Td 7: Formule de Poisson et théorème d'échantillonnage

Dans les exercices qui suivent, on admettra que la formule de Poisson est aussi valable pour une function f dans $L^1(\mathbb{R})$ (voir poly).

Exercice 1 Formule de Poisson dans $L^1(\mathbb{R})$

1. On considère la série :

$$F(t) = \sum_{n=-\infty}^{n=\infty} \frac{1}{n^2 + b^2} e^{2i\pi nt}$$

Montrer que F est continue

2. Montrer que $\frac{1}{n^2+b^2}$ correspond à l'echantillonnage de la transformée de Fourier d'une certaine function f.

3. Appliquer la formule de Poisson pour trouver une autre expression de F

4. Calculer alors F explicitement.

Exercice 2 Soit $f \in L^2(\mathbb{R})$ le signal défini par $\hat{f}(\xi) = (1 - |\xi|)\mathbf{1}_{[-1,1]}(\xi)$.

1. Montrer que $f(x) = \frac{\sin^2(\pi x)}{\pi^2 x^2}$. 2. En utilisant la formule de Shannon avec $a = \frac{1}{2}$, montrer que

$$\tan x = x - \frac{8x^2}{\pi^2} \sum_{k=-\infty}^{k=+\infty} \frac{1}{(2k+1)^2 (2x - (2k+1)\pi)}$$

Pour $x \in \mathbb{R}$ A où $A = \left\{ \frac{2k+1}{2}\pi; k \in \mathbb{Z} \right\}$

Exercice 3 généralisation de la formule de Shannon aux fonctions trigonométriques On considère dans cet exercice la fonction $f(t) = e^{2i\pi\lambda t}$, $\lambda \in \mathbb{R}$.

1. soit g la fonction de période $\frac{1}{a}$ et égale à f sur l'intervalle $\left[-\frac{1}{2a}, \frac{1}{2a}\right]$. Pour λ réel fixé, montrer que les coefficients de Fourier de f sont:

$$c_n = \frac{a \sin(\frac{\pi}{a}(\lambda - na))}{\pi(\lambda - na)}$$

2. En appliquant le théorème de Dirichlet montrer que:

$$e^{2i\pi\lambda t} = \sum_{n \in \mathbb{Z}} e^{2i\pi nat} \sin_c(\frac{\pi}{a}(\lambda - na)) \text{ pout tout } t \in] -\frac{1}{2a}, \frac{1}{2a}[$$

Ce qui correspond au théorème de Shannon en permutant λ et t