FIGURE 8. Model situation for the bifluid problem (3.1).

Notations: The time interval (0,7) is split into subintervals (¢, #"*1) of ‘small’ length At = ¢"+1 — 7
where n = 0, ..., T/At. When ¢(t, z) is a quantity depending on time and space, ¢™(x) stands for the sought
numerical approximation of ¢(t", x), for z € D.

As for the spatial discretization, the computational domain D is discretized with a mesh 7, which we do
not specify for the time being; for instance, it may be a Cartesian grid, or a simplicial mesh (i.e. composed
of triangles in 2d, tetrahedra in 3d). This mesh comes with a set of degrees of freedom, which we assume to
be the vertices {z;};.; of T for simplicity.

The two phases Qg(t),Q21(¢) (and thus the interface I'(t)) are tracked by means of a Level Set function
@(t,+) for the domain Qg(¢) (i.e. (2.1) holds with Qg (¢) instead of ). This function is, at all times, numeri-
cally discretized at the vertices of 7. Hence, the quantity of interest when it comes to ¢ are the ¢"(x;), for
n=20,.,N and i€ I.

A tentative outline of an algorithm for the numerical resolution of (3.1) reads as follows:

e Initialization: Create a level set function ¢° (at the nodes of mesh T) associated to the initial
domain Q(0).
e Main loop: for n=0,..., N — 1,

(1) Motion of the domain: solve the level set advection equation (2.7) (or the level set Hamilton-
Jacobi equation (2.8)) over the time period (", ¢""1), using the vector velocity u™ (resp. the
scalar, normal velocity ™ - n), and the initial condition ¢™.

Implicitely, this relies on the assumption that the time step At is small enough so that the
velocity of the fluid u(t,-) may be ‘frozen’ over (7, ¢"+1):

vt € (t",t"TY), x € D, u(t,x) ~ u"(z).

(2) Resolution of the partial differential equation: Solve the Navier-Stokes Bifluid equation (3.1)
over the time period (¢, ¢"*1) to obtain the new velocity u"**.
This discussion highlights the general needs for numerical methods associated to the Level Set Method:

(1) We need an algorithm for generating a level set function ¢° associated to the initial domain €4(0).
In Section 5, we present efficient numerical schemes to carry out this initialization step.

(2) We also need to solve the level set advection equation (2.7), or the Level Set Hamilton-Jacobi equation
(2.8) over a given time period, and with given initial value and (scalar or vector) velocity field. This
issue is tackled in Section 4.

(3) There are operations that we need to perform on a domain Q which is only known through an
associated level set function ¢. Here are some of them:
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e Calculate the normal vector n and the curvature x of Q (which, in the example above, appear
in the transmission conditions in (3.1),
e Evaluate the integral of a given function over Q or T' (in our context, this is needed for assembling
the stiffness matrix associated to (3.1))
These operations will be addressed in Section 6.

(4) The last main interrogation is about the resolution of the Navier-Stokes bifluid equation (3.1). This
step is generally hard to perform, mainly because of the complexity of the equation. This issue is
not specific to the practice of the Level Set method, and its numerical treatment is specific to each
equation; it goes therefore beyond the scope of these notes.

The efficiency, robustness, and relative simplicity in terms of programming effort, of the numerical methods
for the aforementioned operations contribute to the popularity of the Level Set Method: it is a fast and
accurate means to account for arbitrarily large deformations of a domain, including topological changes.
This last point is especially appreciated in the context of bifluid flows, where one may for instance want to
track the motion of coalescing bubbles.

4. SOLVING THE LEVEL SET HAMILTON-JACOBI EQUATION

We have seen that the motion of an domain Q(¢) driven by a velocity field V (¢, x) translates in terms of
an associated level set function into the partial differential equations (2.7) and (2.8). Recall that V (¢, z) may
be of a quite intricate nature (in particular, it may depend on the evolving domain 2(¢) in a complex way),
which makes these equations difficult to solve in the general context.

As we have seen in Section 3, the numerical treatment of (2.7) and (2.8) often requires to split the time
interval (0,7 into subintervals (¢, ") of ‘small’ length At = t"™1 —¢" and to ‘freeze’ the velocity field
on each subinterval:

vt € (t"t"TY), V(t,x) =~ V(t", x).
Thus, the evolution equation (2.7) becomes a true advection equation on each interval (t*,¢t"*1), and can
be solved relying on well-established numerical techniques (see e.g. [36]).

A slightly different point of view arises when one wants to preserve the information that the evolution of
Q(t) is oriented along the normal vector n;(x), which is a crucial feature in several applications. Then, only
the normal component of V' is frozen:

vt e ("t Vit ) = o™, x)ng(z),

and the evolution equation (2.7) becomes a true Hamilton-Jacobi equation. However, the resolution of such
equations is not so standard as that of advection equations.

In the present section, we discuss the numerical discretization of the Hamilton-Jacobi equation:

{ g—f +v|Vé|=0 on (0,7) x R?

#(0,.) =¢o9  on RY

for given normal velocity field v(z), and initial function ¢o. The theory of numerical schemes for (4.1) is
part of the more general theory of numerical schemes for first order Hamilton-Jacobi equations of the form:

(4.1)

(4.2) ot

¢(Oa ) = ¢0 on Rda
and arises as the particular case when H(z,p) = v(z)|p|. The forthcoming discussion takes place in this
general context, which encompasses major applications outside from the level set framework, and perhaps
allows to better appraise the salient features of the theory.
A wide variety of methods exists to deal with such problems, and we shall only sketch a few basic ones.

For the sake of clarity, and without loss of generality, our discussion takes place in the two-dimensional case:
d=2.

{ 9¢ + H(z,V¢) =0 on (0,T) x R,

12



4.1. Solving the Level Set Hamilton-Jacobi equation on Cartesian grids

Notations: Let N € N, and At = % be a time step, according to which (0,7) is divided into subintervals
("¢t n = 0,..,N — 1, with " = nAt. As for the space discretization, in this subsection, the com-
putational support is a Cartesian grid, with step Az in the z-direction, and Ay in the y-direction. For a
quantity ¢ discretized at the vertices of the grid, and for ¢, j € Z, ¢;; denotes the value assigned to the node
x5 = (iAz, jAy).

Like in the context of hyperbolic systems of conservation laws, so-called upwind discretizations play a key
role in the device of numerical schemes for Hamilton-Jacobi equations. Denote the finite difference quantities:

- Piv15 — Pij . Pij — Pi—1y
DHeg — J i prrgy = Pi J
i Az ’ i ® Az ’
(and likewise for D:}yfb and Di_jygb), which are respectively referred to as forward and backward finite differ-
ences.

Our aim is to compute an approximation to the viscosity solution ¢ of (4.2) as a sequence ¢" = {¢;’J }l ez

with the meaning that ¢} is an approximation of ¢(¢", z;;). An explicit, first-order numerical scheme which
fulfills this role can be written under the general form:

{ Vi, j € Z, ?j = ¢g(iAx, jAy)

VneNi,jeZ, ¢ =Y — AtH (2, D ¢", D o™, DY ¢™, DY om)
where the numerical Hamiltonian

(4.4) H (w5, D" 0", D376, DV6", DV6")

is intended as an approximation of H(z;;, Vo(zi;)). Two properties are desirable about #:

(4.3)

Definition 2. An explicit, first-order scheme for (4.2) of the form (4.3) is said to be:

o Consistent if, for any x € R? and p € R?, H(x,pz, pus Dy, py) = H(z,p). In other words, the finite
difference terms in (4.4) stand for the corresponding first-order derivatives of ¢ in H(x,V$) where
they should.

e Monotone if, for any x € R?, and any i,j € Z, the update function

. . _ +
{¢kl}k,lez — dij — AtH (x,Dijlqﬁ, D;T(ba Dijy¢7Dijy¢)
18 increasing with respect to each of its arguments.

One can indeed prove that, under ‘reasonable’ assumptions over the theoretical Hamiltonian H and the
initial data ¢, consistent and monotone first-order schemes converge to the viscosity solution of (4.2) [21, 59].

Let us now discuss the construction of a numerical Hamiltonian for the particular Cauchy problem (4.1).
The simplest approximation of (4.1) is the following explicit first-order finite difference scheme:

Yn € N,i,j € Z, gi)%"’_l = ¢fy — At (max (v, O)V;;gb” + min(v;j, O)Vi_jqf)")
Vi, j € Z, 0 = do(iAx, jAy) ’
where the discretizations V;Z-(b and V¢ of V| are defined as:
. max(max(D;;",0), — min(D}76,0))2 ) *
Vij¢ = -y Y 2
’ + max(max(D;;"¢,0), —min(D;;"¢, 0))

(4.5)

(4.6)

and
D *¢.0), —min(D;*¢,0))? 2
(@7) Vo= (e e vty )
+max(max(D;3? ¢, 0), — min(D;;?¢,0))
The quantity V;-;gb (resp. V) is said to be upwind (resp. downwind), since its calculation only involves

values of the {¢kl}k,z€z which are smaller (resp. larger) than ¢;;.
Likewise, the discretization of the (exact) Hamiltonian H (z,p) = v(z)|p| by the numerical one:

Vn € Nyi,j € Z, H(wij, Vo(ziz)) = Hij({dh1}riez) = max(vij, O)ij&b” + min(v;j, 0) V0"
13



can be deemed upwind in the sense that, for given 4, j, n, the update ¢}, — QSZH only involves information

coming from smaller values than ¢} if v;; is positive, and larger values than ¢7; if it is negative.

The numerical scheme (4.5) is consistent in the sense of Definition 2. However, it is not unconditionnally
monotone; indeed, it is indeed easily seen that the following CFL-like relation connecting At and Az, Ay
must be satisfied for the latter property to hold:

At
4.8 supv; | ———— < 1.
- ( id ) min(Az, Ay) =
Roughly speaking, (4.8) means that the information should not propagate over more than one space step
Ax or Ay within one time step At.
Under this CFL condition, the scheme (4.5) turns out to be convergent. Moreover, an explicit error
estimate of the discrepancy between the numerical solution {¢},;}, , <z, and the exact viscosity solution o(t,x)

of (4.1) can be achieved:
(4.9) Vi,j € Z,¥n < N, |¢75 — o(t", z5)|< CVAL,

for a constant C depending only on the data of the problem (4.1) (the initial function ¢o, etc.) We refer to
[21, 59] for further details.

Unfortunately, this scheme is only first-order accurate, as is reflected by the ‘bad’ error estimate (4.9);
in particular, it turns out to be very diffusive, meaning that sharp features of the exact solution ¢ to (4.1)
tend to result smeared in the numerical solution {¢xi}, ;5. It is therefore desirable to construct higher-
order schemes for solving (4.1) and (4.2). Mimicking conservation laws, it is possible to build high-order,
adaptive-stencil schemes, known as (weighted) Essentially Non Oscillatory schemes (abridged as (w)ENO);
see [31, 46], or the lecture notes [58] for further details.

4.2. Solving the Level Set Hamilton-Jacobi equation on triangular meshes

The theory we just skimmed through in the previous subsection can be extended to the case of triangular
meshes. Adequate generalizations of the notions of consistency and monotonicity introduced in Definition 2
make it possible to build a theory for convergent schemes on triangular meshes, a glimpse of which we now
provide - see [1] for details.

Notations: As in the last subsection, the time interval (0,7) is still split into subintervals (¢",¢"*1),
n=0,....N—1,t" = nAt.

The plane R? is endowed with a conforming triangular mesh 77, and the vertices of 7 are denoted by
{xi},c;- If ¢ is a piecewise affine function on T, ¢; is the value assigned to the node z;. In this context, V¢
is a vector-valued function with constant values in restriction to each triangle of 7.

At each time t", an approximation of the viscosity solution ¢(t",.) to (4.2) is sought under the form of
a piecewise affine function ¢™ on 7. A general explicit, first-order numerical scheme for (4.2) on T can be
written as:

(4.10) Viel, ¢ptt=¢f — AtH (2, 0"),

where H(z;, ¢) is the numerical Hamiltonian. This notation may seem inappropriate at first glance, since the
theoretical Hamiltonian H only depends on ¢ through its gradient, and one could expect the same behavior
from H (z;, ¢). Actually, H (z;,¢) will depend only on V¢, but it is better expressed in terms of ¢.

Let us now outline one possible procedure for constructing H(z;, ¢), which is very reminiscent of Lax-
Friedrichs numerical schemes in the context of hyperbolic systems of conservation laws. Let C(H) be one
Lipschitz constant for the theoretical Hamitonian H; if A > 0 is smaller than the smallest edge of 7, one
defines:

C(H)
| (6 6(a) ),
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where ®; is the mean value of V¢ over the disk Dy, (x;) of center x; and radius h (see Figure 9):
— 1
¢ =— / V¢ dz,
7Th Dn (wl)

and Cp(x;) := 0Dy (x;) is the circle of center z; and radius h.

FIGURE 9. The numerical scheme for triangular meshes of Section 4.2: setting and notations.

It is possible to prove that the sequence {¢"}, _, obtained using (4.10) converges (in an appropriate
sense) to the viscosity solution of (4.2), provided the following CFL condition holds:

h
4.11 At < ———.
Remark 2. Other methods exist for solving (4.1) and (4.2) on a triangular mesh; see for instance [10], where,

in particular, so-called Petrov-Galerkin approximations are introduced, featuring a usual Finite Element
formulation which is stabilized by the addition of least-square quantities.

4.3. Semi-Lagrangian schemes

So-called semi-Lagrangian techniques attempt to compute the solution ¢ to (4.1) or (4.2) by tracking the
flow of information attached to the equation. In this section, we illustrate the main idea with a short and
formal description of the semi-Lagrangian scheme of Strain [60] for the level set Hamilton-Jacobi equation
(4.1); as, in their broad lines, semi-Lagrangian methods are fairly independent of the particular choice of a
computational support, we purposely do not specify which space discretization is used for functions.

As usual, let us subdivide the time interval (0, T') into subintervals of the form (¢, #"*!). Semi-Lagrangian
schemes advocate to compute the value ¢(t"*1, x) of the solution ¢ at time ¢"*! and at a (grid) point 2 € R?
by tracking the point y € R? such that the information of ¢(t"*!, ) ‘comes from’ ¢(t",%). To be precise,
first recall that equation (4.1) stems (at least in a formal way) from the level set advection equation:

9¢ _ d
(4.12) { 5+ V(L2 V6=0 on (0.7) xR,
#(0,.) = ¢o on R?,
where the vector velocity field V : (t,z) — V(t,z) € R? depends on ¢ and is defined as:
Vo(t, z)
Vit,e)=v(t,z) ————.
() =06 ) 1956, )

The nonlinear equation (4.12) is approximated on each subinterval (t",¢"1) by the linear advection equation
obtained by freezing the value of V(¢,.) over (t*,t"*1), i.e. by setting:

vt e (" " Ve e RY V(L) = V(I 2) = V™(x).
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In other terms, assuming that an approximation ¢ of ¢(¢",.) has been computed, ¢(t,.) is sought on
(t",t"*+1) as the solution ¢ : (t,t"*1) x R? — R to:

{ 2 V(@) VY =0 on (0,T)x RY,
P(tn,.) = ¢" on Rd,

whose exact solution can be computed owing to the method of characteristics (as is quite customary in the
field of computational fluid mechanics):

(413) V€ RY (7 2) = gt X 17, 47) = 67 (17, 47H)),

where (t",t""1) 5 t — x(z,t,t"*1) is the characteristic curve of V", reaching x at time t"*1, defined by
(2.6).
With this guidance in hand, the following procedure for approximating the solution ¢ to (4.1) is derived:
e Initialization:
Start with an approximation ¢° of ¢(0,.) on the considered computational support (e.g. at the nodes
of a Cartesian grid, or as a piecewise linear function on a simplicial mesh).
e Loop (for n=1,...,N —1):
Loop (for each degree of freedom z of the computational support):
(1) Calculate t +— x(z,t,t"*1), and search for the ‘foot’ y := x(x,t",t"*1) of the
characteristic curve reaching x at time t"*! (see Chapter ?? for numerical
methods to achieve this).
(2) Mimicking formula (4.13), the value of ¢™ at y is computed (using interpolation
on the computational support) to produce ¢"*(z).

The benefits of this approach are numerous: among others, it is easily parallelized since the nodes of the
mesh are processed independently from one another. Moreover, the stability of the method does not depend
on a CFL condition over the time step At such as (4.8) and (4.11). On the other hand, this technique also
has some drawbacks, such as its lack of accuracy in regions where the exact solution ¢ is not smooth.

This semi-Lagrangian paradigm (which in the hitherto considered case of Equation (4.1) boils down
to solving (2.7)) may be extended to general Hamilton-Jacobi equations of the form (4.2); the particular
situation discussed above exemplifies the three typical stages of a general semi-Lagrangian method. Between
two consecutive time steps t”, ¢! an approximation ¢"*!(z) of the value ¢(t"*!, x) is computed using:

(1) A space-time integration step, which amounts to searching for the point y € RY such that ‘the
information about ¢(t"*! x) comes from ¢(t",y)’ (in our case, y is the foot x(z,t",t"*!) of the
characteristic curve passing through z at time ¢"*1).

(2) A spatial interpolation step, in which ¢"(y) is interpolated from the values of ¢™ at the grid nodes
surrounding y.

(3) An update step, in which ¢"1(z) is computed from ¢"(y) (in the above case, this step is trivial; see
Formula (4.13)).

Using this idea in the context of a Hamilton-Jacobi equation of the form (4.2) demands a means to complete
the first and third stages of the previous program. This is generally achieved thanks to representation
formulae for the exact solutions to (4.2), which generalize the method of characteristics in the case of more
general Hamiltonian functions H (e.g. the Hopf-Lax formula when H is convex and does not depend on the
x variable). See [26] for further details.

5. INITIALIZING LEVEL SET FUNCTIONS

We have already pointed out the fact that many level set functions can be associated to a domain Q C R,

The theoretical framework of Section 2 is independent of which function ¢ is chosen, as long as it fulfills

(2.1). Things are very different in numerical practice. It turns out that too steep or too loose variations of ¢

near the boundary I' may cause instabilities in locating accurately its position, or difficulties in the accurate

evaluation of the normal vector or curvatures of I' by means of formulae such as (2.2) to (2.4) (see e.g. [106]).
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This pleads for initializing a level set function for 2 as the distance function - and more precisely (for sign
purposes) as the signed distance function dg to €2, defined by:

—d(z,0Q) ifxeQ
Vz € R, do(z) = 0 ifr el
d(z,0Q) ifzeQ

Indeed, we have seen in Example 1 that the isolines of dg, are very ‘regularly’ spaced out. Besides, among
its appealing properties, it turns out that dg is smooth near 9S2, provided I is a smooth boundary.

In this section, we describe several ‘classical’ algorithms for calculating the (signed or unsigned) distance
function to a domain  on a computational support (see also Section 7.1). Most numerical methods for
generating dg are more generally devoted to Eikonal equations of the form (2.10) or (2.11). The Fast
Marching Method, originally introduced in [54], is no exception in this regard.

5.1. The Fast Marching Method on Cartesian grids

Let us briefly present the Fast Marching Method for approximating the solution T’ : R? \ © — R of the
Eikonal equation (2.10), at the nodes of a Cartesian grid of the plane lying outside . Extensions of this
discussion to the resolution of (2.11) at the nodes lying inside 2 and to the three-dimensional setting are
rather straightforward.

Reusing the notations of Section 4.1, the Fast Marching Method is an iterative process which produces at
each step n € N a scalar numerical quantity T := (n?)i,jez intended as an increasingly accurate approxi-
mation of the solution T to (2.10).

One the one hand, the Fast Marching Method relies on an update strategy, whereby the values of T™
are computed in a one-by-one, upwind fashion, mimicking the propagation of a front starting from I". More
precisely, the nodes x;; of the Cartesian grid are consistently classified into three categories:

e The accepted nodes: these are the nodes z;; ‘where the front has already passed’, i.e. at which the
current value 777 is considered to have converged. Once a value has become accepted, it is no longer
updated.

e The active nodes: these are the nodes x;; ‘on the front’. One of their four neighbors z;_1;, Zit+1j, Tij—1
or x;;j41 is an accepted node, and a first approximation (trial value) T} to the desired solution has
been computed, but may still be subject to updates.

e The far nodes: these are the nodes ‘still far from the front’, whose values have not been approximated
yet (and are set to o).

At each iteration, the algorithms accepts one node, to be selected among the active nodes. The set of
active nodes is then redefined, and the update procedure begins: the values 77 at active nodes are updated
according to the new information about the front.

This update procedure T7; — TZ-TJL-"'1 of the values of T" at active nodes z;; is the second key feature of the
algorithm. At every such node, a trial value 1,17; is computed as the solution to the following equation, which
is an upwind discretization of the Eikonal equation (2.10):

— . 2
max (max (W,O) ,— min (T”lAJITJ, 0>> 1
(5.1) _

. _ 2 .
T —T7 . TR -Th Cij
+ max <max <“Ay"1,0> , — min <”+A1y”,0>> !

Note that (5.1) is intrinsically upwind, since the resulting value ZFZ‘ is only influenced by the values of T™

at the four neighbors of z;; that are smaller than TZL this is a means to impose a causality principle which is
inherent to Hamilton-Jacobi equations. Only the accepted values among the set {Ti’ilj, i1 Tﬁ: 1, 13 41}
are used in the polynomial equation (5.1), and it must be checked that the obtained solution 17 is larger
than those values. In the end, TZ;”-H is obtained as:

n+1l _ . T n
Tij = min (T;},Tij> .
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FIGURE 10. Setting of the Fast Marching Method

To sum up, the Fast Marching algorithm proceeds along the lines of the following sketch:

e Initialization:
(1) Compute the value of the exact solution (2.10) at the nodes of the cells which intersect T' (this
operation is fast in practice), and mark them as accepted.
(2) Use the local update procedure (5.1) to compute a trial value at the neighbor points to the
accepted points which have not been yet accepted, and mark them as active.
(3) Mark all the remaining nodes as far, and assign them the value co.

e Loop (while the set of active nodes is not empty):
(1) Travel the set of active nodes, and identify the one with minimum trial value. This node becomes
accepted.
(2) Identify the new set of active nodes, and compute a new trial value for each one of them, using
the local update solver (5.1) for the Eikonal equation.

This algorithm produces a sequence (T]}) which converges towards the unique viscosity solution to (2.10);
see [22] for a precise statement of this fact and a proof.

Furthermore, it can be seen that, if in practice, the computation is restrained to a large bounding domain
(e.g. abox), equipped with a Cartesian mesh consisting of NV vertices, the Fast Marching procedure converges
within O(N log(N)) operations, which makes it very efficient in numerical practice.

5.2. Extension of the Fast Marching Method to triangular meshes

Let us now give a hint of how the Fast Marching Method can be adapted to the context of a triangular mesh
of R?, using the notations introduced in Section 4.2, and following the work [35].

The general outline of the previous algorithm is unchanged: the vertices of the mesh are still tagged as
either accepted, active, or far. At each iteration, the active vertex whose value is minimal becomes accepted
once and for all. The set of active vertices is then adequately redefined, and the active values are updated.

The update procedure is the only different feature between both versions of the Fast Marching algorithm.
Here, it occurs in a situation where two values of T', say T; < T} are known at two vertices x;, x; of a triangle
K =z;zj2, € T, and a trial value ﬁ is sought at xy.

To this end, T' is approximated by its piecewise linear interpolate mxT" on T' from the accepted values
T;,T; and the sought trial value T} at x;, x;, xx respectively. Let cx be an approximation of ¢ over K (e.g.
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¢k may be the mean value of ¢ over K). ﬁ; is sought so as to satisfy:
|V (7xT)|* = ck.

More precisely, the desired solution ﬁ to this quadratic equation should be larger than T; and 7T}, and satisfy
some additional properties (related to the causality inherent to equation (2.10) discussed above), which are
omitted here. If such a solution ﬁ exists, the value T} is updated as Ty = min(T, T\;)

Let us mention a potential difficulty in this approach. Depending on the shape of the triangulation T, it
may happen that, in the course of the update of the value T} at zj, no triangle having x; as a vertex has
accepted values at both other vertices, which makes it impossible to rely on the previous local procedure to
compute a trial value T} at xp. This is especially likely to happen when one or several triangles having xzj, as
a vertex show an obtuse angle at xj. A special procedure is required in this case to reduce to the previous
case.

The exact same construction can be used to generate the distance function to a subset of a triangulated
surface in R? (this is actually the original setting of the work [35]). Yet, this procedure is more difficult to
extend to the case of a computational mesh of R? composed of tetrahedra.

Remark 3. Again, many other numerical methods exist to solve Eikonal equations of the form (2.10); for
an alternative technique, the so-called Fast Sweeping Method, see [(7].

6. OPERATIONS WITHIN THE LEVEL SET FRAMEWORK

The Level Set Method features an implicit description of the domain 2 under consideration; however well-
suited this framework for tracking its evolution, as we have discussed, the absence of any explicit discretization
(e.g. a mesh) of 2 may be prejudicial for certain operations on €.

We hereafter list the most common such operations, and popular numerical recipes to carry them out by
using only a level set function ¢ for Q.

Throughout this section, © stands for a (smooth) bounded domain in R? with boundary T', and ¢ is an
associated Level Set function.

6.1. Evaluation of the normal vector or the mean curvature of I

Relying on the theoretical expression (2.2) of the normal vector n to I' (pointing outward ), a numerical
approximation can be achieved by the following formula:

VIVo(a)P+e?’

in which ¢ is a ‘very small’ parameter (typically of the order of 107°) acting as a safeguard against degeneracy
of V¢. The way to evaluate numerically the involved partial derivatives depends on the computational
support at hand; for instance, when ¢ is discretized at the vertices of a Cartesian grid, finite difference
approximations of various orders may be used, for example, simple first-order finite differences or more
sophisticated ENO approximations.

Likewise, an approximation of the mean curvature x(x) of I' is based on (2.4):

k(z) ~ div <W> .
[Vo(x)[?+e?

Note that both formulae actually make sense outside from I'; so that they actually are approximations to
extended normal vector and mean curvature fields to I'.

6.2. Calculating integrals on 2 and T'.

Let us now address the numerical evaluation of volume or surface integrals of the form:

I:/Qf(x) dz, and J:/mg(x) ds,

19



where f,g : R? — R? are given (smooth) functions. A simple calculation of I relies on the following
approximation of the characteristic function yq of £ in terms of ¢:

(6.1) xa(z) = Ho(¢(x)) := % (1 — %) ., zeR?

where H. is a smoothed approximation of the characteristic function of the interval (—o0,0) in R, and ¢ is
again a ‘small’ parameter. In turn, I can be approximated as:

I'~ [ [(z)H:(4(2)) dz,
]Rd

the last integral being straightforward to evaluate relying on appropriate quadrature formulae, and depending
on the computational support used for the discretization of ¢.

The approximation of the integral .J is slightly more intricated; it relies on an approximation of the surface
measure of T', that is, of the distribution dr € D’'(R?) corresponding to the integration over I':

Vo € C(RY), (6r,¢) = / o ds.
T

An application of Green’s formula reveals that the following identity holds, in the sense of distributions:

_xe
on

whence we base the approximation:

opr = , where n is a divergence-free extension of the normal vector to T,

0

or ~ a9 (He(9)) -

Then, the following formula lends itself to an easy numerical evaluation:

O (H.(6(x))) glx) ds.

J =~ - —
Rdﬁn

6.3. Algebraic operations over sets
The main algebraic operations involving domains €2, Q;,Qs C R? can be achieved by simple manipulations
over corresponding level set functions ¢, ¢1, ¢o:

o A level set function ¢, for the complement °Q of 2 is obtained as:

¢c = _¢-

e A level set function ¢, for the union £y U Q) is:

(bu = min(d)lv ¢2)

e A level set function ¢; for the intersection 21 N 2y is:

b = max(¢1, ¢2)'

Notice that even if ¢; and ¢o are smooth, ¢, and ¢; may fail to be so.

6.4. Solving partial differential operations posed on (2

Let © be a domain of interest, included in a larger, bounded domain D C R?. In practical situations, D is
a computational domain, and it is equipped with a mesh (a Cartesian grid, a triangular mesh, etc.); € is
solely known via an associated level set function ¢, which is discretized on the mesh of D; in particular, no
mesh of €2 is available. Let us consider the resolution of the following partial differential equation on §2:
{ —div(aVu) +u=f inQ,

ou

(6.2) =0 onI ’

gu —
where a > 0 and f € L?(R?). In the present context, it is difficult to rely on classical numerical methods
(e.g. with the Finite Element method) since no mesh of Q2 is available.
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The idea is to approximate the solution u to (6.2) with that u. to an approximate problem, defined on
the whole working domain D, in such a way that:

Ue ~ u on ).

Multiple ways exist to achieve this purpose. One possibility is to consider the following approximate problem:

—div(ce(x)aVu) + ce(z)u = c.(x)f in D, 1 forxeQ,
(6.3) { ou on &D where c.(x) = e forxeD\Q "’

i.e. the ‘natural’ extension of (6.2) to D where the void region D\ € is filled with a very soft material. It is
indeed possible to prove that:
e—0
||u — UEHHl(Q)—) 0.
Problem (6.3) is now easier to simulate than (6.2), considering the data at hand: it is posed on the (meshed)
domain D, and the cutoff ¢.(x) = & + xq(x)(1 — €) can be approximated as:

ce(w) = e+ He(o(x))(1 — ),
where H.(¢) is the approximate characteristic function (6.1) of € based on the level set function ¢.

Remark 4.

e The approximate equation (6.3) intrinsically depends on the exact equation (6.2) to be solved. For
instance, consider the problem

—div(aVu) +u = f inQ,
u=0 on 02,

i.e. the version of (6.2) where Neumann boundary conditions on 92 are replaced with homogeneous
Dirichlet boundary conditions. One proves that u is approximated by the solution u. of:

—div(aVu) + ce(z)u=f in D, B
{ u=0 on 0D where cc(z) =
instead of that of (6.3).
e Similar approximation processes hold, e.g. for the linear elasticity equations (this is the so-called

Ersatz material approach), or for the Stokes equations (the so-called porosity or Brinkman approxi-
mation).

1 for z € Q,
forx e D\ Q. ’

m =

7. ADDITIONAL FEATURES

We now describe several additional issues that frequently come up in the numerical implementation of the
Level Set Method. In this section, Q(t) stands for a domain evolving a period of time (0,7'), and ¢(¢, ) is an
associated level set function. To set ideas, we focus on the situation where the motion is driven by a normal
velocity given by the scalar function v(t, x); consequently, ¢ arises as the solution to (4.1).

7.1. Redistancing

We already pointed out at the practical importance of manipulating level set functions that ‘resemble’ signed
distance functions in Section 5. Unfortunately, even if ¢(0,.) is the signed distance function to €(0), the
solution ¢(t,.) to the level set equation (4.1) is likely to develop very sharp or loose variations in the vicinity
of I'(¢) as t > 0 increases. This phenomenon may jeopardize the stability of the whole numerical resolution
of (4.1).

In practical applications, it is crucial to periodically restore ¢(t,.) as the signed distance function to (¢):
this is the purpose of level set redistancing (or re-initialization).

The situation is as follows: 2 C R? is a bounded domain, about which a (possibly very ‘irregular’) level
set function ¢ is available; we aim at generating the signed distance function dg to 2 from these data. The
most straightforward idea in this direction consists of course in using one of the algorithms of Section 5.
Doing so would be a waste somehow, since we already have one level set function for 2, and we could hope
to take advantage of this knowledge. In such a situation, it has been proposed in [(1] to ‘regularize’ the level
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set function ¢g into a new one, close to dg. To this end, ¢q is used as the initial state of the redistancing
equation:

a—f(t,x) +sgn(¢o(x)) (|Vy|-1) =0 for (¢,z) € (0,00) x R?
(7.1) { ’ w(O,x)o: ¢o(x) for » € R?

The underlying intuition is that, as the stationary state of (7.1) is obtained, the property |V |= 1 is restored
(which is formally obtained by cancelling the time derivative in (7.1)). The presence of the sign function in
(7.1) accounts for the fact that a signed distance function is sought as the stationary state. This very formal
explanation is theoretically justified in [6].

In practice, the redistancing equation (7.1) is solved using adequate numerical schemes, in the spirit of
those presented in Sections 4 and 5, relying on a smoothing of the discontinuous function sgn(¢g).

Remark 5. However crucial, this redistancing procedure suffers from unwelcome side effects; first, using
it ‘too often’ may undermine the efficiency of the whole process in terms of CPU time (however, in most
applications, the cost of redistancing is negligible when compared to e.g., that of a finite element calculation).
A more serious issue is that performing this redistancing operation ‘too often’ may entail a loss of accuracy of
the process, since the interface I is slightly shifted in solving (7.1) (that is, the 0 level set of ¢(¢, -) does not
match exactly that of ¢ in numerical practice) Therefore, a balance has to be reached between redistancing
‘often’, and not ‘too often’.

7.2. Velocity extension

Another recurring difficuly in the practice of the Level Set Method is that, in a wide class of applications,
the (scalar) velocity field v(t, ) is only defined at points z on the boundary I'(¢) of the evolving domain.
This is a pity, for as we saw in Section 2.2, the Level Set Method requires v(t, ) to be defined over R? (at
least on a neighborhood of I'(¢) if we follow the Narrow Band paradigm of Section 7.3). Actually, even in
situations where there is a ‘natural’ way to extend v(t,-) outside I'(t), it often proves clumsy.

It is thus a key issue to extend v(t,-) into another field vext (¢, ), which is defined on a neighborhood of
(). There is actually a great deal of latitude as for how to do so: the only requirement is that vex; should
coincide with wv(t,-) on I'(t). This extension procedure can therefore be achieved in many ways, and we
briefly outline two popular ones in the literature, with different assets.

7.2.1. Normal extension of the velocity

In [1], the authors propose a velocity extension approach which alleviates the need for redistancing the level
set function. It relies on the following observation: assume that, for ¢ > 0, the solution ¢(¢,-) to the level
set Hamilton-Jacobi equation (4.1) with normal velocity v is the signed distance function to €(¢); a formal
calculation, blithely ignoring regularity issues reveals that:

0= % (IVo|?) = —2|V¢|Ve - Vv —20V¢ -V (|V4|) = —2Vé - Vo on RY,

where we have used (4.1) and the property |Vé|= 1. Hence, if we are to select the extended velocity field

Vext SO that ¢(¢,-) stays a signed distance function, it must obey the equation (see the appendix in [68] for
further discussion):
(72) vvext(t7 1‘) : V(b(ta 17) =0.

Recalling Formula (2.2) for the (extended) normal vector n; to I'(t), (7.2) means that, at every time ¢,
Vext (t, -) should have constant values along the integral curves of n;.

Let us now slip into the numerical setting: recall that the time interval (0,7) is divided into subintervals
(t", ¢+ of length At, n =0, ..., N = T/At. The Hamilton-Jacobi equation (4.1) is solved on each interval
(t",t"*T1) with initial data ¢" := ¢(t",-), and velocity field v™ := v(t",-). This velocity field is defined on
I'(t") and has to be extended to, say, R?.

One method to stick with the previous observations - insofar as possible - goes the following way:

(1) Calculate the signed distance function do» to Q™. This can be achieved thanks to one of the methods
of Section 5, or, more efficiently, by solving the redistancing equation (7.1) (since we have at hand
one level set function ¢™ for Q™).
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(2) Calculate v7, as the solution to:

Vol - Vds =0 in R?\ T(¢t")
vl = v on I'(t™).

This system shares many features with boundary-value problems of the form (2.11) and can be solved
owing to a procedure very similar to the Fast Marching Method.

We refer to the article [17] for further discussions on this method, and for a similar procedure in the
context of Fast Marching Methods.

7.2.2. PDE-based extension

A different extension technique allows to extend v into a field veyy which is guaranteed to be smooth. Let us
describe this procedure at a fixed iteration of a Level Set evolution procedure: we have a domain 2 (standing
for Q™ at the considered time ¢™), and we wish to extend v = v™ to the larger computational domain D.

One possibility is to search for the unique solution vex, € H'(D) to the following equation:

—AVext + Vext =0 in D,
(7.3) { Vext = U on Of)
Doing so guarantees some degree of smoothness for veys, since it belongs to H*(D).

This procedure is more expensive than that described in the previous section, since it involves the res-
olution of the elliptic equation (7.3) (which is typically achieved thanks to a Finite Element calculation).
However, it admits other, very interesting applications and variations, for instance if we relax the constraint
that vext = v on I'; taking such freedom may be unacceptable in some applications (for instance in the
physical simulation outlined in Section 3, but may even be very desirable in some other, for instance in
shape optimization.

7.3. Towards enhancing the efficiency of the Level Set method: the Narrow Band approach

At this point, it is worth wondering about the efficiency of the Level Set method. Indeed, the problem of
evolution of a surface is traded for that of a quantity defined on a space of higher dimension, and one may
expect that this entails a significant increase in computational cost.

Several techniques have been thought up to increase this efficiency, among which parallel implementations
[37], and mesh adaptation procedures (see e.g. [10], or the recent [2]). However interesting, we do not get
into the details of these methods and refer to the aforementionned articles.

Another key improvement of the level set method is the so-called Narrow Band approach. In most ap-
plications where the evolution of a domain Q(t) (or that of its boundary I'(t)) is described by that of an
associated Level Set function ¢(¢,-), only the motion of the 0 level set of ¢ is of interest. As was originally
remarked in [16], then systematized in [3], it is therefore sufficient to carry out the operations related to the
Level Set Method (initializing the level set function, redistancing it, solving Equation (4.1), extending the
velocity field) on a ‘narrow band’ around T'(t). Here is a very rough sketch of this paradigm, in which we
retain the Cartesian setting and the notations of Section 4.1 (see Fig. 11 for an illustration).

Loop (From n =0, while n < N):
e Initialization of a narrow band B of ‘Near points’ around the interface I'(¢"). B may be constructed
by relying on the distance function to I'(¢™), or simply as a tube of k elements around I'(t").
e Loop:
(1) Perform an attempt iteration
Vi,j € Zst. ;€ B, {of} = {7 itmp )

ij,temp

in the resolution of the Level Set Hamilton-Jacobi equation (4.1) using, e.g., the numerical
scheme of Section 4.1. Only the nodes of the grid lying inside the narrow band B are updated,
and a special attention must be paid to the calculation of derivatives at the points of B close
to its border. The process can be additionally accelerated by using adapted data structures for
the storage of the nodes in the narrow band.

23



(2) Analyze the position of the attempt front I'yemp(¢" 1) (this can be done by looking at the sign
of the quantity qﬁﬁe'fnlp at the nodes lying on the border of the narrow band):

— If Ftemp(t”“) lies inside the narrow band B, accept the iteration:

nen+ 1 {6} (O e} -

and go back to (1).
— Else, refuse the iteration, interrupt the loop, and go back to the Initialization step.
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00 0 0-0-C . > 8 0-0-C
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FIGURE 11. Setting of the Narrow Band Method; a band B (the greyed region) of close
points (in black) is constructed around the interface I'(t") (in red), and the other points of
the grid are tagged as far. Updates ¢} — <Z);’j+1 are performed only for black points z;; as
long as the front I'(¢") stays inside B.

7.4. Handling multiple phases with the Level Set method

We have hitherto used the Level Set method to account for the motion of one domain, that we shall denote
as O(t) in this section - and only in this section. Equivalently, this amounts to describing the motions of the
two phases Qp := O and Q; := D\ O, where D is the fixed computational domain, and where we dropped
the mention to time. Note that this point of view was already used in Section 3.

As was noticed in [64], a small increment in this method allows to describe multiple phases: using m
domains Oy,..., O,,—1 C D it is possible to represent up to 2" domains €2, ..., 2om _1, obtained by combining
the O;, (see Fig. 12):

Qo = OonNO1N...NOp—2NOpy—1,
(74) 9] = OonNO1N.NOponN®Oyp_1,
ng_l == 6070 ﬂ 6(971 ﬁ ﬂ com_Q ﬂc Om—l-
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Using m Level Set functions ¢;, associated to the domains O;, ¢ = 0,...,m — 1, the domains €, j =
0,...,2™ — 1, are alternatively defined as:

Qo = {zeD, ¢o(x) <0, d1(x) <0,.c.,pm_2(x) <0, pp_1(x) <0},
Ql = {I € D7 ¢0($) <0, ¢1($) <0, -.-,¢m_2($) <0, (bm—l(x) > O}a
Qony = {2 D, do(@) >0, 61(2) > 0,0 2(x) > 0, Gu_1(z) > 0}

D D B (D s

“Op L0,

FIGURE 12. Using two domains Oy and Oy yields the four phases §1;, 7 =10, ...,3.

When it comes to describing the evolution of each phase );, the velocity fields driving their motions
unambiguously yield those V; driving the motions of the O;, i = 0,...,m — 1. The Level Set Method can then
be independently applied to each domain O; along the lines of the previous sections.

Remark 6. Obviously, the number M of described phases is not limited to a power of 2. In the general case,
taking m as the unique integer such that 2™~! < M < 2™, and using m domains O; C D, and m associated
level set functions ¢; in the way described above, one simply obtains the desired phases as reunions of some
of the Q;, 7 =0,...,2™ — 1 defined in (7.4).

8. OTHER DOMAIN EVOLUTION METHODS

A wide literature exists for the numerical treatment of problems involving moving domains or interfaces.
In this section, we give a rough sketch of the main existing methods, which is deliberately clear-cut, and
biased: in particular, this classification and the terminology used here are far from being uniform in the
literature.

Throughout this section, €(t) C D denotes a moving domain in R? with boundary I'(¢), included in a
larger, fixed computational domain D. Its motion is driven by the (vector) velocity field V (¢, z).

In the numerical setting, the time period (0,7) of the evolution is, as usual, discretized into the sequence
t, = nAt, n =0,...,N := T/At. Sometimes, for brevity, the explicit mention to time is dropped, and we
shall simply refer to Q, ', V, etc.

8.1. Lagrangian methods

The first great category is that of Lagrangian methods, sometimes also called moving mesh methods. They
are possibly the most natural ones: at each step ™ of the process, the domain Q(¢") (or, sometimes, its
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boundary T'(t™) only) is equipped with a mesh 7™. Hence, such methods are particularly relevant when the
velocity field V (¢, ) driving the motion is dictated by physical properties, such as a fluid flow, a case in which
calculating V' demands accurate numerical simulations on € (see the bifluid flow example of Section 3).

From one step t" to the next one t"*!, the mesh 7" is ‘moved’ into the new mesh 7"*!, according to
the velocity field V™ := V(t",-). For example, the most naive way to achieve this operation consists in
transporting each node 2} of 7" into a node x?“ of 7"t as:

et =af + ALV (", a}),

without altering the connectivity of the mesh. Unfortunately, doing so is likely to yield an invalid mesh, that
is, a mesh in which some elements are overlapping; see Fig. 13 for an example.

—>

FIGURE 13. The transport of each node x; of the mesh via the vector field V (t,x) is likely
to cause element overlappings.

This operation of deforming a mesh according to a velocity field is complex in general (in particular, it
is difficult to account for topological changes in the underlying domains in this way). Several heuristics can
however help the process; see [28], Chap. 23, for more details around the issue of mesh deformation:

e An occasional remeshing of T - e.g. resampling its nodes, modifying its connectivities to eliminate
very ill-shaped elements - may postpone the occurrence of difficulties in the mesh deformation process;
on the contrary, excessive remeshing could cause a loss of computational efficiency and accuracy.

e The values of the velocity field V (¢, x) are only relevant on the boundary of the moving domain Q(¢);
in particular, it is possible to modify V' (¢, ), while retaining its values on I'(t), so that it entails less
distortion in the internal part of Q(¢) (making the mesh deformation easier). The techniques used to
achieve this have a lot in common with the velocity extension procedures described in Section 7.2.

Let us also mention that other Lagrangian techniques represent the evolving domain 2 by means of a set
of particles instead of a mesh: grossly speaking, €) is described by a set of points which are not connected
to one another. The motion of €2 is considerably simpler under this form. Of course, such techniques must
come along with adequate numerical methods to perform operations on €2, such as solving partial differential
equations. See [38] for further details around those so-called mesh-free methods.

The reader may consult [39, 62] for an overview and further discussions around Lagrangian methods.

8.2. Eulerian methods

Unlike Lagrangian methods, Eulerian methods assume a fixed computational support, that is, a mesh G (often
a Cartesian grid) of a computational domain D. As the evolving domain € is not explicitly discretized, some
information about it has to be kept somehow. The nature of the retained information allows to distinguish
two subclasses, namely front-tracking and interface-capturing methods.

8.2.1. Front-tracking methods

Front-tracking methods rely on an explicit discretization 7" of the interface - or front - T'(¢™) at every step
t™ of the numerical process. This mesh may be obtained in several different ways:
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e It may be maintained from the beginning, and transported from one step t™ to the next t"*!. This
operation is achieved by relying on techniques very similar to those described in Section 8.1, in the
case of Lagrangian methods. Like then, it may be accompanied with remeshing algorithms so that
T™ stays well-shaped, and with some heuristics (which may use the computational grid G) to detect
and resolve possible self-intersections.

e It may be reconstructed at each step ¢", for instance from the datum of a set of markers (or particles)
whose evolution is calculated.

Contrary to the case of Lagrangian methods, the velocity field V' characterizing the motion is calculated
by using the computational mesh G of D, and not directly the mesh 7.

To set ideas, let us focus the discussion on the case where the calculation of V' demands the resolution of
a PDE posed on Q (we have in mind the example of Section 3). This PDE is solved on the Cartesian grid G
at each step t"; hence, ways have to be found to account for the communication between this grid and the
mesh 7" of the front. This can be done in several ways:

e Interpolation procedures may be devised from 7™ into G, to locate the position of (") on G; this
allows for the calculation of quantities of interest (integrals on (t"), curvature of T'(¢"), etc...).

e A whole new mesh of Q(¢") may be generated from G and 7™. Of course, this procedure is quite
costly, and very dependent on the robustness of the used meshing algorithm.

The possibly best known implementations of front-tracking algorithms are those detailed in the articles
[30, 63]. See also [34] for an interesting overview and complementary features.

Without getting into details, let us mention the Immersed Boundary method, introduced by C. Peskin
in [48] (see also [42, 49] for overviews), which can be viewed as a front-tracking method in the particular
context of fluid-structure interactions. In a nutschell, the idea is to describe an elastic structure immersed
in a fluid by using Lagrangian variables for the former part (a part which is numerically discretized and
tracked thanks to Lagrangian techniques: moving mesh or particles), and Eulerian variables for the latter
(a part which is numerically discretized on a fixed grid); the coupling between both parts is achieved owing
to operations which are, in spirit, similar to those used in classical front-tracking methods.

8.2.2. Interface-capturing methods

Interface-capturing methods account for the moving domain 2 via auxiliary quantities, which are discretized
on the fixed mesh G of D. The Level Set Method falls into this class, the evolution of 2 being described by
that of a Level Set function ¢; at least two other techniques are worth mentioning.

8.2.2.1. Volume of Fluid Methods.

The Volume of Fluid Method (often abridged as VOF) was pioneered in the article [32], and has long been
a reference method to account for the motion of a fluid domain, or that of several fluid phases.

The basic idea is to represent a fluid domain Q by a scalar function C, which is constant by element
T € G- T may be a e.g. a triangle, a square, depending on the nature of G. The quantity Cp stands for the
‘proportion of fluid’ present in the element T, that is:

1

Cr=—
|T‘ Cr

xo(z) dz,
where yq is the characteristic function of €. In other words, C'r equals 1 if T" is completely occupied by the
fluid, 0 if it does not carry any fluid, and it takes an intermediate value if it is crossed by the interface I'.
A formal analysis reveals that this function C satisfies the evolution equation:
oC

8.1 —+V-VC=0

(5.1) it ,
which is to be understood in a very loose sense since C' is constant par element! For this reason (and others),
the numerical resolution of (8.1) is difficult and requires adequate numerical schemes. Most of those involve
a reconstruction step, where the boundary of the fluid domain €2 is inferred from the datum of C.
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As any interface-capturing method, the Volume of Fluid method naturally adresses the problem of topo-
logical changes. Furthermore, it has proved particularly successful in preserving the volume of €2 in the case
of an incompressible flow - a key feature in fluid simulations. However, the quality of the description of the
boundary I' is inherently less accurate than that featured by the Level Set method.

See [51, 52] for reviews of several aspects of the Volume of Fluid Method.

8.2.2.2. Phase-Field Methods.

The Phase Field Method was originally introduced in the context of two phases g, {21, separated by an
interface I". The situation is described by a so-called order parameter, or Phase Field scalar function ¢,
which is discretized on the mesh of the computational domain D in the numerical setting. This function
¢ assumes constant values in the bulk phases g, (typically —1 and 1), and shows steep, yet smooth,
variations in a thin tubular neighborhood of T'.

Instead of giving an abstruse presentation of the theoretical aspects of the method, let us concentrate the
discussion on the particular example of the bifluid flow model of Section 3, whose notations are reused.

The various quantities characterizing the model (in our case, the density p and the viscosity v of the fluid)
which are discontinuous at the interface I', are approximated by quantities featuring a sharp, but smooth
transition across this interface, for instance:

V1 — V1 + 1

o)+ 2L
This phase field model is a smoothed approximations of the sharp-interface, exact model (3.1).

As far as it is concerned, the function ¢ is assumed to minimize a so-called free energy functional J.(¢),
which is, for example, of the form:

(83) 1.0 = [ (2w@)+5ve) @

In this formula, W is a so-called double-well potential, which assumes two minima at £1. The meaning of
this description is the following: ¢ is in competition between minimizing the double-well W (¢) (which drives
it towards a function taking only the values +1, regardless of having sharp variations), and the gradient
term, which constrains ¢ to retain some smoothness. The parameter ¢ balancing both trends can be shown
to be a measure of the thickness ¢ of the smeared interface thus imposed by the method. Notice that, as
¢ — 0, the constraint on the smoothness of the variations of ¢ is loosened in the expression (8.3).

The evolution of ¢ in time is driven by the minimization of the free energy J.(¢). Writing conservation
laws to express this feature, in connection with the fact that ¢ is dragged by the fluid velocity u(t, ) of the
phases leads to a diffusion equation for ¢, either of the Allen-Cahn or of the Cahn-Illiard type.

(8.2) Vz € D, v(z) ~ v(p(x)) =

Depending on the point of view of the user, the Phase-Field Method can be seen as a theoretical and
numerical artifice to mimic the sharp-interface formulation of the evolution problem at stake. It is then
worth ensuring that the different choices (the free energy J.(¢), the evolution equation for ¢, the coupling
between ¢ and wu expressed in equations such as (8.2), etc.) allow to retrieve the original model in some
appropriate sense when the thickness parameter € goes to 0.

On the other hand, the Phase-Field Method can be thought off as a way to incorporate a complex, mi-
crostructural behaviors of the interface I' in a macroscopic model. In this case, the phase-field function ¢ is
given a physical meaning, and the choices of the free energy and the diffusion equation for ¢ are based upon
physical (notably thermodynamical) considerations.

From the numerical point of view, the Phase-Field Method has been successfully applied to several evolu-
tion problems such as, for instance, solidification [66] or multiphase flow [7]. It shares a lot of aspects with
the Level Set Method: as a purely Eulerian method, it handles large deformations (including topological
changes) in a natural way; it may imply a stronger, physical coupling between the phase representation ¢
and the physical equations which lends itself to theoretical convergence analyses. However, the geometrical
description of the interface I' is less accurate than in the context of the Level Set Method.
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See [11, 14] for introductions to the Phase-Field Method.

8.3. Hybrid methods

Numerous hybrid algorithms exist between Lagrangian and Eulerian methods, the perhaps most famous of
which are Arbitrary Eulerian-Lagrangian methods (ALE in short).

In Lagrangian methods, the computational mesh of the considered domain €(t) is transported in time
according to the velocity field V (¢, x) of the motion. Doing so potentially offers maximum accuracy regarding
the location of (t), but this procedure may dramatically degrade the quality of the mesh, compromising
the accuracy of computations. On the other hand, Eulerian methods use a fixed mesh of a computational
domain D at every step of the process.

As their name suggest, ALE methods go halfway between both points of view: the domain where calcula-
tions are carried out (and with it, the computational mesh) is moved in an arbitrary way, that is, independent
from the exact position of Q(¢). The choice of a motion for this so-called ALE domain Qg(t), is dictated
by a tradeoff between staying close from the deformed domain Q(t), without jeopardizing with the quality
of the attached mesh. The efficiency of an ALE method strongly depends on the devised strategy for the
evolution of the ALE domain, and their description goes beyond the scope of this introduction.

To sum up, at a given time ¢ > 0, three domains are considered:

e The initial domain ©(0); in mechanical modeling, §2(0) is referred to as the material domain, since
it stands for the undeformed configuration, and contains the ‘particles’ z of 2 at the state of rest.

e The deformed domain Q(¢), called spatial domain in mechanical modelling.

e The ALE domain Qg(t), or reference domain, which is the support of numerical computations.

The correspondance between the material and spatial domains 2(0) and €2(¢) is described by the mapping:
Q(O) S Zg > QD(t,.’Eo) = X(x()vta O) € Q(t)

where t — x(zo, t,0) is the solution to (2.6) and represents the trajectory of a particle driven by the velocity
V(t,z), and lying at position g at time ¢ = 0 (see Section 2.2).
In turn, the motion of the ALE domain is described by the mappings

B(t,-) : Qr(t) — Q(0), and (L) : Qr(t) — Q1),

which are explicitly given, once the moving strategy for the ALE domain has been set; see Fig. 14.

In practice, all the theoretical and numerical calculations are performed on the ALE domain and mesh;
hence, quantities of interest attached to Q(¢) (normal vector, curvature, etc) must be transferred to Qgr(t).
Likewise, a partial differential equation posed on §(t) - for instance, in the model of Section 3, the bifluid
Navier-Stokes equations - must be recast on the domain Qg(¢): these are the so-called ALE formulations of
these equations.

As far as ALE methods are concerned, we refer to the nice presentation [23] on this topic, and references
therein for historical references and further discussions, or to the book [33].

9. APPLICATIONS OF THE LEVEL SET METHOD

Since its inception, the Level Set Method has become a reference method for capturing the motion of
an evolving domain or interface, and it has found applications in diverse fields. In this section, we mention
some (actually very few) of these applications.

9.1. Applications in Computational Fluid Dynamics

The Level Set Method appeared in Computational Fluid Dynamics with the study of the motion of two
compressible gases, separated by a sharp interface [43]. Soon after, it was used in [61] for describing the
interface between two immiscible, incompressible fluids, driven by the Navier-Stokes bifluid equations. Since
these seminal works, it has been a popular way for describing boundaries of domains filled with fluids, and
many improvements and extensions of the original techniques have come out; see for instance the review
article [56] for a more in-depth discussion, and Fig. 15 below for an example.
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€ U(t,§) £ O(t,¢)

ALE domain Qg(t)

zo = ¢(t, o)

Material domain €2(0) Spatial domain Q(t)

FIGURE 14. The three domains and meshes involved in an Arbitrary Lagrangian-FEulerian
procedure, and the mappings for passing from one to another.

9.2. Applications in shape optimization

Shape optimization aims at finding the ‘best’ shape (or domain) 2 C R?, i.e. that which minimizes a given
functional J(€2) depending on the domain itself. In the context where 2 stands for an elastic structure, on
may imagine that J({2) is a measure of the stress within the structure, or (the opposite of) its fundamental
frequency. If Q is a pipe in which a fluid flows, J(£2) may be for instance the dissipation of energy in the
medium due to viscous effects.

Theoretical analyses make it possible to calculate explicitly a vector field Vi, defined on the boundary I"
of Q - a so-called shape gradient -, such that, the deformed shape (Id + V)(Q2), obtained by deforming 2 in
the direction Vi, gives rise to a new shape with a smaller value of J; see Fig. 16 for an illustration.

Accordingly, a possible strategy for the minimization of J(0) consists in starting from an initial domain
Q(0), then tracking the evolution of the domain €(t), driven by this shape gradient V (t,x) = Vo) ().

The Level Set method was introduced to represent such shape optimization problems in the articles
[5, 57, 65], and some application examples are reported on Fig. 17.

9.3. Applications in image processing

In the simplest mathematical models, a grey-scale image is represented by an intensity function I : D — R,
where the working domain D is the unit square (0,1)2.

One key issue in image processing is that of segmentation: the image I is generally composed of several
areas with different contrasts, representing distinct objects. For instance, a medical image obtained by a
process such as MRI identifies different tissues or organs by different intensities. Segmentation consists in
capturing one of these particular regions, say 2 C D, corresponding to a given intensity value Ij.
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FIGURE 15. Rise of two bubbles of a light fluid, immersed in a heavier one: interface at
times (from left to right, top to bottom)t =0,0.1,0.175,0.2,0.225, and 0.25.

One method to achieve this was introduced in [13, 410], as a variant of the active contour model: a domain
Q(t) evolves in time (from an arbitrary initial position €2(0)) according to a velocity field V (¢, z) of the form:

V(t,x) = (fo(x) + fi(ki(x)))ne (@),

where fp and f; are two scalar functions with the following meanings: f; ‘attracts’ the domain Q(t) towards
Qp, while fi(x¢(z)) only involves the mean curvature s¢(x) of 0€2(t) and compels (¢) to stay ‘smooth
enough’. In both aforementioned references, this evolution problem is numerically tackled with the Level
Set Method.

Another major topic in image processing is denoising: in practice, the intensity function I is often plagued
with noise, and it is desirable to replace it with another one, say I, which is a smoothed version of I, but also
retains the interfaces between the regions of different intensities. Several models have been proposed to give a
mathematical flavour to this problem, among which the celebrated Mumford-Shah and Rudin-Osher-Fatem:
(ROF) models. Both of them express the new image I as the minimizer of an energy functional where the
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(Id + V) (£2)

FIGURE 16. The deformed version (Id 4+ VQ)(2) of a shape Q has a lower value of the
performance criterion J(§).

FIGURE 17. (Left) Optimized shape of an electric pylon withstanding wind; (right) optimized
shape of a heat exchanger device.

contours of the regions with different intensities appear explicitly. Again, the Level Set Method is a natural
ingredient in a numerical method dedicated to such problems.
Let us eventually mention the work [27], which uses the level set method to tackle the stereo problem, that
is the problem of reconstructing a three-dimensional scene, from the data of several two-dimensional views.
More details around these issues, and many other examples of such problems in image processing may be
found in the article [41] and in the monograph [47].
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