Stability of piecewise affine systems with state-dependent delay, and application to congestion control

Christophe Fiter1, Emilia Fridman2

1Centre de Recherche en Informatique, Signal, et Automatique de Lille (CRIStAL), CNRS UMR 9189, Université Lille 1, France

2Department of Electrical Engineering - Systems, Tel-Aviv University, Israel

GdR MACS - Systèmes Dynamiques Hybrides - February 5th, 2015
Some motivations

Systems with state-dependent delays:

- Several applications: biological systems, metal rolling systems, communication networks (fluid flow models), ...;
- New challenges: nonlinearities due to the state-dependency of the delay.

⇒ Classic stability tools for time-delay systems may not be applied.
Some motivations

Literature:

Stability and/or stabilization of systems with state-dependent delay:
...

None of these works concerns the congestion control problem.

Congestion control using fluid flow models:
[Liu et al., INFOCOM 2005], [Michiels et al., Int. J. Control 2006],
[Briat et al., IEEE Trans. Autom. Control 2010], ...

Most of these works ignore the state-dependency of the delay
⇒ This may lead to false stability results.
Some motivations

We consider the fluid flow model of communication network from [Avrachenkov and Paszke, ICICAR 2004]

\[
\begin{align*}
\dot{y}(t) &= \begin{cases}
 z(t - y(t)/\mu - d) - \mu, & y(t) > 0, \\
 \max\{0, z(t - y(t)/\mu - d) - \mu\}, & y(t) = 0,
\end{cases} \\
\dot{z}(t) &= u(t),
\end{align*}
\]

where

\[
\begin{align*}
 y(t) &= \text{amount of data in the buffer} \\
 z(t) &= \text{sending rate of the data source} \\
 \mu &= \text{(constant) service rate of the router} \\
 d &= \text{propagation delay}
\end{align*}
\]
Some motivations

Denoting $x_1(t) = y(t) - y_d$ and $x_2(t) = z(t) - \mu$, with y_d the desired amount of data in the router’s buffer, this model can be embedded ([Balakrishnan et al., IEEE CL 2007]) into the following switched system:

\[
\begin{align*}
\dot{x}_1(t) &= x_2(t - (x_1(t) + y_d)/\mu - d), \\
\dot{x}_2(t) &= u(t), \\
\text{for } x_1(t) > -y_d \text{ or } x_2(t - (x_1(t) + y_d)/\mu - d) &\geq 0, \\
\dot{x}_1(t) &= -x_1(t) - y_d, \\
\dot{x}_2(t) &= u(t), \\
\text{for } x_1(t) \leq -y_d \text{ and } x_2(t - (x_1(t) + y_d)/\mu - d) &\leq 0.
\end{align*}
\]

This motivates us to analyse the stability of congestion control with tools adapted from works about piecewise affine systems.
Some motivations

Denoting $x_1(t) = y(t) - y_d$ and $x_2(t) = z(t) - \mu$, with y_d the desired amount of data in the router’s buffer, this model can be embedded ([Balakrishnan et al., IEEE CL 2007]) into the following switched system:

$$\begin{cases}
\dot{x}_1(t) = x_2(t - (x_1(t) + y_d)/\mu - d), \\
\dot{x}_2(t) = u(t), \\
\end{cases}$$

for $x_1(t) > -y_d$ or $x_2(t - (x_1(t) + y_d)/\mu - d) \geq 0$,

$$\begin{cases}
\dot{x}_1(t) = -x_1(t) - y_d, \\
\dot{x}_2(t) = u(t), \\
\end{cases}$$

for $x_1(t) \leq -y_d$ and $x_2(t - (x_1(t) + y_d)/\mu - d) \leq 0$.

This motivates us to analyse the stability of congestion control with tools adapted from works about piecewise affine systems.
Some motivations

Denoting $x_1(t) = y(t) - y_d$ and $x_2(t) = z(t) - \mu$, with y_d the desired amount of data in the router’s buffer, this model can be embedded ([Balakrishnan et al., IEEE CL 2007]) into the following switched system:

\[
\begin{align*}
\dot{x}_1(t) &= x_2(t - (x_1(t) + y_d)/\mu - d), \\
\dot{x}_2(t) &= u(t), \\
& \text{for } x_1(t) > -y_d \text{ or } x_2(t - (x_1(t) + y_d)/\mu - d) \geq 0, \\
\dot{x}_1(t) &= -x_1(t) - y_d, \\
\dot{x}_2(t) &= u(t), \\
& \text{for } x_1(t) \leq -y_d \text{ and } x_2(t - (x_1(t) + y_d)/\mu - d) \leq 0.
\end{align*}
\]

This motivates us to analyse the stability of congestion control with tools adapted from works about piecewise affine systems.
System description

We consider the piecewise affine system with a time- and state-dependent delay and delayed-state-dependent switching

\[\dot{x}(t) = A_i x(t) + A_d_i x(t - \tau(t, x(t))) + b_i, \text{ for } G \xi(t) \in X_i, \]

with \(\xi(t) = \begin{bmatrix} x(t) \\ x(t - \tau(t, x(t))) \end{bmatrix}, G \in \mathbb{R}^{n_G \times 2n}, \) and a covering \(\{X_i\}_{i \in \mathcal{I}} \) of the space \(\mathbb{R}^{n_G} \) into a finite number of (possibly unbounded) polyhedral cells with pairwise disjoint interiors.
Some assumptions

Assumption 1:
The system is linear, or piecewise linear around the origin:

\[b_i = 0_{n \times 1} \text{ if } 0_{n \times 1} \in X_i. \]
Some assumptions

Assumption 1:
The system is linear, or piecewise linear around the origin:

\[b_i = 0_{n \times 1} \text{ if } 0_{n \times 1} \in X_i. \]

Assumption 2:
The delay is lower-bounded and positive:

\[\tau(t, x) \geq h_0 \geq 0. \]
Some assumptions

Assumption 1 :
The system is linear, or piecewise linear around the origin :

\[b_i = 0_{n 	imes 1} \text{ if } 0_{n 	imes 1} \in X_i. \]

Assumption 2 :
The delay is lower-bounded and positive :

\[\tau(t, x) \geq h_0 \geq 0. \]

Assumption 3 :
The variations of the delay are norm-state-bounded in a neighbourhood of the origin :

\[\|x\|_L \leq 1 \implies |\tau(t, x) - \tau_0| \leq c + \|x\|_{\Psi}, \]

where \(\|x\|_M \) denotes \(\sqrt{x^T M x} \).
Objectives:

1. Find constructive conditions that guarantee the local exponential stability of the system for a given decay-rate;
2. Provide an under-approximation of the domain of attraction.
Challenges and contributions:

1. New constructive stability tools for piecewise affine systems with time- and state-dependent delay and delayed-state dependent switching law;

2. Stability tools for the congestion control problem which take into account the state-dependency of the delay.
The stability analysis is performed in 2 steps.

1. Stability analysis in the case of time-varying (non state-dependent) delay.

Ideas: Consider the time- and state-dependent delay as a saturated input, and design the domain of attraction of the system.
Lyapunov-Krasovskii functional design

Following [Johansson and Rantzer, IEEE TAC, 1998], we design a Lyapunov function with a piecewise quadratic part.

Natural design:

\[
\bar{V}_0(t) = \begin{bmatrix} \xi(t) \\ 1 \end{bmatrix}^T \bar{P}_i \begin{bmatrix} \xi(t) \\ 1 \end{bmatrix}, \text{ for all } G\xi(t) \in X_i, \ i \in I.
\]
Lyapunov-Krasovskii functional design

Following [Johansson and Rantzer, IEEE TAC, 1998], we design a Lyapunov function with a piecewise quadratic part.

Natural design:

\[
\bar{V}_0(t) = \begin{bmatrix} \xi(t) \\ 1 \end{bmatrix}^T \bar{P}_i \begin{bmatrix} \xi(t) \\ 1 \end{bmatrix}, \text{ for all } G\xi(t) \in X_i, \ i \in \mathcal{I}.
\]

The derivative of the delay \(\frac{d}{dt}(\tau(t, x(t))) \) appears in the derivative of \(\bar{V}_0 \)!
Lyapunov-Krasovskii functional design

Following [Johansson and Rantzer, IEEE TAC, 1998], we design a Lyapunov function with a piecewise quadratic part.

Natural design:

\[
\tilde{V}_0(t) = \begin{bmatrix} \xi(t) \\ 1 \end{bmatrix}^T \bar{P}_i \begin{bmatrix} \xi(t) \\ 1 \end{bmatrix}, \text{ for all } G\xi(t) \in X_i, \ i \in \mathcal{I}.
\]

Better design:

\[
\tilde{V}_0(t) = \begin{bmatrix} x(t) \\ 1 \end{bmatrix}^T \bar{P}_i \begin{bmatrix} x(t) \\ 1 \end{bmatrix}, \text{ for all } G'x(t) \in X'_i, \ i \in \mathcal{I},
\]

with a matrix \(G' \in \mathbb{R}^{ng' \times n} \) and a covering \(\{X'_i\}_{i \in \mathcal{I}} \) of the space \(\mathbb{R}^{ng'} \) designed to satisfy

\[
G \begin{bmatrix} x \\ y \end{bmatrix} \in X_i \Rightarrow G'x \in X'_i.
\]
Lyapunov-Krasovskii functional design

Example:

System’s switching law defined with

\[G = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \]
Lyapunov-Krasovskii functional design

Example:

System’s switching law defined with

\[G = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \]

Lyapunov function’s switching law defined with

\[G' = [1 0] \]
Lyapunov-Krasovskii functional design

Complete Lyapunov-Krasovskii functional:

\[\mathcal{V}(t) \triangleq V(t, x_t, \dot{x}_t) = \mathcal{V}_0(t) + \mathcal{V}_1(t), \]

with

\[\mathcal{V}_0(t) \triangleq V_0(x(t)) = \begin{bmatrix} x(t) \\ 1 \end{bmatrix}^T \bar{P}_i \begin{bmatrix} x(t) \\ 1 \end{bmatrix}, \text{ for } G'x(t) \in X'_i, \ i \in \mathcal{I}, \]

\[\mathcal{V}_1(t) \triangleq V_1(t, x_t, \dot{x}_t) = \sum_{k=1}^{2} \int_{t-h_{k-1}}^{t} e^{2\alpha(s-t)} x^T(s) S_k x(s) ds \]

\[+ \sum_{k=1}^{2} (\bar{h}_k - \bar{h}_{k-1}) \int_{-h_k}^{-\bar{h}_{k-1}} \int_{t+\theta}^{t} e^{2\alpha(s-t)} \dot{x}^T(s) R_k \dot{x}(s) ds d\theta. \]
Main result

Using some classic tools from stability analysis with Lyapunov-Krasovskii functionals, we obtain the following:

Theorem:
Given scalars $h_0 \leq h_1 \leq h_2$, if there exist parameters such that some LMI (positivity and exponential decrease of \tilde{V}) and equality (continuity of \tilde{V}) constraints are satisfied, then the PWA system is globally exponentially stable for any time-varying delay $\tau(t) \in [\bar{h}_1, \bar{h}_2]$.
Saturated delay

We treat the delay as a saturated input. We recall the assumptions
\[\tau(t, x) \geq h_0 \geq 0, \quad \|x\|_L \leq 1 \implies |\tau(t, x) - \tau_0| \leq c + \|x\|_\Psi.\]

We consider bounds on the delay \(\tau(t, x) \in [\bar{h}_1, \bar{h}_2]\) defined as
\[\bar{h}_1 = \max(h_0, \tau_0 - \eta), \quad \bar{h}_2 = \tau_0 + \eta,\]
for some scalar \(\eta \geq c\), and a neighbourhood of the origin defined by
\[\mathcal{X}_\beta(P) = \{x \in \mathbb{R}^n \mid x^T P x \leq \beta\},\]

Lemma :
\[\forall x \in \mathcal{X}_\beta(P), \quad \tau(t, x) \in [\bar{h}_1, \bar{h}_2]\] if the following LMIIs are satisfied:
\[
\gamma_1 \begin{bmatrix}
-L & 0_{n \times 1} \\
* & 1
\end{bmatrix}
- \begin{bmatrix}
-P & 0_{n \times 1} \\
* & \beta
\end{bmatrix} \succeq 0_{(n+1) \times (n+1)},
\]
\[
\gamma_2 \begin{bmatrix}
-\Psi & 0_{n \times 1} \\
* & (\eta - c)^2_r
\end{bmatrix}
- \begin{bmatrix}
-P & 0_{n \times 1} \\
* & \beta
\end{bmatrix} \succeq 0_{(n+1) \times (n+1)}.
\]
Main result

Theorem:
If there exist parameters such that

1. the conditions from the previous Lemma are satisfied
2. the conditions from the Theorem in the time-varying delay case are satisfied

Then, the PWA system is locally exponentially stable, and an under-approximation of the domain of attraction is obtained as a union of ellipsoids:

\[
D = \bigcup_{i \in \mathcal{I}} \left\{ x_0 \in \mathbb{R}^n \mid G' x_0 \in X'_i \text{ and } \begin{bmatrix} x_0 \\ 1 \end{bmatrix}^T B_i \begin{bmatrix} x_0 \\ 1 \end{bmatrix} \leq \beta \right\}.
\]
Example 1 - Application to congestion control

We consider the fluid flow model of communication network from [Avrachenkov and Paszke, ICICAR 2004]

\[
\begin{align*}
\dot{y}(t) &= \begin{cases}
z(t - y(t)/\mu - d) - \mu, & y(t) > 0, \\
\max\{0, z(t - y(t)/\mu - d) - \mu\}, & y(t) = 0,
\end{cases} \\
\dot{z}(t) &= u(t),
\end{align*}
\]

with a linear controller

\[
u(t) = -k_1(y(t) - y_d) - k_2(z(t) - \mu).
\]
Example 1 - Application to congestion control

Denoting $x_1(t) = y(t) - y_d$ and $x_2(t) = z(t) - \mu$, we embed the model into the switched system

$$\dot{x}(t) = A_i x(t) + A_{di} x(t - \tau(x(t))) + b_i, \text{ for } G\xi(t) \in X_i,$$

with

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \tau(x(t)) = \max \left(\frac{x_1(t) + y_d}{\mu} + d, d \right),$$

$$A_1 = A_2 = \begin{bmatrix} -1 & 0 \\ -k_1 & -k_2 \end{bmatrix}, \quad A_3 = \begin{bmatrix} 0 & 0 \\ -k_1 & -k_2 \end{bmatrix},$$

$$A_{d1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \quad A_{d2} = A_{d3} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix},$$

$$b_1 = b_2 = \begin{bmatrix} -y_d \\ 0 \end{bmatrix}, \quad b_3 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$
Example 1 - Application to congestion control

\[X_1 = \{ G\xi(t) \mid x_1(t) \leq -y_d \text{ and } x_2(t - \tau(t, x(t))) \leq 0 \}, \]
\[X_2 = \{ G\xi(t) \mid x_1(t) \leq -y_d \text{ and } x_2(t - \tau(t, x(t))) \geq 0 \}, \]
\[X_3 = \{ G\xi(t) \mid x_1(t) > -y_d \}, \]
Example 1 - Application to congestion control

Results obtained for a decay rate $\alpha = 0.01$, and system parameters $d = 0.8$, $\mu = 4$, $y_d = 0.2$, and $k_1 = k_2 = 1$.

D : Estimation of the domain of attraction
$X_\beta(P) :$ Positive invariant ellipsoid
Example 2 - Academic example

We consider the system from [Kulkarni et al., ACC 2004]:

\[\dot{x}(t) = A_i x(t) + A_{d_i} x(t - \tau(t)), \text{ for } x(t) \in X_i \]

with

\[X_i = \{ x \in \mathbb{R}^2, E_i x \geq 0 \}, \]

\[E_1 = -E_3 = \begin{bmatrix} -1 & 1 \\ -1 & -1 \end{bmatrix}, \quad E_2 = -E_4 = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}, \]

\[A_1 = A_2 = A_3 = A_4 = \begin{bmatrix} -0.1 & 0 \\ 0 & -0.1 \end{bmatrix}, \]

\[A_{d_1} = A_{d_3} = \begin{bmatrix} 0 & 5 \\ -1 & 0 \end{bmatrix}, \quad A_{d_2} = A_{d_4} = \begin{bmatrix} 0 & 1 \\ -5 & 0 \end{bmatrix}. \]
Example 2 - Academic example

We consider the system from [Kulkarni et al., ACC 2004]:

\[\dot{x}(t) = A_i x(t) + A_{d_i} x(t - \tau(t)), \text{ for } x(t) \in X_i \]

with

\[X_i = \{ x \in \mathbb{R}^2, E_i x \geq 0 \}, \]

\[E_1 = -E_3 = \begin{bmatrix} -1 & 1 \\ -1 & -1 \end{bmatrix}, \quad E_2 = -E_4 = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}, \]

\[A_1 = A_2 = A_3 = A_4 = \begin{bmatrix} -0.1 & 0 \\ 0 & -0.1 \end{bmatrix}, \]

\[A_{d1} = A_{d3} = \begin{bmatrix} 0 & 5 \\ -1 & 0 \end{bmatrix}, \quad A_{d2} = A_{d4} = \begin{bmatrix} 0 & 1 \\ -5 & 0 \end{bmatrix}. \]

Obtained upper-bound for time-varying delay: \(\tau^* = 0.0149 \)
Example 2 - Academic example

We consider a state-dependent delay $\tau(x(t)) = 0.005 + \|x(t)\|^2$.
Example 2 - Academic example

We consider a state-dependent delay $\tau(x(t)) = 0.005 + \|x(t)\|^2$.

D : Estimation of the domain of attraction
$X_\beta(P)$: Positive invariant ellipsoid
$D_{\text{simulations}}$: Stability domain obtained through simulations.
Conclusion and perspectives

Conclusion:
Constructive tools for the stability analysis of piecewise affine systems with time- and state-dependent delays and delayed-state-dependent switching. Two cases are treated:

- System with (possibly fast) bounded time-varying delay (global exponential stability);
- System with time- and state-dependent delay (local exponential stability with estimation of the domain of attraction as the union of ellipsoids).

Application to congestion control

Perspectives:

- Control design
- Application to other congestion control fluid flow models