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Foreword: Localized plasmonic resonances (I)

A localized plasmon resonance is a phenomenon caused by the interaction between
an electromagnetic wave and a nanoparticle in a dielectric medium.

The Lycurgus cup is encrusted with gold nanoparticles. It looks (left) green when seen in
reflection, and (right) red when seen in transmission.
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Foreword: Localized plasmonic resonances (II)

Localized plasmon resonances are characterized by:

• A strong enhancement of the rates of
absorption and scattering of energy of the
particle;

• A blow up of the electric field in the vicinity
of the particle.

They occur under very specific circumstances:

• The size of the particle has to be much
shorter than the incoming wavelength;

• The dielectric permittivity of the particle has
to be negative (as in metals at optical
frequency).

The vivid colors of the stained glass
in Notre-Dame de Paris are obtained
by colloids of gold nanoparticles.
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A simple model for plasmonic resonances (I)

• A nanoparticle D undergoes an electric field E0 with wavelength much larger
than the size of D.

⇒ E0 is approximately constant at the level of D.

• The electric field E0 causes a delocalization of the electrons in the valence shell.

• A dipole moment is created, depending on the shape of the particle.

• This restoring force may induce resonance.
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A simple model for plasmonic resonances ([Ma], Chap. 5) (II)

• The nanoparticle D ⊂ R3 is a sphere with radius r0 and permittivity εm.

• The dielectric permittivity of the ambient medium is εd .

• The imposed electric field E0 = E0ex is approximately constant at the scale of the
particle ⇒ electrostatic situation.

• The total electric field reads E = −∇φ, where the potential φ is the solution to:
−∆φ = 0 in D ∪ (R3 \ D),
φ− = φ+ on ∂D,

εm
∂φ−

∂n
= εd

∂φ+

∂n
on ∂D,

E = −∇φ→ E0 as |x | → ∞.
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A simple model for plasmonic resonances ([Ma], Chap. 5) (III)

• Elementary calculations using separation of variables yield:

φ(x) =

{
− 3εd
εm+2εd

E0r cos θ if |x | < r0

−E0r cos θ + εm−εd
εm+2εd

E0r
3
0

cos θ
r2 otherwise,

where θ is the angle between the position vector and ex .

• Outside D, the potential φ is the superposition of

• The background potential (i.e. if D were absent) −E0r cos θ;
• The potential induced by the dipole moment

p = 4πε0εd r30
εm − εd
εm + 2εd

E0.

• The total electric field E = −∇φ reads:

E(x) =

{
3εd

εd+2εm
E0 if |x | < r0,

E0 + 3n(n·p)−p
4πε0εd r3

otherwise (n ≡ x
|x| ).

• E(x) blows up under the Fröhlich resonance condition:

Re(εm) = −2εd and |Im(εd)| � 1.
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A simple model for plasmonic resonances ([Ma], Chap. 5) (IV)

Now, if D is illuminated by a (time-dependent) plane wave E0(x)e iωt such that:

• The frequency ω is very small: E0(x) is approximately constant around D,

• The permittivity εm ≡ εm(ω) satisfies the Fröhlich condition,

the electric and magnetic fields

E(t, x) = E(x)e iω(t), and H(t, x) = H(x)e iωt

can be calculated as those induced by the electrostatic dipole p.

• Both fields E(t, x) and H(t, x) blow up near D; the blow up is even more
dramatic for E.

• Blow up of the scattering and absorption cross sections of the particle (i.e. the
rates at which energy is removed from E0 by scattering or absorption).

Similar observations hold when the size of D is no longer so small with respect to the
excitation wavelength: Mie theory.
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Negative permittivity: the Drude’s model (I)

Negative electric permittivity occurs at optical frequency for metals like silver or gold.

This is predicted by the classical Drude’s model for the dielectric properties of
materials. In this model, each electron of the particle is subjected to:

• The electric force eE induced by the imposed electric field E = Exex ;

• A repelling force −kxex binding the electron to the nuclei;

• A viscous damping force −mγx ′(t)ex cause by the mutual interaction between
electrons.

The position x(t) of the electron on the axis ex is then given by:

mx ′′(t) = eE0 − kx(t)−mγx ′(t).
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Negative permittivity: the Drude’s model (II)

• The polarization P in the medium then reads:

P = P(ω) = Nx(ω)ex .

• The dielectric permittivity is defined by

ε(ω)E = ε0E + P.

After calculations, it comes:

ε(ω) = ε0 +
ε0ω

2
p

ω2
0 − ω2 + iωγ

,

where ω0 =
√

k/m and ωp is the plasma
frequency of the material.

• For a metal, the electrons have loose bonds
with the core: ω0 ≈ 0.
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Applications of plasmonic resonances

The strong field enhancement near metallic
nanoparticles at plasmonic resonances has been
used e.g.

• To selectively produce heat by absorption
in photothermal cancer therapy;

• To create intense, localized fields in
Surface Enhanced Raman Spectroscopy.

Their great sensitivity to the shape and the local
environment of the particle has been used to
devise accurate imaging processes:

• Spectroscopy devices in biochemistry, to
image molecular adsorption on DNA,
polymers, etc.

• Biosensors, gold nanoparticles being
harmless for health.

Selective release of a chemotherapeutic agent (from
[VolSig])

Enhancement of the Raman effect using silver par-
ticles (from [GouDas])
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Mathematical model for plasmonic resonances (I)

• In the previous calculation, the resonance is caused by the existence of a non
trivial solution u to the homogeneous equation:

−∆u = 0 in D ∪ (R3 \ D),
u− = u+ on ∂D,

εm
∂u−

∂n
= εd

∂u+

∂n
on ∂D,

|u(x)| → 0 as |x | → ∞.

in the particular case where εm = −2εd : u(x) =

{
r cos θ if r < r0,
r30
r2 cos θ if r > r0.

• The quasi-static plasmonic resonances of the (rescaled) particle D are the
values of the ratio

λε :=
εm + εd

2(εm − εd)

such that the above system has a non trivial solution u.

⇒ Eigenvalue problem for the Neumann-Poincaré operator K∗D .
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Beyond electrostatics: Maxwell’s equations (I)

• A nanoparticle Dδ := δD with size δ � 1 is
illuminated by an indicent plane wave (Ei ,Hi ).

• The total field (E,H) is the solution to the
time-harmonic Maxwell system:{

∇×E = iωµDH in R3 \ ∂Dδ,
∇×H = −iωεDE in R3 \ ∂Dδ,

complemented with the jump conditions

[n×E] = [n×H] = 0 on ∂D,

and the Silver-Müller radiation condition at
infinity:

lim
|x|→∞

|x |
(√
µd(H−Hi )× n−√εd(E−Ei )

)
= 0.

Ei,Hi

D�

"D = "m

µD = µm

"D = "d

µD = µd
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Beyond electrostatics: Maxwell’s equations (II)

Defining the ratios between the permittivity and permeability inside and outside Dδ,

λε :=
εd + εm

2(εm − εd)
, and λµ =

µd + µm

2(µm − µd)
,

we define a measure of the distance between the actual situation and the quasi-static
plasmonic resonances of D:

dσ := max (d (λε, σ(K∗D)) , d (λµ, σ(K∗D))) .

Theorem 1 ([AmDeMi]).
As δ → 0 and dσ → 0,

• The electric field E blows up;

• The absorption and scattering cross sections of the particle Dδ blow up.

See [AmMiRuiZha, AmRuiYuZha] for additional properties and similar statements in
the case of the Helmholtz equation.
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Mathematical study of plasmonic resonances

• The (simplified) study of plasmonic resonances boils down to that of the
two-phase conductivity equation featuring a domain D ⊂ Rd and k < 0:

Search for u s.t.
{
−div(a(x)∇u) = 0 in Rd ,
|u(x)| → 0 as |x | → ∞,

where a(x) :=

{
k if x ∈ D,
1 otherwise.

• Of particular interest are those values of k < 0 making the problem ill-posed.

• Variants: The above system could be posed inside a bounded macroscopic
domain Ω, with Dirichlet, Neumann boundary conditions on ∂Ω, etc.

• Several angles of attack:

• The T-coercivity method, a variant of the inf-sup condition, relying on the
construction of inf-sup operators [DhiaCiaZwo];

• Variational approaches a la Agmon-Douglis-Nirenberg [Ng];

• Layer potential techniques.
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Goals of the presentation

Two questions are investigated in this presentation:

1. Collective effects: how do several nanoparticles interact with each other?

2. Observations report further localization and field enhancement phenomena in
the presence of corners

⇒ Study of one such singular situation: bowtie-shaped antennas.

(Left,middle) Two resonant modes associated to a periodic array of nanoparticles (from
[KhloLau]); (right) Strong enhancement of the electric field near the tip of a bowtie-shaped
particle (from [NiCha]).
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The Newtonian potential

• The Newtonian potential, or free space Green’s function G(x , y) is the
fundamental solution to the Laplace operator:

∆xG(x , y) = δx=y in Rd .

It is defined by:

∀x 6= y , G(x , y) =

{
1
2π log|x − y | if d = 2,
|x|2−d

(2−d)ωd
otherwise,

where ωd is the area of the unit sphere in Rd .

• Physically, G(x , y) is the electric potential generated at x by a point source
with (negative) unit intensity located at y .

• Other types of Green’s functions exist, with different boundary conditions, e.g.

• The fundamental solution of the Laplace operator with homogeneous Dirichlet
or Neumann conditions on the boundary of a ‘hold-all’ domain Ω;

• Periodic Green’s functions.
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The single layer potential

Let D ⊂ Rd be a bounded domain of class C2.

The single layer potential associated to a function φ ∈ C(∂D) is defined by:

∀x /∈ ∂D, SDφ(x) =

∫
∂D

G(x , y)φ(y) ds(y).

Intuitively, SDφ(x) is the potential induced
at x by a distribution of charges at points
y ∈ ∂D with intensity −φ(y).

• • ••••
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• • • •

•
•

• • • • •
•
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The double layer potential

The double layer potential associated to φ ∈ C(∂D) is:

∀x /∈ ∂D, DDφ(x) =

∫
∂D

∂G

∂ny
(x , y)φ(y) ds(y).

Physically, DDφ(x) is the potential induced
at x by two close layers of charge densities,

• One of them distributed along ∂D,
with intensity 1

h
φ(y);

• The other one being distributed on
the offset surface ∂Dh, with intensity
− 1

h
φ(y).
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Properties of layer potentials

• Both SDφ and DDφ are harmonic in D and Rd \ D.

• Decay at infinity:

• If d ≥ 3, |SDφ(x)| ≤ C |x |2−d as |x | → ∞.
• If d = 2, one only has: |SDφ(x)| ≤ C | log |x || as |x | → ∞.
• If d = 2 and in addition

∫
∂D
φ ds = 0, one has |SDφ(x)| ≤ C |x |−1.

• It is often required that
∫
∂D
φ ds = 0 if d = 2.

• More interesting is their behavior when x → ∂D.

Notation: The one-sided limits of a function
α at x ∈ ∂D are:

α+(x) = lim
t↓0

α(x + tn(x)),

α−(x) = lim
t↓0

α(x − tn(x)),

and the jump of α across ∂D is:

[α](x) := α+(x)− α−(x).

• x

n(x)

x � tn(x)
•

↵�↵+

25 / 94



Jump relations

Theorem 2.
The single layer potential SDφ

• Has continuous trace across ∂D: for x ∈ ∂D, SDφ−(x) = SDφ+(x).

• Has jumping normal derivative across ∂D:

For x ∈ ∂D, ∂

∂n
(SDφ)±(x) = ±1

2
φ(x) +K∗Dφ(x).

Theorem 3.
The double layer potential DDφ

• Has jumping trace across ∂D:

For x ∈ ∂D, DDφ
±(x) = ∓1

2
φ(x) +KDφ(x).

• Has continuous normal derivative across ∂D:
∂

∂n
(SDφ)− =

∂

∂n
(SDφ)+.
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Jump relations and the Neumann-Poincaré operator

• The operator KDφ : C(∂D)→ C(∂D) is defined by:

∀x ∈ ∂D, KDφ(x) =

∫
∂D

∂G

∂ny
(x , y)φ(y) ds(y).

• Its L2(∂D) adjoint K∗Dφ : C(∂D)→ C(∂D), given by

∀x ∈ ∂D, K∗Dφ(x) =

∫
∂D

∂G

∂nx
(x , y)φ(y) ds(y)

is the Neumann-Poincaré operator.

• That these operators are indeed well-defined is not trivial; it relies on the C2

character of ∂D (see below).
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Other settings

• Other functional settings than that of densities φ ∈ C(∂D):

• One defines KD , K∗D : L2(∂D)→ L2(∂D).

• A more natural setting is that of energy spaces; see [McLe]: the single and
double layer potentials SD , DD extend as

SD : H
−1/2
0 (∂D)→W 1,−1

0 (Rd ), and DD : H1/2(∂D)→W 1,−1
0 (Rd ).

Likewise, one extends:

KD : H1/2(∂D)→ H1/2(∂D), and K∗D : H−1/2(∂D)→ H−1/2(∂D).

• Other ‘physical’ settings than that of potentials u on the whole space Rd , with
adapted versions of layer potentials (and the associated Green’s function):

• Potentials u defined on a bounded domain Ω ⊂ Rd , imposing homogeneous
Dirichlet or Neumann boundary conditions on ∂Ω

• One could consider periodic potentials u.
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The Neumann-Poincaré operator and the two-phase conductivity equation

• Consider the two-phase conductivity equation:
−∆u = 0 in D ∪ (Rd \ D),
u− = u+ on ∂D,

k ∂u
−

∂n
= ∂u+

∂n
on ∂D,

u(x)→ H(x) as |x | → ∞,

where H(x) is a given harmonic function on Rd .

• The unique variational solution can be represented by a single layer potential:

u(x) = H(x) + SDφ(x),

with density φ ∈ H
−1/2
0 (∂D), to be identified (s.t.

∫
∂D
φ ds = 0 if d = 2).

• The jump relations imply the following Fredholm equation:

Search for φ ∈ H
−1/2
0 (∂D) s.t. λφ−K∗Dφ = (k − 1)

∂H

∂n
, with λ :=

1
2
k + 1
k − 1

.

⇒ The plasmonic resonances of D are determined by the spectrum σ(K∗D).
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Compactness of the Neumann-Poincaré operator

Theorem 4.
If D is of class C2, the Neumann-Poincaré operator K∗D : L2(∂D)→ L2(∂D) is
compact.

Sketch of proof:

• For an arbitrary potential φ ∈ L2(∂D),

K∗Dφ(x) =

∫
∂D

K∗(x , y)φ(y) ds(y),

where K∗(x , y) :=
(x − y) · n(x)

ωd |x − y |d .

• Key point: Since ∂D is smooth, there is a
constant C > 0 such that for x , y ∈ ∂D,

|(x − y) · n(x)| ≤ C |x − y |2,

and so |K∗(x , y)| ≤ C

|x − y |d−2 .

•
x

y
•

n(x)

D

• Hence, K∗D is (nearly) a Hilbert-Schmidt operator on L2(∂D).
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Spectrum of the Neumann-Poincaré operator

• In the above situation, it also holds that K∗D : H−1/2(∂D)→ H−1/2(∂D) is
compact [Kre].

• Provided D is C2, the spectrum σ(K∗D) is only composed of a discrete sequence
of eigenvalues, accumulating at 0:

−1
2
< λ−1 ≤ λ

−
2 ≤ . . . < 0 < . . . ≤ λ+

2 ≤ λ+
1 ≤

1
2
.

• The Neumann-Poincaré operator is not self-adjoint, but it can be symmetrized
with respect to a different inner product than the usual one on H−1/2(∂D).

32 / 94



The Neumann-Poincaré operator of a non smooth domain

Let us now assume that D is only Lipschitz (e.g.
a piecewise smooth domain with corners).

•

•

•

•

•

• The definition of the operators KD and K∗D poses difficulty, since in this case,

K∗(x , y) =
(x − y) · n(x)

|x − y |d = O
(

1
|x − y |d−1

)
.

• A difficult result allows to give them a meaning as Cauchy principal value
integrals [CoiMcInMe].

• The jump relations remain valid in this context [Cos, Ver].

• However, the compactness of KD and K∗D fails.
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An adapted functional space for exterior problems: W 1,−1(Rd)

• Following [Ne], we define the functional space adapted to exterior problems:

W 1,−1(R2) =

{
u,

u

(1 + |x |2)
1
2 log(2 + |x |2)

∈ L2(R2), ∇u ∈ L2(R2)2

}
.

and in 3d,

W 1,−1(R3) =

{
u,

u

(1 + |x |2)
1
2
∈ L2(R3), ∇u ∈ L2(R3)3

}
.

• In 2d, the space W 1,−1(R2) contains the constant functions. It is customary to
consider instead:

W 1,−1
0 (R2) := W 1,−1(R2)/R

which is formally the subspace of functions in W 1,−1(R2) vanishing at infinity.

• The following inner product is considered on W 1,−1
0 (Rd):

〈u, v〉W 1,−1(Rd ) =

∫
Rd

∇u · ∇v dx .
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The Poincaré variational principle

Let D ⊂ Rd be a bounded, Lipschitz domain.

The original work of Poincaré, recently revisited by [KhaPuSha], gives an energetic
flavor to layer potential theory.

Definition 1.
The Poincaré variational operator

TD : W 1,−1
0 (Rd)→W 1,−1

0 (Rd)

associates, to any u ∈W 1,−1
0 (Rd), the unique TDu ∈W 1,−1

0 (Rd) such that:

∀v ∈W 1,−1
0 (Rd),

∫
Rd

∇(TDu) · ∇v dx =

∫
D

∇u · ∇v dx .

Roughly speaking, TDu describes the fraction of the energy of u which lies inside D.
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The Poincaré variational principle

• Let us consider the two-phase conductivity equation:

Search for u ∈W 1,−1
0 (Rd) s.t. − div(a(x)∇u) = f ,

where a(x) :=

{
k if x ∈ D,
1 otherwise, and f ∈ (W 1,−1

0 (Rd))∗.

• The associated variational formulation is: search for u ∈W 1,−1
0 (Rd) s.t.

∀v ∈W 1,−1
0 (Rd),

∫
Rd

a(x)∇u · ∇v dx = 〈f , v〉
(W

1,−1
0 (Rd ))∗,W 1,−1

0 (Rd )

• A simple calculation reveals that u is solution to the above equation if and only if:

(λId− TD)u = λg ,

where λ = 1
1−k

and g ∈W 1,−1
0 (Rd) is the representative of f supplied by the Riesz

representation theorem:

∀v ∈W 1,−1
0 (Rd),

∫
R2
∇g · ∇v dx = 〈f , v〉

(W
1,−1
0 (Rd ))∗,W 1,−1

0 (Rd )
.
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The Poincaré variational principle

Let D1, ...,DN be the connected components of D.

• TD is a self-adjoint, positive operator with norm ||TD || ≤ 1.

• Its kernel Ker(TD) is:

Ker(TD) =
{
u ∈W 1,−1

0 (Rd), u = cj on Dj , j = 1, ...,N
}
.

• The eigenspace Ker(Id− TD) is:

Ker(Id− TD) =
{
u ∈W 1,−1

0 (Rd), u ≡ 0 on Rd \ D
}
.

• The following orthogonal decomposition holds:

W 1,−1
0 (Rd) = Ker(TD)⊕ h⊕Ker(Id− TD), where

h =
{
u ∈W 1,−1

0 (Rd), ∆u = 0 on D ∪ (Rd \ D),∫
∂Dj

∂u+

∂n
ds = 0, j = 1, ...,N

}
.
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The space of single layer potentials

We actually consider the slightly larger space of single layer potentials:

hS =
{
u ∈W 1,−1

0 (Rd), ∆u = 0 on D ∪ (Rd \ D)
}
,

and the induced operator TD : hS → hS .

Proposition 5.
The mapping

H
−1/2
0 (∂D) 3 φ 7−→ SDφ ∈ hS

is an isomorphism, with inverse:

hS 3 u 7−→
[
∂u

∂n

]
∈ H

−1/2
0 (∂D).

Reminder: For φ ∈ H
−1/2
0 (∂D), SDφ is the unique solution u ∈W 1,−1

0 (Rd) to the
variational problem:

∀v ∈W 1,−1
0 (Rd),

∫
Rd

∇u · ∇v dx = −
∫
∂D

φv ds.
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TD and the NP

The Neumann-Poincaré operator is related to (a shift of) the restriction TD : hS → hS .

Theorem 6.
The operator RD := TD − 1

2 Id : hS → hS satisfies:

RD = −SD ◦ K∗D ◦ S−1
D .

Sketch of proof: From the definition, for u ∈ hS , one has, for all v ∈W 1,−1
0 (Rd),∫

Rd

∇(RDu) · ∇v dx =
1
2

∫
D

∇u · ∇v dx − 1
2

∫
Rd\D

∇u · ∇v dx

=
1
2

∫
∂D

(
∂u+

∂n
+
∂u−

∂n

)
v ds

Introducing φ ∈ H
−1/2
0 (∂D) such that u = SDφ, the jump relations read:

∂u±

∂n
= ±1

2
φ+K∗Dφ,

and so: ∫
Rd

∇(RDu) · ∇v dx =

∫
∂D

(K∗Dφ) v ds ⇔ RDu = SD(K∗Dφ).
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Min-Max formulas

The usual min-max formulas for a compact, self-adjoint operator read in this case:

Proposition 7 ([BonTri, KhaPuSha]).
The spectrum of TD : hS → hS is a translate of that σ(K∗D) of the
Neumann-Poincaré operator; it is a discrete sequence of eigenvalues with 1

2 as unique
accumulation point.

0 < λ−1 ≤ λ
−
2 ≤ ... ≤

1
2
, and

1
2
≤ ... ≤ λ+

2 ≤ λ+
1 < 1.

If
{
w±i
}
i≥1 are the associated eigenfunctions, they satisfy min-max formulae:

λ−i = min
u∈hS\{0}

u⊥w
−
1 ,...,w

−
i−1

∫
D

|∇u|2 dx∫
Rd

|∇u|2 dx
= max

Fi⊂hS
dim(Fi )=i−1

min
u∈F⊥i \{0}

∫
D

|∇u|2 dx∫
Rd

|∇u|2 dx
,

and:

λ+
i = max

u∈hS\{0}
u⊥w+

1 ,...,w
+
i−1

∫
D

|∇u|2 dx∫
Rd

|∇u|2 dx
= min

Fi⊂hS
dim(Fi )=i−1

max
u∈F⊥i \{0}

∫
D

|∇u|2 dx∫
Rd

|∇u|2 dx
.
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In a nutshell (I)

u = SD�

� =
1

2
� �

k = 1 � 1

� � =
1

1 � k

� =


@u

@n

�
� = � +

1

2

� 2
✓
�1

2
,
1

2

�
and � 2 H

�1/2
0 (@D) are eigenelements of K⇤

D : K⇤
D� = ��

� 2 [0, 1) and u 2 hS are eigenelements of TD : TDu = �u

u 2 W 1,�1
0 (Rd) is a non trivial solution to

�div(a(x)ru) = 0 where a(x) =

⇢
k if x 2 D,
1 otherwise

0

0
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In a nutshell (II)

The spectrum σ(K∗D) can be studied from two complementary points of view:

• Viewpoint of K∗D : (Fredholm) integral equations, with explicit (albeit
complicated) operators, posed on ∂D,

• Viewpoint of TD : Self-adjoint operator TD , defined on a fixed functional space,
and Laplace equations with sign-changing coefficients.

The Neumann-Poincaré operator is a key tool in the study of many interface
problems with various origins; see [Kan] and references therein:

• Detection and imaging of inhomogeneities in an ambient medium,

• Passive cloaking, and cloaking by anomalous localized resonances,

• Analysis of stress concentration between close-to-touching inclusions (metallic
particles, elastic fibers, etc.).
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Different types of spectrum

• We have hitherto considered particles with smooth shapes D:

• Plasmonic resonances λ ∈ σ(TD) form a discrete sequence of eigenvalues,
accumulating at 1

2 .

• Numerical calculations reveal that the corresponding eigenfunctions have ‘evenly
distributed energy’ over the space Rd .

• When D is piecewise smooth with corners, TD also contains essential spectrum:

• The essential spectrum fills a whole interval, and is therefore easier to excite in
practice.

• Generalized eigenfunctions have strongly localized energy.
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Eigenvalues and essential spectrum

Let T : H → H be a bounded self-adjoint operator on a Hilbert space H.

Definition 2.

• The discrete spectrum σdisc(T ) of T is the subset of the λ ∈ σ(T ) such that:

(i) λ is isolated in σ(T ): there exists ε > 0 such that σ(T ) ∩ (λ− ε, λ+ ε) = {λ},
(ii) λ is an eigenvalue of T with finite multiplicity.

• The closed set σess(T ) := σ(T ) \ σdisc(T ) is the essential spectrum of T .

Theorem 8 (Weyl criterion).

• λ ∈ R belongs to σ(T ) if and only if there exists a sequence un ∈ H such that:

||un||= 1 and ||λun − Tun||
n→∞−−−→ 0.

Such a sequence is called a Weyl sequence for T associated to the value λ.

• λ ∈ R belongs to σess(T ) if and only if there exists an associated singular Weyl
sequence, i.e. a Weyl sequence un such that un → 0 weakly in H.
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Essential spectrum of TD when D has a corner (I)

Theorem 9 ([BonZha, PerPu]).

Let D be a piecewise smooth planar domain showing one corner at 0 with aperture
α. The operator TD has essential spectrum σess(TD) =

[
α
2π , 1−

α
2π

]
.

Sketch of the proof (from [BonZha]): Most of the proof relies on the analysis of
truncated two-phase equation:

− div(a(x)∇u) = f in B1, where a(x) :=

{
k in D,
1 otherwise (C)

posed on the unit ball B1 centered at 0, in which D coincides with the angular sector
with aperture α (for simplicity, 0 < α < π).

•

D

0

0

↵

•

B1
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Essential spectrum of TD when D has a corner (II)

Proof of σess(TD) ⊂
[
α
2π , 1−

α
2π

]
:

(i) By using the inf-sup condition (≈ T-coercivity approach), we prove that, if
k /∈

[
− 2π−α

α
,− α

2π−α

]
, the conductivity equation (C) is well-posed on H1

0 (B1).

(ii) By the same token, the restriction of this equation near any other point
x0 ∈ ∂D where ∂D is smooth is also well-posed.

Let λ ∈ σess(TD) and k = 1− 1
λ
; assume that k /∈

[
− 2π−α

α
,− α

2π−α

]
, and consider a

singular Weyl sequence uε, i.e.

sup
v∈W1,−1

0 (R2)

||v||
W

1,−1
0 (R2))=1

∫
Rd

a(x)∇uε · ∇v dx → 0,

and ||uε||W 1,−1
0 (R2)

= 1, uε → 0 weakly in W 1,−1
0 (R2).

From (i) and (ii), for any x0 ∈ ∂D, and ρ > 0 small enough:∫
B(x0,ρ)

|∇uε|2 dx → 0.

Hence, uε → 0 strongly in W 1,−1
0 (R2); a contradiction with ||uε||W 1,−1

0 (R2)
= 1.
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Essential spectrum of TD when D has a corner (III)

Proof of σess(TD) ⊃
[
α
2π , 1−

α
2π

]
:

• Let λ ∈
[
α
2π , 1−

α
2π

]
, and k = 1− 1

λ
, so that k ∈

[
− 2π−α

α
,− α

2π−α

]
.

• An explicit calculation using separation of variables shows that there exists a
non trivial solution to (C) of the form:

u(r , θ) = r iξϕ(θ),

where ξ ≡ ξ(k) is real, and ϕ is smooth.

• This generalized eigenfunction u is not W 1,−1
0 (R2):(

∂u
∂r

1
r
∂u
∂θ

)
=

(
iξ
r
r iξϕ(θ)

1
r
r iξϕ′(θ)

)
=⇒

∫
B1\B(0,ε)

|∇u|2 dx ε→0−−−→ +∞.
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Essential spectrum of TD when D has a corner (IV)

• However, u can be modified into a singular
Weyl sequence for TD and λ:

uε = sεχ1(
x

ε
)χ2(x)u(x),

where
• χ1 is a smooth cutoff function with support

in R2 \ B1,
• χ2 is a smooth cutoff function with support

in B1,
• The constant sε is adjusted so that

||uε||W1,−1
0 (R2)

= 1.

•
D

0
"

1

supp(�1(
x

"
)�2(x))

• One proves indeed that:

||λuε − TDuε||H1
0 (Ω) → 0, ||uε||H1

0 (Ω) = 1, and ||uε||L2(Ω) → 0.
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Final comments

• The singular Weyl sequence constructed above gives a hint of the behavior
‘generalized eigenfunctions’ of TD associated to λ ∈ σess(TD):

⇒ Concentration of the energy in the neighborhood of the corner 0.

• The argument is readily generalized to the case of planar, piecewise smooth
domains with several corners.
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The homogenization setting

Microscopic inclusions with size ε and rescaled pattern ω ⊂ Y := (0, 1)d are
periodically distributed in a ‘hold-all’ domain Ω ⊂ Rd .

!

Y

⌦

"

Homogenized setting for a periodic distribution of inclusions.

Working assumptions:

• ω is smooth and strongly included in Y : ω b Y ;

• ω and Y \ ω are connected.
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The homogenization setting: notations

• For a point x ∈ Rd :

x = ε
[x
ε

]
Y

+ ε
{x
ε

}
Y

;

•
[
x
ε

]
Y
∈ Zd : macroscopic coordinate,

•
{

x
ε

}
Y
∈ Y : microscopic coordinate.

⌦

•x

Y

"
hx1

"

i

"
hx2

"

i •

nx

"

o
Y

0

• Indices of the cells strictly contained inside Ω:

Ξε =
{
ξ ∈ Zd , ε(ξ + Y ) b Ω

}
.

• The considered set of inclusions is:

ωε =
⋃
ξ∈Ξε

ωξε , where ω
ξ
ε := ε(ξ + ω).
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Goals of the study

The two concurrent goals pursued in this homogenization setting are:

1. Analyze the asymptotic behavior of the spectrum of Tε ≡ Tωε as a descriptor
of the plasmonic resonances of the array of inclusions ωε
⇒ study of the limiting spectrum:

lim
ε→0

σ(Tε) =
{
λ ∈ [0, 1], s.t. ∃εj ↓ 0, λεj ∈ σ(Tεj ), λεj → λ

}
.

2. Explore the well-posedness of the conductivity equation for the voltage
potential,{

−div(aε∇u) = f in Ω,
u = 0 on ∂Ω,

, where aε(x) :=

{
k if x ∈ ωε,
1 otherwise,

and the conductivity k inside the inclusions is negative, in the limit ε→ 0.
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Uniform bounds on the non trivial part of σ(Tε)

One part of the following result was observed in [BuRam]:

Theorem 10.
For all ε > 0, one has:

σ(Tε) ∩ (0, 1) ⊂ (m,M),

where 0 < m < M < 1 are explicit constants:

m = min
u∈ĥ0
u 6=0

∫
ω

|∇yu|2 dy∫
Y

|∇yu|2 dy
, and M = max

u∈ĥ0
u 6=0

∫
ω

|∇yu|2 dy∫
Y

|∇yu|2 dy
,

and ĥ0 ⊂ H1(Y )/R is the Hilbert space defined by:

ĥ0 =

{
u ∈ H1(Y )/R, ∆yu = 0 in ω ∪ (Y \ ω), and

∫
∂ω

∂u+

∂ny
ds = 0

}
.

Hint of the proof: Use the min-max formulae for the eigenvalues of Tε : hε → hε.
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How to study the limiting behavior of sequences λε ∈ σ(Tε) (I)?

• Tε converges weakly to the trivial operator |ω|Id:

∀u ∈ H1
0 (Ω), Tεu

ε→0−−−→ |ω|u, weakly in H1
0 (Ω).

• This poor convergence allows to infer nothing about the spectrum σ(Tε).

• As is well-known in homogenization theory, correctors are needed to obtain a
stronger convergence, describing the oscillations of the Tεu at the ε-scale.

• These correctors can be used in the study of eigenvalues - see [SanVo, MosVo]
- but this approach seems difficult in our context.

0 1

Typical behavior of a sequence Tεu converging weakly to 0 in H1
0 (Ω).
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How to study the limiting behavior of sequences λε ∈ σ(Tε) (II)?

• Our work is inspired by that of [AlCon] about Bloch wave homogenization. Tε
is rescaled into an operator

Tε : L2(Ω,H1(ω)/R)→ L2(Ω,H1(ω)/R),

which ‘does the same’ as Tε, but acts on functions φ(x , y) depending on both
macroscopic and microscopic variables x and y .

• We shall prove the pointwise convergence of the Tε, and rely on the result:

Proposition 11 ([Ka]).

Let H be a Hilbert space and let Sε : H → H be a sequence of self-adjoint operators
converging pointwise to S : H → H, i.e.

∀u ∈ H, Sεu
ε→0−−−→ Su strongly.

Then,
lim
ε→0

σ(Sε) ⊃ σ(S).
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The extension and projection operators Eε and Pε (I)

Definition 3 ([AlCon, CioDamGri]).

• The extension operator Eε : L2(Ω)→ L2(Ω× Y ) is defined by:

Eεu(x , y) =

{
u(ε
[
x
ε

]
Y

+ εy) if x ∈ Oε,
0 otherwise.

• The projection operator Pε : L2(Ω× Y )→ L2(Ω) is defined by:

Pεφ(x) =


∫
Y

φ(ε
[x
ε

]
Y

+ εz ,
{x
ε

}
Y

) dz if x ∈ Oε,

0 otherwise.
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The extension and projection operators Eε and Pε (II)

!

Y

y •
•

x

"
hx

"

i
Y

"
hx

"

i
Y

+ "y

••

The operator Eε rescales the content of each cell to size 1.
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The rescaled operator Tε

The rescaled operator Tε is defined by:

Tε = EεTεPε : L2(Ω,H1(ω)/R)→ L2(Ω,H1(ω)/R).

Proposition 12.
The rescaled operator Tε has the following properties:

• Tε is self-adjoint.

• σ(Tε) = σ(Tε) \ {0}.
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Single cell resonances.

• It follows from the two-scale convergence technology [Al, Ngue] that Tε
converges pointwise to a limit T0.

• This strong convergence of sequence Tεu shows that T0u ‘keeps track’ of the
ε-oscillations of the Tεu.

• This result allows to identify one part σ(T0) ⊂ σ(T0) of limε→0 σ(Tε),
corresponding to the resonance modes of a single inclusion ω ⊂ Y .

Theorem 13.
The limit spectrum limε→0 σ(Tε) contains the cell spectrum, i.e. the spectrum of the
operator T0 : H1

#(Y )/R→ H1
#(Y )/R defined by: for u ∈ H1

#(Y )/R,

∀v ∈ H1
#(Y )/R,

∫
Y

∇y (T0u) · ∇yv dy =

∫
ω

∇yu · ∇yv dy .

64 / 94



1 Localized plasmonic resonances
Generalities about localized plasmonic resonances
An intuitive understanding of localized surface plasmons
Mathematical model
Goals of the presentation

2 Layer potentials and the Neumann-Poincaré operator
Basics about layer potential theory
A closer look to the Neumann-Poincaré operator
A variational taste: the Poincaré variational operator
Different types of spectrum

3 Plasmonic resonances of a collection of particles
The homogenization setting
Uniform bounds on σ(Tε)
Single cell resonant modes: the cell eigenvalues
Collective resonances of cells: the Bloch spectrum
Completeness
Back to the conductivity equation

4 Plasmonic resonances of a bowtie-shaped antenna

65 / 94



Rescaling Tε over packs of cells (I)

Following [AlCon, Plan], the previous rescaling procedure can be performed over
packs KY of K d cells, containing a set ωK of K d copies of ω (K > 1).

We define new extension and projection operators over K d cells:

EK
ε : L2(Ω)→ L2(Ω× KY ), and PK

ε : L2(Ω× KY )→ L2(Ω),

which satisfy analogous properties to those of their single-cell counterparts.

⌦

K

Rescaling over a pack of K d cells.
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Rescaling Tε over packs of cells (II)

limε→0 σ(Tε) contains the spectrum of TK
0 : H1

#(KY )/R→ H1
#(KY )/R, defined by:

∀v ∈ HK ,

∫
KY

∇y (TK
0 u) · ∇yv dy =

∫
ωK

∇yu · ∇yv dy .

The spectrum σ(TK
0 ) is analyzed using a discrete Bloch decomposition [AguiCon]:

Theorem 14.

Let u in L2
#(KY ). Then, there exist a unique set of K d complex-valued functions

uj(y) ∈ L2
#(Y ), j = (j1, ..., jd), j1, ..., jd = 0, ...,K − 1, such that:

u(z) =
∑

0≤j≤K−1

uj(z) e
2iπj
K
·z , a.e. z ∈ KY ;

Furthermore, the Parseval identity holds:

∀u, v ∈ L2
#(KY ),

1
K d

∫
KY

u(z)v(z) dx =
∑

0≤j≤K−1

∫
Y

uj(y)vj(y) dy .
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The Bloch spectrum.

Bloch decomposition behaves well with functions u ∈ H1(ωK ), and diagonalizes
operators with Y -periodic coefficients. Hence,

σ(TK
0 ) =

⋃
0≤j≤K−1

σ(Tηj ), for ηj =
j

K
,

and where the operators Tη are defined by:

• For η 6= 0, Tη : H1
#(Y )→ H1

#(Y ) is given by:

∀v ∈ H1
#(Y ),

∫
Y

(∇y (Tηu) + 2iπη(Tηu)) · (∇yv + 2iπηv) dy =∫
ω

(∇y (Tηu) + 2iπηu) · (∇yv + 2iπηv) dy .

• T0 : H1
#(Y )/R→ H1

#(Y )/R is the the same as in the case of a single cell:

∀v ∈ H1
#(Y )/R,

∫
Y

∇y (T0u) · ∇yv dy =

∫
ω

∇yu · ∇yv dy .
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The Bloch spectrum.

Theorem 15.
The spectrum σ(Tη) is composed of a discrete sequence of real eigenvalues:

0 < λ−1 (η) ≤ λ−2 (η) ≤ ... ≤ 1
2
≤ ... ≤ λ+

2 (η) ≤ λ+
1 (η) ≤ 1.

Moreover, for any i = 1, ..., the mapping Y 3 η 7→ λ±i (η) is Lipschitz continuous.

Since the previous analysis can be performed for packs made from an arbitrary
number K of cells, this implies:

Theorem 16.

The limit spectrum limε→0 σ(Tε) contains the Bloch spectrum σBloch defined by

σBloch =
∞⋃
i=1

[
min

η∈[0,1]d
λ−i (η), max

η∈[0,1]d
λ−i (η)

]
∪
∞⋃
i=1

[
min

η∈[0,1]d
λ+
i (η), max

η∈[0,1]d
λ+
i (η)

]
.
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The completeness result

The remainder of limε→0 σ(Tε) gathers the limit behaviors of the eigenvectors of Tε
which spend a ‘not too small’ part of their energy near the macroscopic boundary ∂Ω.

Theorem 17.

The limit spectrum is decomposed as:

lim
ε→0

σ(Tε) = {0, 1} ∪ σBloch ∪ σ∂Ω,

where the boundary layer spectrum σ∂Ω is the set of the λ ∈ (0, 1) such that, for any
sequence λε ∈ σ(Tε) with λε → λ, and any corresponding (normalized) eigenvector
sequence uε ∈ H1

0 (Ω):

∀s > 0, lim
ε→0

ε−(1−1/d+s)||∇uε||L2(Uε) =∞,

where Uε := {x ∈ Ω, d(x , ∂Ω) < ε} is the tubular neighborhood of ∂Ω with width ε.

The difficulty to characterize more precisely σ∂Ω reveals very strong interactions
between the macroscopic boundary Ω and the inclusions; see [CasZua, MosVo].
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General setting for the conductivity equation

• We now study the well-posedness and limit behavior of the conductivity equation:{
−div(aε∇uε) = f in Ω,

uε = 0 on ∂Ω,
where aε(x) =

{
k if x ∈ ωε,
1 otherwise. (Pε)

The conductivity k is in C and the source f is in H−1(Ω).

• When Im(k) 6= 0 or k > 0, the classical homogenization theory states that uε
converges weakly in H1

0 (Ω) to the unique solution u∗ of{
−div(a∗∇u∗) = f in Ω,

u∗ = 0 on ∂Ω,
(P∗)

where the positive definite homogenized tensor is defined by:

a∗ij =

∫
Y

a(y)(∇ywi + ei ) · (∇ywj + ej) dy , where a(y) =

{
k if y ∈ ω,
1 if y ∈ Y \ ω.

and the cell functions wi ∈ H1
#(Y )/R solve

−div(a(y)(∇wi + ei )) = 0 in Y , i = 1, ..., d .

• What happens when k < 0 ?
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The formal, homogenized tensor in the case a < 0

The cell problems

−div(a(y)(∇ywi + ei )) = 0 in Y , i = 1, ..., d .

are well-posed provided λ := 1
1−k

does not belong to the spectrum σ(T0) of the cell
operator T0 : H1

#(Y )/R→ H1
#(Y )/R:

∀v ∈ H1
#(Y )/R,

∫
Y

∇y (T0u) · ∇yv dy =

∫
ω

∇yu · ∇yv dy .

It then makes sense to define the (formal) homogenized tensor

a∗ij =

∫
Y

a(y)(∇ywi + ei ) · (∇ywj + ej) dy

as soon as k /∈ Σω :=
{
k ∈ C, 1

1−k
∈ σ(T0)

}
.
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Main results

Theorem 18.
Let k ∈ C \ Σω; then,

• If uε ∈ H1
0 (Ω) is a sequence of solutions to (Pε) such that

||∇uε||L2(Ω)≤ C ,

then up to a subsequence, uε converges weakly in H1
0 (Ω) to a solution of (P∗).

• Conversely, if u ∈ H1
0 (Ω) is one solution to (P∗) (if any), then for any sequence

kε → k, kε /∈ Σω, there exists a sequence fε ∈ H−1(Ω) converging pointwise to
f and a sequence uε of associated voltage potentials, i.e.:{

−div(aε∇uε) = fε in Ω,
uε = 0 on ∂Ω

, where aε(x) =

{
kε if x ∈ ωε,
1 otherwise,

such that uε → u weakly in H1
0 (Ω).

This indicates that no ‘good’ solution to (P∗) can be singled out via such a limiting
process.
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The particular case of high-contrast

The previous material reveals that the conductivity equation (Pε) is uniformly
well-posed as ε→ 0 when k < 0 is either ‘very small’ or ‘very large’.

Theorem 19.

There exists a constant 0 < α such that, if the conductivity k belongs to
(−∞,−1/α) ∪ (−α, 0), then:

(i) For 0 < ε, the system (Pε) for uε is well-posed, i.e. it has a unique solution for
any source f ∈ H−1(Ω), and uε depends continuously on f .

(ii) The homogenized tensor a∗ is elliptic; in particular, (P∗) is well-posed.

(iii) For any source f ∈ H−1(Ω), the unique solution uε ∈ H1
0 (Ω) to (Pε) converges,

weakly in H1
0 (Ω), to the unique solution u∗ of (P∗).
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Why bowtie-shaped antennas?

Physical experiments report that:

• Bowtie-shaped antennas support multiple surface plasmon modes, and can
therefore operate under a large bandwidth.

• Some of the surface plasmon modes show highly localized energy near the tips.

Depending on the incident illumination, the electric field is enhanced at the level of the
whole bowtie device, or it is concentrated near the tips; excerpted from [LorMarLos].
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The bowtie-shaped antenna

• The situation takes place In the plane R2, inside a bounded ‘hold-all’ domain Ω.

• The domain D b Ω is bowtie-shaped (and not Lipschitz): D = D1 ∪ D2, where,

D1 ∩ Br0 =
{

(r cos θ, r sin θ), r ∈ (0, r0), θ ∈
(
−α
2
,
α

2

)}
,

D2 ∩ Br0 =
{

(r cos θ, r sin θ), r ∈ (0, r0), θ ∈
(
π − α

2
, π +

α

2

)}
.

↵

2

D1D2

⌦

r0

0
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Program of the study

For simplicity (and w.l.o.g.), we consider the version of the Poincaré variational
operator featuring Ω and homogeneous Dirichlet boundary conditions on ∂Ω.

For u ∈ H1
0 (Ω), TDu is the unique element in H1

0 (Ω) such that:

∀v ∈ H1
0 (Ω),

∫
Ω

∇(TDu) · ∇v dx =

∫
D

∇u · ∇v dx .

Questions:

• What is the spectrum of TD when D is a bowtie?

• What do the generalized eigenfunctions look like?

• How can we relate this spectrum to that of a more realistic ‘near bowtie
antenna’?
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Plasmonic resonances of the bowtie antenna (I)

Theorem 20 (Essential spectrum of TD).
The operator TD has only essential spectrum and σ(TD) = [0, 1].

Hint of proof: The proof is very close in spirit to that of Theorem 9.

• Let λ ∈ [0, 1
2 ) ∪ ( 1

2 , 1] and k = 1− 1
λ
∈ (−∞,−1) ∪ (−1, 0); we consider the

two-phase conductivity equation:

− div(a(x)∇u) = f in B1, where a(x) :=

{
k in D ∩ B1,
1 otherwise (C)

• A calculation using separation of variables shows that there exists

• A real number ξ ≡ ξ(k) 6= 0,

• a smooth, 2π-periodic function ϕ(θ),

such that
u(r , θ) := r iξϕ(θ)

is one solution to (C) in the sense of distributions.

• The function u does not belong to H1
0 (Ω) since its gradient blows up at 0.
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Plasmonic resonances of the bowtie antenna (II)

• However, u may be modified into a singular
Weyl sequence uε for TD and λ:

uε(x) = sεχ1

(x
ε

)
χ2(x)u(x),

where:

• χ1 is a smooth cutoff function with
support in R2 \ B1,

• χ2 is a smooth cutoff function with
support in B1,

• The normalization constant sε is adjusted
so that ||uε||H1

0 (Ω) = 1.

D1D2

supp(�1(
x

"
)�2(x))

0
1

"

• One indeed proves that:

||λuε − TDuε||H1
0 (Ω) = sup

v∈H1
0 (Ω)

||v||
H1
0 (Ω)

=1

∫
Ω

a(x)∇uε · ∇v dx
ε→0−−−→ 0.
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The near bowtie antenna, with close-to-touching wings (I)

Let Dδ = D1,δ ∪D2,δ be a piecewise smooth version of the bowtie antenna, with only
close-to-touching wings:

D1,δ =

(
δ

2
, 0
)

+ D1, and D2,δ =

(
− δ
2
, 0
)

+ D2,

for small enough δ > 0.

0

D1,�D2,�

�

2

We are interested in the limiting spectrum of σ(TDδ ) as δ → 0:

lim
δ→0

σ(TDδ ) :=
{
λ ∈ R, ∃δn ↓ 0, λn ∈ σ(TDδn

), λn → λ
}
.
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The near bowtie antenna, with close-to-touching wings (II)

Theorem 21 (Limiting spectrum for a near-bowtie antenna).

The limiting spectrum of TDδ is exactly that of the Poincaré variational operator of
the bowtie antenna D:

lim
δ→0

σ(TDδ ) = σ(TD) = [0, 1].

Remark:

• For fixed δ > 0, Dδ is piecewise smooth with corners of aperture α, so that
Theorem 9 applies: σ(TDδ ) is the reunion of a set of discrete eigenvalues{
λδi
}
i=0,... and the interval of essential spectrum:

σess(TDδ ) =
[ α
2π
, 1− α

2π

]
b [0, 1].

• Theorem 21 implies that as δ → 0, the eigenvalues
{
λδi
}
i=0,... densify to

eventually fill the whole gaps [0, 1] \ σess(TDδ ).

� ! 0

0 11

2

�ess(TD�
)��

1

0 1 0 1
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The near bowtie antenna, with close-to-touching wings (III)

Hint of the proof: From the ‘convergence of domains’

1Dδ

δ→0−−−→ 1D in L1(Ω),

the pointwise convergence of associated operators follows easily:

For all u ∈ H1
0 (Ω), TDδu

δ→0−−−→ TDu strongly in H1
0 (Ω).

The result is then directly implied by the abstract fact:

Proposition 22 ([Ka]).

Let H be a Hilbert space and let Sε : H → H be a sequence of self-adjoint operators
converging pointwise to S : H → H. Then,

lim
ε→0

σ(Sε) ⊃ σ(S).

Remark: A more constructive proof is possible, involving surgery of the generalized
eigenfunctions for TD to produce ‘quasi-eigenfunctions’ for TDδ .
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Thank you !

Thank you for your attention!
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