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This course is devoted to the study of the motion of a domain (or a phase) Q(t),
with boundary I'(t) := 9(t), along a velocity field V/(t, x).

Since its inception by Osher and Sethian , the level set method has been
one convenient framework from both theoretical and numerical viewpoints.

It allows to describe very large evolutions (including topological changes) in a
robust way.

Other theoretical or numerical methods for the
study of moving domains include:

- Arbitrary Lagrangian-Eulerian (ALE) methods, )
- Phase-field methods, V(lf,,,;‘fz'-,')
- Volume of Fluid (VOF) methods, L el .

- etc.
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A domain D C R? is filled with two immiscible fluids, occupying complementary
phases Qo, Q1, with different densities pg, p1 and dynamic viscosities vg, v1.

D

Qo

Model situation for a bifluid problem.
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e The velocity u(t, x) and pressure p(t, x) of the mixture solve the Navier-Stokes

equations:

“+u-Vu)—y;Au+Vp=ﬁ

pi (5

div(ui) =0

for (t,x) € (0, T) x Qi(t),
for (t,x) € (0, T) x Qi(t),
for (t,x) € (0, T) x 9D,

on I(t),

on I(t),

on ;(0).

e The interface '(t) between both fluids moves according to the velocity of the fluid:

uo(t, x) = ui(t, x),

t>0, xerl(t).

5/118



A guiding example: bifluid flows (1)

Evolution of two fluid bubbles immersed in a fluid with larger density
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A guiding example: bifluid flows (1V)
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Naive" numerical methods (e.g. acting by mesh
deformation) are typically not robust enough to

handle large shape deformations.

shapes and their evolutions.

e This calls for more sophisticated descriptions of



In general, the motion of Q(t) may be classified into three categories depending on
the nature of the velocity field V/(¢,x).

Q(t) is passively transported by V/(t,x): V/(t,x) is externally prescribed, i.e. it
does not depend on Q(t).

The velocity V(t, x) depends on local features of Q(t) or I'(t), such as:

e the normal vector n.(x) at x € ['(t);

e the mean curvature k:(x) of I'(t).
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‘Three classes of domain motions

Example 1| The flame propagation model: Q(t) represents a burnt region, whose

front expands with constant, normal velocity c:

V(t,x) = ¢ ni(x), where ¢ > 0 is a constant.

N <

! r

An example of the dynamics in the flame propagation model.
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Example 2 | The mean curvature flow:
V(t, x) = —re(x) ne(x),

that is, Q(t) evolves by “resorption of its bumps”, and “filling of its creases”.

<A Q

An example of the dynamics of the Mean Curvature Flow: Grayson's result
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The field V(t, x) depends on global features of the domain Q(t), e.g. it is
obtained by solving one (or several) PDE posed on Q(t).

e We have seen that when Q(t) accounts for a fluid domain, V/(t,x) is the
solution to the Stokes, or the Navier-Stokes equations, whose physical
coefficients depend on Q(t).

e We shall see several other examples of motions of this category; for
instance, in structural optimization, V/(t, x) involves the solution to one,
or several linear elasticity equations posed on Q(t).

e Motions of this category are by far the most interesting ones in practice,
. and the most difficult to analyze. They are usually approximated by a
series of motions of one of the first two kinds.
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Disclaimer

e This course is an introduction, and is only devoted to the basic features of the
Level Set method.

e It is oriented towards applications, and difficult mathematical details are only
hinted at, see the monograph around these points.
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Implicit geometries (1)

| A paradigm: the motion of an evolving domain is best described in an implicit way.

A domain Q C R? is equivalently defined by a function ¢ : RY — R such that:

Pp(x) <0 ifxeQ ; P(x)=0 ifxel ; ¢(x)>0 ifxeQ

(Left) a domain Q C R?; (right) the graph of an associated level set function.
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Let Q ¢ RY be a domain, ¢ : RY — R be a level set function of class C? for Q, such
that V¢(x) # 0 on a neighborhood of T.

e The normal vector n to I pointing outward 2 reads:

Vx €T, n(x)= 7V¢(X)

O

Normal vector to a domain Q; some isolines of the function ¢ are dotted.

15/118



e The second fundamental form II of T is:

Vxerl, I(x) =V (;280 .

e The mean curvature k of I is:

Vx €T, K(x) = div <\§28|> .

IL (v, v) is the curvature of a curve
drawn on I with tangent vector v at x.
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Evolving domains (1)
Definition 1.

Let V(t,x) be a smooth velocity field. The characteristic curve emerging from a

point x € RY at time t = ty is the curve t — x(x, t, to) defined by the ODE
:t(X(X, t, to)) = V(t7 X(Xa t, to)), fort € (07 T)
X(Xv to, to) =X

V(to’ IO)

Zo

T

T2
Three characteristic curves of the velocity field V issued at t = t, from different points xp, X1, Xa.

=

DAy
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Evolving domains (1)

“Intuitive” notion of an evolving domain

A domain Q(t) evolves according to a velocity field V/(t, x) from an initial position
Q(to) if it is obtained by transporting its points along V:

Q(t) = {X(XO, t, t0)7 Xo € Q(to)} .

=} (=) = E El= DAl
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o Let Q(t) be a (smooth) domain, moving over (0, T) along the (smooth) velocity
field V(t,x). Let ¢(t,x) be a smooth level set function, i.e:

o(t,x) <0 if x € Q(t),
vte (0,T), xeRY, { #(t,x)=0 if x€l(t),
o(t,x) >0 if x € °Q(t).

e Let xo € ['(0) be fixed. By the intuitive definition of an evolving domain, it comes:

Vt e (07 T)7 ¢(t7 X(X()? t7 0)) = O'

e Differentiating and using the chain rule, we obtain:

20 (X000, £,0)) + 2 (x(30. ,0)) - V6(t, x50, ,0)) = 0.
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e Since this holds for any point xo € I'(0), we obtain the level set advection equation

vt e (0, T), Vx € RY, % + V(t,x)- V¢ =0.

e If, in addition, the velocity is consistently oriented along the normal vector n:(x)
to Q(t), that is:

V(t, x)

V(t,x) = v(t, x)7=———=, for some scalar field v(t,x),

[Vo(t, x)|

the equation rewrites as the Level Set Hamilton-Jacobi equation

vt e (0, T), Vx € RY, % + v(t,x)|Ve|= 0.
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e Strictly speaking, both equations only hold for pairs (t, x) with x € I'(t). However,
the previous analysis can be applied to any level set of ¢:

Me(t) = {x eRY, 4(t,x) = c}.
Hence, the equation:

vt € (0, T), Vx € R?, %(t,x) + V(t,x) - Vo(t,x) =0

actually accounts for the fact that all the level sets of ¢ (and not only its O level
set) move according to V/(t, x).

e In many applications, the velocity field V/(t, x) makes sense only for x € ['(¢t). In
the above derivation, it is implicitly assumed that V(t, x) has been extended to
the whole space R¢.
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Evolving domains: comments (1)

e More fundamentally, this derivation rests upon the assumption that Q(t), V/(t, x),
o(t, x) stay “smooth” over (0, T).

How is it possible to account for the evolution of Q(t) when either the domain Q(t),
or the velocity field V(t, x) has developed a singularity?

This problem is not a pure mathematicality: even in the simplest models, Q(t) and
V(t, x) (thus ¢(t, x)) become singular in finite time.
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e In the flame propagation model, a domain (t), whose initial boundary '(0) is
(locally) described by the curve:

1+ cos(27s)

~(s) = (1 _S’f) , s€[0,1],

evolves according to the velocity field V/(t, x) = n:(x).

Some positions of the interface I'(t); at a critical time t = t., ['(t) develops a singularity
where n¢(x) (thus V(t,x)) is not defined (blue dot).
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e In the context of the mean curvature flow, consider a "dumbbell’-shaped initial
domain Q(0), evolving according to the velocity field

V(t,x) = —ke(x)n:(x).

(I &0

Evolution of a three-dimensional dumbbell under the mean curvature flow. The central part
of the bar ends up pinching.
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In the flame propagation example (and in general), there are several ways of giving a
sense to the evolution of the front once a singularity has appeared.

(Left) Evolution of Q)(t) obtained by “pursuing the motion” of all the points of I'(t) where
the normal vector is defined; (right) Evolution of Q(t) obtained by imposing an “entropy
criterion”: “a burnt point stays burnt”.
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Development of singularities (1V)

e Singularities are inevitable, even in the case of a "very smooth” motion.

e What happens after the onset of singularities is actually a matter of defining the
motion of a possibly non smooth domain, under a possibly non smooth velocity.

e The level set equations have “too many" solutions.

= Need to devise a “good", generalized notion of solutions, which selects the
correct “physical” behavior.

Mathematical definition of an evolving domain

@ Start from any level set function ¢o(x) for the initial domain €(0).

® Solve the level set evolution equation

9 4 V(t,x)-Vé=0 forte(0,T), xeR
(0, x) = ¢o(x) for x € RY.

y

@ Define the domain Q(t) by Q(t) = {x € R, ¢(t,x) <0}.
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Viscosity solutions to Hamilton-Jacobi equations |

Definition 2.
Let U C RY be open, and H : R x R, x RY x S4(R) be a continuous function (the
Hamiltonian). Consider the second-order Hamilton-Jacobi equation:

%(t,x) + H(x,u, Vu, Vzu)(t,x) =0, on(0,T)x U.

e A function u is a viscosity subsolution of (HJ) if:

()

@ jt is upper semicontinuous on (0, T) x U,

@ for any function ¢ of class C*> on U such that u — ¢ reaches a local
maximum (say, 0) at (t, x),

92 (%) + Hlx, e x), V), V3 (8,)) < 0.

DAy
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Viscosity solutions to Hamilton-Jacobi equations Il

Definition 2.
e A function u is a viscosity supersolution of (HJ) if:
@ It is lower semicontinuous on (0, T) x U,

@ for any function o of class C* on (0, T) x U such that u — ¢ reaches a
local minimum (szy, 0) at (t,x),

02 (%) + Hlx, it x), Vi), V2(,)) > 0
e A function u is a viscosity solution of (HJ) if:

@ (It is continuous on (0, T) x U)

@ jt is both a viscosity subsolution and a viscosity supersolution.

DAy
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Affine functions of the form u(x) = ax + b are viscosity solutions to the

equation —u’’ =0 in (0,1):
If u— ¢ has a local maximum at xo (situation on the

L]
left), ¢ is locally above u around xo, and
—¢"(x0) <0.
° If u— ¢ has a local minimum at xo (situation on the

right), ¢ is locally below u around xo, and
—¢"(x0) > 0.
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Viscosity solutions to Hamilton-Jacobi equations (V)

Motivations for this definition:

e |t leaves the room for solutions u which are only continuous, but not
differentiable: the gradient and the Hessian matrix of u in (H.) are replaced by
those of any smooth function which locally “behaves like" w.

e The two comparison criteria take into account important monotonicity
properties of Hamilton-Jacobi equations.

e Viscosity solutions enjoy many “physical” properties...

(Left) u — ¢ has a local minimum at xo; (right) u — ¢ has a local maximum at xp.
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Under “reasonable assumptions” on the Hamiltonian function H,

e Existence and uniqueness. For a given initial data wug, the viscosity solution u of
(HJ) exists and is unique.

e Generalization of classical solutions. If the viscosity solution u of () is of
class C?, then it is also a solution of this equation in the classical sense.

e Vanishing viscosity limit of solutions to “regular” equations. For small £ > 0, let
u:(t,x) be the (smooth) solution to the equation:

{ %us (. x) — eAuc(t, x) + H(x, ue, Ve, V2ue)(t, x) = 0,

ot
u(t=0,")=u(t=0,")

obtained by adding to () the regularizing viscosity term —cAu..

)

Then, u. =29 u, uniformly on every compact subset of [0, T] x RY.
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e Independence from the initial level set function. Let ug, vo be two level set
functions for an initial domain g, i.e.

Qo = {x eR?, wo(x) < 0} = {x eR?, w(x) < O},

and u(t,-), v(t,-) be the corresponding solutions of (HJ). Then, u and v define
the same domain:

vt € (0, T), {x eRY u(t,x) < 0} = {x eRY v(t,x) < 0}.

e Monotonicity. Let Qo C Qo be domains in R?, uo and o be corresponding level
set functions. Define:

Q(t) = {x eR?, u(t,x) < O} ,

where u(t,-) solves (1) with initial data uo, and likewise for Q(t).

Then, Q(t) C Q(t).
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Properties of viscosity solutions (lII)

Example 1 | In the flame propagation model, the evolution of Q(t) selected by this

process coincides with that obtained by imposing the “entropy criterion”.

W

Domain Q(t) := {x € R?, ¢(t,x) < 0}, where ¢ is the viscosity solution to the
Hamilton-Jacobi equation % + |Vg¢|=0.
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Example 2 | When the mean curvature flow, initialized by the “dumbbell”, the
evolution of §(t) selected by (an adaptation of) the notion of viscosity solutions

looks as follows:
(>
O O ° 9

Domain Q(t) := {X €ERY, ¢ (t x) < 0} where ¢ is the "viscosity solution” to the mean

curvature flow —div ( > |Vé|= 0 (Time is increasing from left to right, top to
bottom).
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e An equivalent, convenient reformulation of the level set equations is available
when the domain (t) expands (resp. retracts) along its normal vector,

V(t,x) = c(x)n:(x), where c(x) > 0 (resp. c(x) < 0).

e A stationary PDE can be derived in terms of the time function T(x):

T(x) = inf{t >0, x € Qt)}.

e The derivation of this PDE follows the same trail as that of the level set equations:

At first, it is rigorously established in the regions of space where Q(t),
V(t,x) and T are smooth,

Then, a generalized notion of solutions is introduced for this PDE to impose
a “physical” behavior where they are not smooth.
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We rely again on the intuitive notion of an evolving domain.

Let xo € T'(0), and t — x(t) be the characteristic curve of V(t,x), emerging from
Xxo at t = 0:
x(0) = x0, and x'(t) = c(x(t))ne(x(t)).

By definition of the time function, it holds:

Q(t) = {x eR’, T(x) < t}, and (t) = {x eR’, T(x) = t}.

In particular, ¢(x) := T(x) — t is one level set function for Q(t). Hence,

VT(x)

vVt >0, Vx € T(t), n(x) = VT
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e On the other hand, differentiating the relation
T(x(t)) = t, we obtain:

Vt >0, xX'(t)- VT(x(t)) = 1.

e Inserting

) ooy YT
X(0) = (D o)

it follows that T is solution to the Eikonal equation:

{ c()IVT(x)[=1 forxe R? \ Q(0), Some isolines of the time
T(x)=0 for x € 1(0). function T in the particular
case where c = 1.
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A stationary PDE for initial value problems (111)

e A similar analysis holds in the case where Q(t) con-
stantly retracts in the normal direction:

V(t,x) = —c(x)n:(x), where c(x) > 0.
e The time function T : Q(0) — R is then defined by:

T(x):inf{tzq xeRd\@}.

e It turns out that T is solution to the Eikonal equation:

{ c(X)|VT(x)|=1 for x € Q(0),
T(x)=0 for x € [(0).

Some isolines of the time

function T in the particular
case where c = 1.
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Viscosity solutions for the Eikonal equations (1)

Definition 3.
Let H:RY x ]Rg — R be a continuous Hamiltonian function; consider the stationary
Hamilton-Jacobi equation:

{ H(x, Vu(x)) = 0

u(x) =0 Ic,;nQF, : (1)

A continuous function u on Q is a viscosity solution to (S-1.J) if:
e Subsolution inequality: For any point xo € Q, and any function ¢ of class C?
such that (u — ) has a local maximum (say, 0) at xo:
H(x0, Vip(x0)) < 0.

o Supersolution inequality: For any point xo € Q, and any function ¢ of class C?
such that (u — ) has a local minimum (szy, 0) at xo:

H(xo, Vip(x0)) > 0.

DAy
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Viscosity solutions for the Eikonal equations (Il)
Assume that c(x) > 0 is continuous; the Eikonal equation
{ c(x)|Vu(x)|=1

in Q,
u(x)=0 onT
has a unique viscosity solution u € C(Q).

In the particular case c(x) = 1, u is the Euclidean distance function:

u(x) = d(x,I) = inf d(x,y).

0 1 0 1
(Left) graph of the distance function u = d(-,T"), (right) graph of a function satisfying
|u’(x)|=1 a.e. which is not a viscosity solution of the equation |u’|= 1.

[m] = =
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Intuitive idea of the proof (in the case Q = (0,1) C R):

e We only prove that u = d(x,I") is one viscosity solution (the uniqueness is
admitted).

e At any point xo # %, u is differentiable, with derivative |u’(x)|= 1.

° there exists no function ¢ of class C? such that
(u — ¢) has a local minimum (say 0) at xo.

No smooth function ¢ has its graph under that of u around xp.
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Viscosity solutions for the Eikonal equation

let o be a function of class C? such that (u — ¢) has a
local maximum (say 0) at xo.

Then it is easily seen that |¢/(x0)] < 1.

Graph of a smooth function ¢ such that (u — ) has local maximum 0 at xp.
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The exact level set equation

{ %2(t,x) + V(t,x) - Vo(t,x) =0 for (t,x) € (0, T) x R?, (19)
o(t = 0,x) = ¢o(x) for x € RY.

is too complicated for a general velocity V/(t, x) (depending on ¢(t, x)).

The time interval (0, T) is split into a series of subintervals

(t",t"1), where 0=t < t' < .. < t" =T,
and V/(t,x) is approximated on each (t”, t"1).

Two such approximations are possible:

The whole velocity field V/(t, x) is frozen over (t", t""1):
vt e (t", t"+1), V(t,x) = V'(x) := V(t", x),
and over each interval, a standard advection equation is solved:

92(t,x) + V"(x) - Vo(t,x) =0 on (t", ") x R, ()
o(t = t", x) given for x € RY.
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Only the normal component of V/(t,x) = v(t, x)n:(x) is frozen:
vt e (", t"1), V(t,x) = v"(x)n:(x), where v"(x) = v(t", x).
Over each interval, a “classical” Hamilton-Jacobi equation is solved:
{ %0(t,x) + v"(x)lVg%S(t,x)|: 0 on (¢t t';“) x RY, ()
o(t = t", x) given for x € R7.

e Advection equations of the form ( ) are quite well-known, and efficient
numerical schemes exist for their resolution.

e The Hamilton-Jacobi formulation () preserves the information that the
velocity field is consistently oriented along the normal vector n:(x) to Q(t), and
is thus appealing in many cases.

48 /118



e We focus on the resolution of the level set Hamilton-Jacobi equation over a
generic time period (0, T) (= any of the (", t"") in the previous context):
% +v(x)[Vé|=0 on (0, T) x RY,
6(0,.)=¢o  onRY,

for given normal velocity field v(x), and initial function ¢o.

e The device of efficient algorithms for solving this equation relies on the theory of
numerical schemes for first order Hamilton-Jacobi equations:

"o0.)=d0  onRY,

in the particular case where H(x, p) = v(x)|p|.

{ g¢ 4 H(x, V) =0 on (0,T)x R
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e We focus on the 2d situation.
e The time interval (0, T) is split into N = T /At subintervals:
(t",t"1), where t" = nAt, n=0,..., N,
and At is a time step.

e The space is discretized by a Cartesian grid with steps Ax, Ay.

50 /118



e For i,j € Z, we denote the finite difference quantities:

+x ¢l+1 ¢l ) —X ¢i' - ¢i71'
Dij ¢=——" D/‘j ¢=—"—,

Ax ' Ax

and Gy — o ¢ — ¢
Dj—y — ij+1 — Qij . D”—y — j— Pij-1 .

i ? Ay P Ay

e An explicit, first-order scheme for the Hamilton-Jacobi equation reads:

Vi,j €z, ¢ = do(idx, jAy),
VneN,i,jeZ, ¢t =q¢f—AtH (xzD;*¢",D;*¢",D;7¢", DY ¢"),

where the numerical Hamiltonian
= + — +
H (Xij7 DU X¢n7 Dijx()bna D’J y¢na D,jyd)n)

is intended as an approximation of H(xij, Vo(xi)).
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The theory of numerical schemes for Hamilton-Jacobi equations (II)
Definition 4.

A numerical scheme of the above form is said to be:
e consistent if, for any x € R? and p € R?, H(x, px, Px, Py, Py) = H(x, p).

e monotone if, for any x € R?, and any i, € Z, the update function

- +
{¢k1}k,I€Z — ¢ll - AtH (Xa DU X¢a Dijx¢) D,
is increasing with respect to each of its arguments.

s
i

$, D}’ ¢)

Under mild, technical hypotheses on H and ¢y, first-order consistent and monotone
numerical schemes converge to the viscosity solution to (/).

DA
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In the particular case of interest, H(x, p) = v(x)|p| and () reads:

]
#(0,.) = ¢o on RY.

We introduce the numerical scheme:
{ VneN,i,jeZ, ¢ft=¢i— At(max(vy,0)V}¢" + min(vy,0)V; ¢"),

{ a—‘f v(x)|[Vel=0 on (0, T) x R,

vijez, 68 = po(inx, jDy),

with the discretizations V,-f-qb and V;; ¢ of the gradient norm |V | defined by:
Vip— max(max(Dj *¢, 0), — min(D;*¢,0))? :
v + max(max(D; ¥ ¢, 0), — min(D;” ¢, 0))? ’

and
—— max(max(D,-j-rxqﬁ, 0), — min(D; * ¢, 0))? :
i 0= ( +max(max(D;y¢,0)7—min(D,;y¢70))2 )
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e The quantity V;—qﬁ (resp. V; ¢) is upwind (resp. downwind): it is a finite
difference approximation of |V¢| at x; based only on the values among
{Gi-1j, bi+1j, Pij—1, ii+1} which are smaller (resp. larger) than ¢;.

e The discretization of the (exact) Hamiltonian H(x, p) = v(x)|p| by the numerical
counterpart:
H(xy, Vé(x5)) = Hi({ Pk} i jez) = max(vy, 0)V 4" + min(vy, 0)V; ¢"

n+1

;" is only carried out using

is upwind: for given i, j, n, the update ¢} — ¢
information coming from

- smaller values than ¢j if v; is positive,

- larger values than ¢} if it is negative.
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Sethian’s first-order scheme is consistent:

Vx € RY,Yp = (e, py) € B2, H(x, Px; P, Py, Py) = v(X)|pl-

It is monotone, provided the following CFL-like condition is fulfilled:

At
i e < 1, .. .
(sﬁi-p ) min(Ax, Ay) — "€

“The information cannot travel more than one cell during one time step”.

It is therefore convergent (under the CFL condition).

In addition, the following error estimate can be proved between the numerical
result {¢;j} of Sethian's scheme, and the exact viscosity solution ¢(t, x):

Vij € Z,¥n< N, |¢) — (", xj)|< CVAL
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The time accuracy can be increased thanks to the Runge-Kutta methodology,
applied below, for simplicity, to the device of a second-order in time scheme.

n+1 n+1

An attempt step ¢j; — ¢ is performed for the value of ¢ at time t"", using
the previous first-order scheme:

¢"+1 o5 — At (max(vj,0)V;¢" 4+ min(v;,0)V; ¢") .

2
i

n+1

Another attempt step is performed for an approximation of the

value of ¢ at t"*2:

0572 = 65 — At (max(vy, 0)V§ 67 + min(v;,0)V; 657

—

n+1

The actual update ¢ — @j" " is obtained by averaging:

n+1 = ¢ n+2
y
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e The space accuracy can be enhanced by using a higher order discretization of the
derivatives of ¢ instead of the previous first-order formulae

Pit1j — ij D¢ = Gij — bi—1j
ij )

D+X _ .
¢= Ax Ax

and D;”¢, D} ¢.

e This discretization should take great care of the fact that ¢ may be singular in
some regions of space.

e To achieve this, the idea of Essentially Non Oscillatory (ENO) finite differences
consists in:

Constructing a (second-, third-order) polynomial approximation P of ¢
around the considered node xj;, by using only information from the nodes
around x; where ¢ is “smooth enough”.

Calculating D,Jj-:x¢, D;Fyqﬁ as the derivatives of P.
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e Setting: The real line R is subdivided with a set of nodes x; = iAx, i € Z, and a
numerical quantity {¢;},., is defined at these nodes.

e Information about the derivatives of ¢ is approximated at several nodes around

that of interest; for instance:

st o - . .Y i — ¢i—1 Pir1 — Pi
1%t divided differences: D129 = TAx ,+1/2¢ =" Ax

D}
2" divided differences: D?¢ = ,+1/2¢ = 1/2¢

2Ax
qu’) )
1 ; 1 ) 1 / L
Dza;/z(’“) D'i,f'l/z@ Dzi+1/20 Dz,+,a/2<)
L] [ ] [ ] [ ] [ ] [ ]
. - . = . ° L . . = . - .
T;—3 Ti—2 Ti—1 Z; Ti+1 Tiy2 Ti+3
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ENO reconstruction in one dimension (I1)

e A polynomial P(x) of degree e.g. 3 or 4 is fitted to the data by selecting some of

these derivatives, so that P(x) does not present too steep variations (which could
account for a region of discontinuity of ¢).

Ti-3 Ti—2 Ti—1 X Tit+1 Tit2 Ti+3

Different reconstructions of the data ¢ (black dots) using different stencils; the blue reconstruction is

polluted by the presence of a shock.
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e Taking the derivative of P at x; results in an explicit, high order formula for the

derivative of the numerical quantity {¢;},.,, with adaptive stencil.

e That the stencil may change from one evaluation of the derivatives of ¢ to another
is undesirable:
e The convergence analysis of ENO schemes is difficult,

e This “lack of smoothness” in the stencil selection procedure causes trouble in
applications to hyperbolic PDE,

e In practice, the stencil could change just because of round-off errors.

As a remedy, Weighted ENO schemes (WENO) feature a convex combination of
several reconstruction formulae of the previous form (with different stencils), the
weights of each particular reconstruction depending on the local smoothness of ¢.
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e Different techniques are needed when the computational support is a triangulation
instead of a Cartesian grid, e.g.:

e A generalization of the above concepts of consistency and monotonicity,
paving the way for new rules for devising convergent schemes - see

e Stabilized (Petrov-Galerkin) finite element formulations for the
Hamilton-Jacobi equations, where some quadratic terms are added to their
variational formulation to penalize oscillations; see

e Semi-Lagrangian schemes (see ) use the direction along which the
information is conveyed by Hamilton-Jacobi equations, grossly speaking by
backtracking the corresponding characteristic curves of the equation.

This idea can be worked out whatever the computational support.
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Part IV

Initialization of a level set
function

@ Initialization of level set functions
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Initializing level set functions: the signed distance function (I)‘

e Let Q C R? be a (smooth, bounded) domain. We seek to construct an associated
Level Set function ¢ : R? — R.

e There are “a lot” of level set functions associated to a given domain .

Two level set functions for the domain Q = (0,1) C R.

e The theoretical framework of the level set method is independent of which
particular level set function is used.
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ifx e,

0 ifxer,

d(x,T)

where d(-,T) is the usual Euclidean distance function to T

Initializing level set functions: the signed distance function (I1)
Definition 5.
Let Q C RY be a domain. The signed distance function dq to Q is defined by:
—d(x,T)
do(x) =

ifx €°Q

d(x,I) = }er [x —yl.

e do is Lipschitz continuous (exercise).

e From Rademacher’s theorem, it is almost everywhere differentiable.
e Wherever it makes sense, its gradient has unit norm:

|Vda(x)|=1 a.e. on R,

[m]

DAy
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Initializing level set functions: the signed distance function (III)‘

-5 0000€ 02 1 0000e-01 -5 0000E-02 1.0000E-01

. | e —————— ]
-1.0000E-01 OS000E400 4.0000E-01 ~1.0000E 01 00000E+00 4 0000E 01

Graphs of (left) one very steep level set function associated to a disk, (right) the signed
distance function to the disk.
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e The most celebrated method to calculate (signed) distance functions is the fast
marching method, introduced by Sethian in

e Setting:
- Qs a 2d domain, and the (unsigned) distance function d(-,I) is calculated
on the outer domain R? \ Q.

- The plane is again equipped with a Cartesian grid, whose nodes are denoted
x;j = (IAx, jAy), for i,j € Z.

- The fast marching method produces, at each iteration n =0, ... a numerical
quantity {7—’§I}ij€Z’ intended as an increasingly accurate approximation of
d(-,I).

e The fast marching method is a combination of two ingredients:

- A numerical discretization of the Eikonal equation |V T|= 1, used to update
the values T; — T;“ from the values T} at neighbors xi of xj.

- A marching procedure, giving an order for accepting values.
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The fast marching method mimicks the propagation of a front.
e The nodes x;; of the grid are consistently classified into 3 categories:

- The accepted nodes x;; are those “where the front has already passed”. The

value T is assumed to have converged and is no longer updated.

- The active nodes x; are those “on the front”. One of their 4 neighbors
Xi—1j, Xi+1j, Xji—1 OF Xjj+1 is accepted, and a first trial value T,j’ has been
computed, but may still be subject to updates.

- The far nodes are those x; for which no trial value is available: T; = oco.
e At each iteration n — n+ 1, the algorithm

accepts one active node, that with the smallest trial value,

redefines the set of active nodes (i.e. tags active those who are neighbor to
the newly accepted node),

calculates new trial values where need be, using the update procedure.

67 /118



0
o

RS
.O..

® accepted nodes
O active nodes

O far nodes

R o I .
0= 00 QOO
R e

Setting of the fast marching method
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At an iteration n — n+ 1, a temporary value ﬁ’ is calculated at each active node
xjj, thanks to a discretization of the Eikonal equation:

IV T(x)|= 1.

The discretization is:

— — 2
Th—T" .. T . —T"
—1 . 1
max (max (’JT'J,O ,—min | 4 0

X

— — 2
To-Th_, T, —T"
— . +1
+ max (max (7” :y” ,O) ,—min (7” Ay ”,0))

The calculation of ﬁ’ from the T is upwind:

- Only the accepted values within the set { T/ y;, T/\1;, T} 1, Tj,1} are used
in the above formula.

- Only solutions ﬁ’ larger than these accepted values are retained.

In the end, the new trial value T,-J”-+1 is obtained as:

g i

T,;H = min (7’7’ T-'-’) .
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o Initialization:
Compute the exact distance function at the nodes of the cells which intersect
', and mark them as accepted.

Use the local update procedure to compute a trial value at the neighbor of
the accepted points which are not accepted, and mark them as active.

Mark all the remaining nodes as far, and assign them the value cc.

e Loop (while the set of active nodes is non empty):

Travel the set of active nodes, and identify the one with minimum trial value.
This node becomes accepted.

Identify the new set of active nodes, and compute a new trial value for each
one of them, using the local update solver for the Eikonal equation.
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[ Comments|

e The method extends straightforwardly to general Eikonal equations:

c(x)|[VT(x)|=1, where ¢(x) > 0.

e Computational cost: The fast marching method requires O(M log(M)) operations,
where M is the number of nodes in the grid:

- During every iteration, one value is accepted.

- The only costly operation within one iteration consists in searching in the list
of trial values which is the smallest.

- In practice, a heapsort algorithm is used to make this search effficient - in
O(log(M)), where M is the number of trial values.

e Under mild hypotheses, one proves that the fast marching algorithm converges to
the solution to the Eikonal equation.
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[Extensions]

e The fast marching method extends fairly straightforwardly to the case of a
Cartesian grid in 3d.

e It can also be extended (with some adjustments) to the cases of:

e A triangular mesh of the computational domain in R?,
e A triangulated surface embedded in R3,

e A tetrahedral mesh in R3.

e Other algorithms are available to calculate (signed) distance functions, e.g. the
fast sweeping method
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Part V

Miscellanies

© Miscellanies
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[ Miscellanies|

e We have seen how well-adapted the level set framework is when it comes to
describing the evolution of a domain (t), however dramatic (even if it involves
topological changes).

e On the other hand, several operations to be performed on Q(t) may be difficult to
carry out in this implicit framework, since Q(t) is not explicitely discretized.

= Need for numerical tricks to perform these operations.

e In addition, several complementary features make it possible to substantially
improve the performance of the level set method.
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Evaluation of the normal vector, or the curvature of a domain.

Let Q C RY be a domain, ¢ be an associated level set function.

e The normal vector n(x) to I', pointing outward €, is approximated as:
n(x) ~ Vo(x)

VIVO(x)P+e2

This formula is discretized depending on the computational support, e.g.:

for some ¢ <« 1.

- by using standard first-order finite differences, or a higher-order ENO
approximation on a Cartesian grid,

- by using P! interpolation on a triangular mesh.

e The mean curvature k of I' is approximated as:

k(x) = div <W)(X)> .
VIVE(x)[2+22
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Evaluation of integrals on Q orT.

Let f : RY — R be a smooth function; we aim to calculate / = [, f(x) dx.

e We first devise an approximate characteristic function of Q:

Vx € R, xa(x) = H.(¢(x)), where H.(t) := % <1 - ﬁ) .

e The resulting approximation of / reads:

| ~ /Rd f(x)H:(p(x)) dx.

Pell HL

0 H

Approximation He (in red) of the characteristic function of (—oo,0) (in blue).
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Evaluation of integrals on Q or I’ (continued).

Let g : RY — R be a smooth function; we aim to calculate J = |, g(x) ds.

e We rely on an approximation of the surface measure distribution r on I':
Vo € CZ(®Y), (org) = [ pds.
r

o A use of Green's formula reveals that, in the sense of distributions:

dxa N _Q
~on 8n(HE(¢))~

e The resulting formula for the calculation of J is:

O (H(6(x))) 8(x) dx.

Rd on

o =

J=~
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Algebraic operations over sets.

Let Q,Q1, Q> C RY be domains, and ¢, ¢1, 2 be associated Level Set functions.

e One level set function ¢, for the complement “Q of Q is:

¢ = —0.

e One level set function ¢, for the reunion Q1 U Q> is:

$u = min(d1, ¢2).

e One level set function ¢; for the intersection Q1 N Q> is:

Pu = max(¢1, ¢2).
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Solving PDE on the domain 2.

Consider the frequent situation:

e A domain Q lies in a computational
box D, equipped with a mesh 7.

e Q is solely known via a level set
function ¢ defined on T.

e We aim to solve the PDE:
—div(aVu)+u="f

{

ou

an

=0

in Q,

on .

D

A domain <, included in the computational
box D, equipped with a Cartesian grid.

No mesh of Q is available.
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Solving PDE on the domain Q (continued).

e Idea: Approximate u with a function u., solution to a PDE posed on D.

e For instance, let u. € H'(D) be the solution to the system:
—div(c.aVu) + ccu=c.f in D, h (x) = 1 forxeQ,
=0 onop W EIT U e forxeD\Q
In other words,

The void D \ Q is filled with a material of very small conductivity ¢ < 1.
e It is possible to prove that:
e—0

||U — UEHH:‘(Q) — 0.

e The function u. can be calculated as an approximation of u by solving the
corresponding PDE on D.
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© The mathematical framework of the level set method
@ Implicit geometries
@ Informal derivation of the level set equations
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We have highlighted the importance, in practice, that the level set function ¢(t,-)
of Q(t) stay “close” to a signed distance function for t > 0.

Unfortunately, even if the initial level set function ¢o is a signed distance function,
¢(t,-) is bound not to stay so.

In practice, it is a very important feature to restore periodically ¢ to a signed
distance function.

One could simply generate the signed distance function, e.g. by using the fast
marching method.

However, the situation is pretty different from that of the initialization: we have
one level set function at hand; it would be a pity not to exploit this fact.
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Let Q C R? be a domain, ¢ be an associated level set function (with possibly
very steep, or flat variations).

¢o is used as the initial state of the redistancing equation:

{ 98 (t,x) + sgn(o(x)) (V| ~1) =0 for (t,x) € (0,00) x R?
(0, x) = ¢o(x) for x € R?

Formally, the steady state {/; of this equation satisfies

|Vi|—1 =0, and ¢)(x) =0 on T.

A study of this equation reveals that ¢q is steadily “regularized” into the signed
distance function dq, starting from I, to the region far from .
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Level set redistancing (I11)




Practical use:

e In the numerical resolution of the level set equation

% +v[Vg|=0 on (0, T) xR,
¢(t:07) :¢0 on Rd7

periodically interrupt the process (say, every 4-5 iterations).

e At a corresponding time t", solve the redistancing equation:

%(t,x) + sgn(o(t", x) (J[VY|-1) =0 for (t,x) € (0,00) x RY
(0, x) = o(t", x) for x € R?

over a short period of time (0, t*), using a numerical scheme in the spirit of those
presented above.

e Trade ¢(t",-) for ¢(t*,-), and resume the resolution of the level set equation.
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The level set method requires V/(t, x) to be defined on the whole ambient space
RY (actually, a narrow band around I (t) is enough).

Unfortunately, in many applications, V/(t,x) only makes sense for x € (t), e.g.
when it involves the normal vector n.(x), the mean curvature k:(x), etc.

Actually, even when V/(t, x) can be "naturally” extended outside I'(t), this
extension is often ill-suited, e.g. it anticipates the stretching of the level set
function ¢(t, x).

On the contrary, there is a great latitude on how to extend V/(t,x) for x ¢ I'(t);
the only strong requirement is that it should coincide with V/(t, x) on I'(t).

We present two possibilities to achieve this velocity extension, with competing
assets.
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e This extension “alleviates” the need for redistancing the level set function.

e Heuristic motivation: Assume that, for all t > 0, the solution ¢(t,-) to the
equation with a (everywhere defined) normal velocity v

3}
29 (t,x) + V(£ V(2 x)|= 0
is the signed distance function to Q(t); a formal calculation yields:
0= % (IV6?) = —2|V$|Ve - Vv — 2vV¢ - V ([Vg|) = 2V - Vv on RY.

e Hence, a necessary condition for ¢(t,-) to stay a signed distance function when
the extension vex: of a field v defined only for x € I(t) is used reads:
VVEXt(taX) ' v¢(t7 X) =0,

i.e. at any t > 0, vext(t,) is constant along the (extended) normal n,.
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e Numerical setting:
The time interval (0, T) is divided into subintervals (¢, t™™), where
t" = nAt,

The level set equation is solved on each interval (t", t"**) with initial data
¢" = ¢(t",-), and velocity field v" := v(t", ).

e One method to stick with the previous observations is the following, at every stage
t" of the level set process:

Calculate the signed distance function dgn to Q".
Calculate v as the solution to:

Vvie -Vdi =0 inR?\T(t")
Voe = V" on (t").
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Let Q be a domain, v : I — R be a (scalar) velocity field, to be extended into vext,
defined on a larger computational domain D.

One possibility: Search for the solution vexe € H*(D) to the equation:

—QAVext + Vext =0 in D,
Vext = V on 09

« is a “small” diffusion parameter, controlling the degree of smoothing in vext
which is intrinsically ‘regular’ (vexe € H'(D)).

Other possibilities: the constraint vext = v on I may be dropped. This could be
unacceptable in some situations, but prove very useful in others.
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e In capturing the evolution of a domain €(t) by that of an associated level set
function ¢(t, x), only the region of space which is near the 0 level set ['(t) is of
interest.

e Hence, all the operations associated to the practice of the level set method,
namely:

- The initialization of a level set function for the domain £(0),

- The occasional redistancing of the Level Set function ¢(t,-) when it has
become too “steep”,

- The resolution of the Level Set evolution equation,

- The velocity extension procedure,
can be restricted to a narrow band around I'(t).

e This allows to substentially decrease the CPU time of the process.
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° Close point

o Far point

The narrow band
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2000008

The narrow band setting: a tube of “close” points is maintained around T (t).
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In practice,

e A narrow band B of close points is initialized around the boundary '(0), e.g. as
a tube of k elements around '(0).

e At every iteration n — n+ 1, an attempt step is carried out:

Vij € Zst. xj€B, {¢j}— {8

ij,temp f »

i.e. the level set evolution equation is solved only at the close points, (special
attention must be paid to the calculation of derivatives at the points near the

border of B).

o If the new front ['(t""!) is still inside B, accept the iteration; this can be
checked from the signs of the ¢j;, for nodes x;; near the border of B.

e Else, return to step n, reinitialize a narrow band B around I'(t"), and retry the
iteration n — n+ 1.
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Part VI

Applications of the level set
method

© Applications of the level set method
@ Image segmentation
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o A greyscale image is described by an intensity function / : [0,1]*> — R.

e The image is composed of several objects, i.e. regions with different values of /.
One of them, Q7, identified by the intensity I+ is to be accurately separated from
the others.

e The idea of active contour methods is to track the evolution of a domain Q(t),
starting from an arbitrary “initial guess” Q°, according to a velocity field of the
form:

V(t, x) = (fo(x) + fu(ke(x)))ne(x),

where fy and f; are two scalar functions:

e f “attracts” the domain Q(t) towards Qr,
o fi(ke(x)) compels Q(t) to stay “smooth enough”.
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Three examples of segmentation in biomedial imaging [Credits: .
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Part VI

Applications of the level set
method

© Applications of the level set method

o Bifluid flows
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Example: bifluid flows (1)

As a result of the rupture of a dam, a water column discharges into a lower basin.
e The problem involves two complementary fluid phases Q°(t), Q'(t) C D.
o Q°(t) is filled with water, Q(t) is made of air.

e The velocity V/(t,x) of the motion is the solution to the two-phase Navier-Stokes
equations.

Q')
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Example: bifluid flows (I1)

Evolution of a collapsing water column
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Part VI

Applications of the level set
method

© Applications of the level set method

o Shape and topology optimization
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e Shape optimization aims at improving the performance of the initial design Q° of a
mechanical structure (e.g. a beam, a mechanical actuator,...) or a fluid duct, with
respect to a physical criterion.

e The problem arises under the form:

i, 1

where
e J(Q) is a cost functional, depending on Q in a possibly very complicated way
(via the solution to a PDE posed on ). For instance,

- When Q is a structure, J(2) may be the work of external forces on €,
a vibration frequency, etc.

- When Q is a fluid duct, J(Q2) may account for the work of viscous
forces inside Q.

e U,q is a set of admissible designs, which encompasses, e.g. volume, or
manufacturability constraints.
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Example: structural optimization (1)

e Techniques from shape optimization make it is possible to calculate a shape
gradient at a shape , i.e. a vector field Vq : R? — R? such that:

J((Id + 7VQ)(R2)) < J(2), for 7 > 0 small enough.

(Id + Vo) (52)

e Starting from an initial design Q°, the sequence of shapes
Q" = (Id + 7" Van)(Q"), where 7" is a pseudo-time step,
evolves by decreasing the criterion J().
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Example: structural optimization (II)

consider the optimization of an electric pylon Q ¢ R3.

At its basis 'p, the pylon is fixed to the

ground.

It is submitted to the weight of the cables
attached to its arms, and to wind loads.

The displacement ug : Q — R3 is the
solution to the linear elasticity system.

-
*
The compliance of the structure, ﬁ>>>\
z
TSN \

J(Q) = /QAe(uQ) s e(ugq) dx

is minimized under a volume constraint.

T

I'p
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Example: structural optimization (I11)

I'p

o>
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pylonFulldmax4.mp4
Media File (video/mp4)


A thermal chamber D is divided into

e A phase Q with high conductivity 1
e A phase D\ Q with low conductivity 7o.

A temperature To = 0 is imposed on I'p
and the remaining boundary 9D \ Tp is in-
sulated from the outside.

A heat source is acting inside D.

The temperature uq inside D is solution to
the two-phase Laplace equation.

The average temperature inside D,

1
J(Q): ﬁ/DUQdX

is minimized under a volume constraint.
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Optimization of the shape of a heat diffuser (II)

Optimization of the shape of a heat diffuser.

[m]

=

=, E= 9ac
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Optimization of the shape of a heat exchanger (1)

A thermal chamber D is divided into

e A phase Q¢ hot conveying a hot fluid;
o A phase Q¢ cold conveying a cold fluid;
e A solid phase €.

The Navier-Stokes equations are satisfied in
Qf,hotv Qf',r:old-

The stationary heat equation accounts for
the temperature diffusion within D.

The heat transferred from Qf hot to Qf cold
is maximized.

A constraint is imposed on the minimal dis-
tance between Q¢ ot and Qf cold:

d(Qf,hot, Qf,cold) 2 dmin~

Volume and pressure drop constraints are
added on Qf,hot, Qf7co|d.
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Optimization of the shape of a heat exchanger (II)

Optimization of the shape of a heat exchanger.

DAy
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Technical appendix
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Surfaces and curvature (1)

At first order, in the neighborhood of a point p € I, a surface I' behaves like a plane,
the tangent plane,

e With normal vector n(p),

e Which contains the tangential directions to I'.
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e At second order in the neighborhood of p € T, the surface I' has one curvature in
each tangential direction.

e The principal directions at p are those tangential directions vi(p) et v»(p)
associated to the lower and larger curvatures x1(p) et x2(p).

e The mean curvature k(p) is the sum k(p) = k1(p) + K2(p).

p
V2

110/118



| The Green's formula|

Green's formula is a generalization of integration by parts for functions defined on a
smooth bounded domain Q C R¢.

n(z)
In such a context,

e n=(n,...,ny) is the unit normal vector to 99,
pointing outward Q;

e ds is the integration measure on the oriented hy-
persurface 0.

Proposition 3.

In the above setting, let u: RY — R be a function of class C*; then

Ju
A 8_X,(X) dx = /as‘z un;(x) ds(x).

=} (=) = E == DA
111/118



Let V : RY — R? be a (smooth) vector field; we consider the dynamical system

{ x'(t) = V(x(t)) forte (0, T),
x(0) = xo,

for the trajectory t — x(t) of a particle with velocity V.

Introducing a subdivision t" = nAt of (0, T), n=0,...,N:= T/At, we aim to
calculate an approximation x” of x(t").
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Runge-Kutta integration of dynamical systems (I1)

The first-order, explicit Euler approximation of this dynamical system reads:
{ X" = x"+ AtV(x") forn=0,...,N—1,

X0 = Xo.

This method is only first-order accurate as At — 0:

Yneo,...,N, |x(t") —x"| < CAt for some constant C > 0.
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Runge-Kutta integration of dynamical systems (I11)

According to the Runge-Kutta 2 method, the iterate x"*! is obtained from

@ An attempt step is performed
with the 1%-order Euler method:

XM= X" 4 AtV(x").
@ Another attempt step is per-
formed from X"+

;n+2 :: + Atv(~n+1)
® The point x"* is obtained by av- v
eraging:

Xn+1 ; (X + )?n+2) i

This method is second-order accurate:

¥n=0,...,N, |x(t")—x"| < CAt* for some constant C > 0.

x" by:

=3+ AV (E)
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