TD1: Distributions

Exercice 1 Les applications T suivantes, définies pour $\varphi \in \mathcal{D}(\mathbb{R})$, sont-elles des distributions?

1.
$$\langle T, \varphi \rangle = \int_0^1 \varphi(x) dx$$

1.
$$\langle T, \varphi \rangle = \int_0^1 \varphi(x) dx$$

2. $\langle T, \varphi \rangle = \int_0^1 |\varphi(x)| dx$

3.
$$\langle T, \varphi \rangle = \sum_{n=0}^{+\infty} \varphi(n)$$

4.
$$\langle T, \varphi \rangle = \sum_{n=1}^{+\infty} \varphi(1/n)$$

Exercice 2 Soit $\varphi \in \mathcal{D}(\mathbb{R})$.

1. Montrer qu'il existe une constante $C(\varphi)$ telle que :

$$\forall n \in \mathbb{Z} \quad \left| \int_{-\infty}^{+\infty} e^{inx} \varphi(x) dx \right| \le \frac{C(\varphi)}{1+n^2}$$

2. Soit $(a_n)_{n\in\mathbb{Z}}$ une suite bornée. Montrer que la série de terme général :

$$a_n \int_{-\infty}^{+\infty} e^{inx} \varphi(x) dx$$

converge, et que l'application qui à φ associe la somme de cette série est une distribution.

3. Montrer que si la suite n^2a_n est bornée, alors cette distribution est une distribution fonction.

Exercice 3 Soit $\alpha \in \mathcal{D}(\mathbb{R})$, égale à 1 sur un voisinage de l'origine.

1. Montrer que

$$\forall \varphi \in \mathcal{D}(\mathbb{R}) \quad \frac{\varphi(x) - \varphi(0)\alpha(x)}{x} \in \mathcal{D}(\mathbb{R})$$

- **2.** En déduire que dans $\mathcal{D}'(\mathbb{R})$, xT=0 implique $T=C\delta$ où C est une constante.
- **3.** Montrer que l'ensemble des solutions dans $\mathcal{D}'(\mathbb{R})$ de (x-a)T=0 sont les distributions de la forme $T = C\delta_a$

Exercice 4 On considère les distributions fonctions e^{inx} .

1. Montrer que pour tout $n \neq 0$:

$$\forall \varphi \in \mathcal{D}(] - \pi, \pi[), \ \left| \langle e^{inx}, \varphi \rangle \right| \le \frac{C(\varphi)}{n^2}$$

où $C(\varphi)$ est une constante qui ne dépend que de φ .

2. On pose :

$$u_N(x) = \sum_{n=-N}^{N} e^{inx}$$

Montrer que la suite de distributions fonctions T_N définies par les fonctions u_N converge au sens des distributions sur $]-\pi,\pi[$. Soit T la limite.

3. Montrer que :

$$u_N(x) = \frac{\sin(N + \frac{1}{2})x}{\sin(\frac{x}{2})}$$

- **4.** Montrer que si $\varphi \in \mathcal{D}(]-\pi,\pi[)$ est telle que $\varphi(0)=0$, alors $\frac{\varphi(x)}{\sin(\frac{x}{2})}$ est une fonction indéfiniment dérivable, à support compact dans $]-\pi,\pi[$ (on rappelle que $\frac{\sin x}{x}$ est une fonction indéfiniment dérivable).
 - **5.** Montrer que si $\varphi \in \mathcal{D}(]-\pi,\pi[)$ est telle que $\varphi(0)=0$, alors $\langle T,\varphi\rangle=0$.
 - ${\bf 6.}$ En déduire qu'il existe une constante C telle que :

$$T = \sum_{n = -\infty}^{+\infty} e^{inx} = C\delta$$

On admettra que $C=2\pi$.

Exercice 5 Calculer les limites dans $\mathcal{D}'(\mathbb{R})$, quand $h \to 0$, des suites de distributions suivantes :

- 1. $\frac{1}{2h}(\delta_h \delta_{-h})$ 2. $\frac{1}{4h^2}(\delta_{2h} + \delta_{-2h} 2\delta_0)$ 3. $\frac{1}{h\sqrt{\pi}}e^{-\frac{x^2}{h^2}}$