Nonlinear reachability computation with complex systems

Nacim Ramdani

PRISME - Université d’Orléans, Bourges, France
www.lirmm.fr/~ramdani
nacim.ramdani@univ-orleans.fr

Outline

1. Introduction

2. Nonlinear hybridization approach to reachability

3. Nonlinear hybridization with order preserving dynamical systems

4. Extension to hybrid systems

5. Future work
Outline

1. Introduction
 - Hybrid systems and reachability analysis
 - Guaranteed set integration and reachable sets

2. Nonlinear hybridization approach to reachability

3. Nonlinear hybridization with order preserving dynamical systems

4. Extension to hybrid systems

5. Future work
Cyber-Physical systems

- Interaction discrete + continuous dynamics
- Safety-critical embedded systems
Cyber-Physical systems

- Service robots. (Physical) Human-Robot Interaction
Cyber-Physical systems

Nonlinear continuous + discrete hybrid dynamics

- Invariants, guards and reset functions are **non linear**.
- Continuous dynamics **non linear**, of high dimension, and **uncertain**.
Cyber-Physical systems

Hybrid automaton (Alur, et al., 95)

\[H = (Q, D, P, \Sigma, A, \text{Inv}, \mathcal{F}), \]

continuous dynamics

\[
\begin{align*}
\text{flow}(q) & : \quad \dot{x}(t) = f_q(x, p, t), \\
\text{Inv}(q) & : \quad \nu_q(x(t), p, t) < 0,
\end{align*}
\]

discrete dynamics

\[
\begin{align*}
A \ni e & : \quad (q \rightarrow q') = (q, \text{guard}, \sigma, \rho, q'), \\
\text{guard}(e) & : \quad \gamma_e(x(t), p, t) = 0,
\end{align*}
\]

\[t_0 \leq t \leq t_N, \quad x(t_0) \in X_0 \subseteq \mathbb{R}^n, \quad p \in P \]
Study of hybrid automata

Verification and synthesis of autonomous and embedded systems

- Air traffic management systems.
- Ground transportation systems.
- Flight control systems ...
- Service robots sharing human living space.

Modelling and analysis of complex physical systems

- Hybrid and networked systems in engineering, biology and economics.

→ Hybrid reachability analysis
Hybrid Reachability Computation

Set reachable in finite time → Safety verification

\[\rho(x_e) \]

\[\nu_0(.) < 0 \]

\[\nu_1(.) < 0 \]

Bounded Model Checking
- Prove correctness,
- or
- Exhibit incorrectness via counter-example.

Check satisfiability of SAT modulo theories formulae.
Hybrid Reachability Computation

Set reachable in finite time \rightarrow Synthesis

- Model-based control ...
- Parameter synthesis in Systems Biology ...
Hybrid Reachability Computation

Set reachable in finite time \rightarrow Bounded Error State Estimation

- Predictor-Corrector approach to bounded-error state estimation
- Bounded error moving horizon state estimator
- Initial state reconstruction
Introduction

Hybrid systems and reachability analysis

Hybrid Reachability Computation

Set reachable in finite time \rightarrow Interval Observers

\[
\begin{bmatrix}
\dot{x} \\
\dot{x}
\end{bmatrix} = \left[A(t) - K(t)C(t) \right] \begin{bmatrix}
x \\
x
\end{bmatrix} + \begin{bmatrix}
\Phi(x, x, \underline{p}, \bar{p}, t) \\
\Phi(x, \bar{x}, \underline{p}, \bar{p}, t)
\end{bmatrix} + K(t) \begin{bmatrix}
\bar{y}_M(t) \\
\bar{y}_M(t)
\end{bmatrix}
\]

$\forall x(t_0) \in [x(t_0), \bar{x}(t_0)], \forall p \in [\underline{p}, \bar{p}], \Rightarrow \left\{ \begin{array}{l}
\forall t \geq t_0, \quad x(t) \leq x(t) \leq \bar{x}(t), \\
\lim_{t \to +\infty} \|\bar{x}(t) - \bar{x}(t)\| = w(\|\bar{p} - \underline{p}\|, \|\bar{y}(t) - y(t)\|)
\end{array} \right.$
Continuous Reachability Computation

Uncertain nonlinear dynamical system

\[
\dot{x}(t) = f(x, p, t), \quad t_0 \leq t \leq t_N, \quad x(t_0) \in X_0 \subseteq \mathbb{D} \subseteq \mathbb{R}^n, \quad p \in \mathbb{P}
\]

Reachable set

\[
\mathcal{R}([t_0, t]; X_0) = \left\{ x(\tau), \ t_0 \leq \tau \leq t \mid \dot{x}(\tau) = f(x, p, \tau) \land x(t_0) \in X_0 \land p \in \mathbb{P} \right\}
\]
Reachability computation: State-of-the-art

Affine systems
- time discretization + set integration + computational geometry
 - zonotopes (Girard, 2005)
 - ellipsoids (Botchkarev and Tripakis, 2000), (Kurzhanski and Varaiya, 2000, 2005)
- Hybrid abstraction (Guéguen and Zaytoon, 2004), (Lefebvre and Guéguen, 2006), (Doyen, et al., 2005), (Kloetzer and Belta, 2006)
Reachability computation: State-of-the-art

Nonlinear systems

- Level set methods, viscosity solutions to Hamilton-Jacobi-Isaacs PDE
 (Bayen, et al., 2002), (Tomlin, et al., 2003), (Mitchell, et al., 2005),...
- Linear hybridization: simplified dynamics ...
 (Tiwari and Khanna, 2002), (Maler, et al., 2006),
 (Batt, et al., 2007), (Asarin, et al., 2007)
- Set integration, interval analysis
 (Henzinger, et al., 2000)
- Constraint propagation, abstraction refinement, interval analysis
 (Ratschan and She, 2007)
- ODE enclosure, constraint solving, interval analysis
 (Eggers, Fränzle & Herde, 2008; 2009)
Outline

1. Introduction
 - Hybrid systems and reachability analysis
 - Guaranteed set integration and reachable sets

2. Nonlinear hybridization approach to reachability

3. Nonlinear hybridization with order preserving dynamical systems

4. Extension to hybrid systems

5. Future work
Our methods: Guaranteed set integration
A nonlinear hybridization approach to reachability computation

Tools
- Set computation via \textit{interval analysis}
- Set integration via
 - \textit{Interval Taylor methods}
 - Müller existence theorem and differential inequalities
 - Theory of order preserving monotone dynamical systems
- Bounding systems as \textit{hybrid automata}

Results
1. No linearization. Truly non linear.
2. Integration time step can be varying
3. \textbf{Analytical solution} for reachable set boundaries
4. A scalable method
Interval analysis
(Dwyer,51) (Warmus,56) (Sunaga,58) (Moore,59)

Extension of real arithmetics to intervals

\[\circ \in \{+, -, \cdot, /\}, [x] \circ [y] = \{ x \circ y \mid x \in [x], y \in [y] \} \]

Inclusion function

\[\forall [x] \subseteq \mathbb{D}, f([x]) \subseteq [f([x])] \]

Verified numerical implementation

Directed rounding → Outward rounding
Guaranteed set integration with Taylor methods
(Moore, 66) (Eijgenraam, 81) (Lohner, 88) (Rihm, 94) (Berz, 98) (Nedialkov, 99)

\[
\dot{x}(t) = f(x, p, t), \quad t_0 \leq t \leq t_N, \ x(t_0) \in [x_0], \ p \in [p]
\]

Time grid \(t_0 < t_1 < t_2 < \cdots < t_N \)

- Proof of existence
- Yield a priori solution \([\tilde{x}_j] : \forall \tau \in [t_j, t_{j+1}] \ x(\tau) \in [\tilde{x}_j]\)
Guaranteed set integration with Taylor methods

\[
\dot{x}(t) = f(x, p, t), \quad t_0 \leq t \leq t_N, \ x(t_0) \in [x_0], \ p \in [p]
\]

Time grid \(t_0 < t_1 < t_2 < \cdots < t_N \)

- Compute tight enclosure \([x_{j+1}] \supseteq x(t_{j+1}) \)

\[
[x_{j+1}] = [x_j] + \sum_{i=1}^{k-1} (t_{j+1} - t_j)^i f[i]([x_j], [p]) + (t_{j+1} - t_j)^k f[k]([\tilde{x}_j], [p])
\]
Guaranteed set integration with Taylor methods

\[\dot{x}(t) = f(x, p, t), \quad t_0 \leq t \leq t_{N}, \quad x(t_0) \in [x_0], \quad p \in [p] \]

\[t_0 < t_1 < t_2 < \cdots < t_{N} \]

Yield an analytical formula for solution set

\[\forall \tau \in [t_j, t_j + h_j] \quad x(\tau) \in [x](\tau) \]

\[[x](\tau) = [x_j] + \sum_{i=1}^{k-1} (\tau - t_j)^i f[i] ([x_j], [p]) + (\tau - t_j)^k f[k] ([\tilde{x}_j], [p]) \]
Guaranteed set integration with Taylor methods
(Moore, 66) (Eijgenraam, 81) (Lohner, 88) (Rihm, 94) (Berz, 98) (Nedialkov, 99)

Need to control wrapping effect
Guaranteed set integration with Taylor methods
(Moore,66) (Eijgenraam,81) (Lohner,88) (Rihm,94) (Berz,98) (Nedialkov,99)

Need to control wrapping effect
Guaranteed set integration with Taylor methods

(Moore, 66) (Eijgenraam, 81) (Lohner, 88) (Rihm, 94) (Berz, 98) (Nedialkov, 99)

Need to control wrapping effect

- Mean value forms
- Matrice preconditioning
- Linear transforms

⇒ May fail when set size is large!
Outline

1. Introduction

2. Nonlinear hybridization approach to reachability

3. Nonlinear hybridization with order preserving dynamical systems

4. Extension to hybrid systems

5. Future work
Outline

1 Introduction

2 Nonlinear hybridization approach to reachability
 - Reachability computation via Müller’s theorem
 - Hybrid automata as bounding systems
 - Example
 - More on the hybrid bounding method

3 Nonlinear hybridization with order preserving dynamical systems

4 Extension to hybrid systems

5 Future work
Guaranteed set integration with Müller’s theorem
(Müller, 27) (Walter, 97) (Singer & Barton, 06)

\[\dot{x}(t) = f(x, p, t), \quad t_0 \leq t \leq t_N, \ x(t_0) \in [x_0], \ p \in [p] \]

The Müller’s existence theorem

\[f(x, p, t) \text{ continuous over } \mathcal{Z} : \left\{ \begin{array}{l}
\omega(t) \leq x(t) \leq \Omega(t) \\
p \leq p \leq \overline{p} \\
t_a \leq t \leq t_b
\end{array} \right. \]

- \(\omega(t_a) = x_a \)
- \(\forall i, \ \omega_i(t) \text{ continuous over } [t_a, t_b] \)
- \(\forall i, \ D^\pm \omega_i(t) \leq \min_{\mathcal{Z}_i(t)} f_i(x, p, t) \)

\[\mathcal{Z}_i(t) : \left\{ \begin{array}{l}
x_i = \omega_i(t), \ \omega_j(t) \leq x_j \leq \Omega_j(t), \ j \neq i, \\
p \leq p \leq \overline{p}, \\
t = t
\end{array} \right. \]
Guaranteed set integration with Müller’s theorem
(Müller, 27) (Walter, 97) (Singer & Barton, 06)

\[\dot{x}(t) = f(x, p, t), \quad t_0 \leq t \leq t_N, \quad x(t_0) \in [x_0], \quad p \in [p] \]

The Müller’s existence theorem (cont’d)

- \(\Omega(t_a) = \overline{x}_a \)
- \(\forall i, \Omega_i(t) \) continuous over \([t_a, t_b] \)
- \(\forall i, D^\pm \Omega_i(t) \geq \max_{\overline{Z}_i(t)} f_i(x, p, t) \)

\[\overline{Z}_i(t) : \begin{cases} x_i = \Omega_i(t), & \omega_j(t) \leq x_j \leq \Omega_j(t), \ j \neq i, \\ p \leq p \leq \overline{p}, \\ t = t \end{cases} \]
Guaranteed set integration with Müller’s theorem
(Müller, 27) (Walter, 97) (Singer & Barton, 06)

\[\dot{x}(t) = f(x, p, t), \quad t_0 \leq t \leq t_N, \quad x(t_0) \in [x_0], \quad p \in [p]\]

The Müller’s existence theorem (cont’d 2)

Then, \(\forall x_a \in [x_a, \bar{x}_a], \forall p \in [p, \bar{p}],\) it exists a solution \(x(t)\) that stays in the domain \(\Xi:\)

\[
\begin{cases}
t_a \leq t \leq t_b, \\
\omega(t) \leq x(t) \leq \Omega(t)
\end{cases}
\]

such that \(x(t_a) = x_a\)

Furthermore, if \(\forall p \in [p, \bar{p}], f(x, p, t)\) is Lipschitz wrt \(x\) over \(\mathbb{D}\), then solution is unique for all \(p\).
Guaranteed set integration with Müller’s theorem
(Müller, 27) (Walter, 97) (Singer & Barton, 06)

\[
\dot{x}(t) = f(x, p, t), \quad t_0 \leq t \leq t_N, \quad x(t_0) \in [x_0], \quad p \in [p]
\]

(i) Build the coupled system

\[
\begin{align*}
\dot{\omega} &= \mathcal{f}(\omega, \Omega, p, \bar{p}, t), \quad \omega(t_0) = x(t_0), \\
\dot{\Omega} &= \mathcal{f}(\omega, \Omega, \bar{p}, \bar{p}, t), \quad \Omega(t_0) = \bar{x}(t_0),
\end{align*}
\]

(ii) Use set integration to solve IVP for coupled ODE
- Interval Taylor methods ...

(iii) Inclusion function for solution

\[
\rightarrow \begin{cases}
[x](t) = \text{ConvexHull} \left(\omega(t), \Omega(t) \right) \\
[\bar{x}](t) = \text{ConvexHull} \left(\tilde{\omega}(t), \tilde{\Omega}(t) \right)
\end{cases}
\]
Tight bracketing functions

Illustrative example

\[
\begin{align*}
\dot{x}_1 &= f_1(x_1, x_2, p, t), \quad x_1(t_0) \in [x_{1,0}, \bar{x}_{1,0}] \subset \mathbb{R}, \quad p \in [p, \bar{p}] \quad t \geq t_0 \\
\dot{x}_2 &= f_2(x_1, x_2, p, t), \quad x_2(t_0) \in [x_{2,0}, \bar{x}_{2,0}] \subset \mathbb{R},
\end{align*}
\]
Tight bracketing functions

Illustrative example

\[
\begin{cases}
\dot{x}_1 = f_1(x_1, x_2, p, t), & x_1(t_0) \in [x_{1,0}, \bar{x}_{1,0}] \subset \mathbb{R}, \quad p \in [p, \bar{p}] \quad t \geq t_0 \\
\dot{x}_2 = f_2(x_1, x_2, p, t), & x_2(t_0) \in [x_{2,0}, \bar{x}_{2,0}] \subset \mathbb{R},
\end{cases}
\]

If \(\forall \ t \geq t_0, \ \forall \ x(t) \in [\omega(t), \Omega(t)] \subset \mathbb{R}^2, \ \forall \ p \in [p, \bar{p}], \)

\[
\frac{\partial f_1}{\partial x_2} > 0 \ \land \ \frac{\partial f_1}{\partial p} > 0
\]
Tight bracketing functions

Illustrative example

\[
\begin{align*}
\dot{x}_1 &= f_1(x_1, x_2, p, t), \quad x_1(t_0) \in [x_{1,0}, x_{1,0}] \subset \mathbb{R}, \quad p \in [p, p] \quad t \geq t_0 \\
\dot{x}_2 &= f_2(x_1, x_2, p, t), \quad x_2(t_0) \in [x_{2,0}, x_{2,0}] \subset \mathbb{R},
\end{align*}
\]

If \(\forall t \geq t_0, \forall x(t) \in [\omega(t), \Omega(t)] \subset \mathbb{R}^2, \forall p \in [p, p], \)

\[
\frac{\partial f_1}{\partial x_2} > 0 \land \frac{\partial f_1}{\partial p} > 0
\]

\[
\Downarrow
\]

\[
f_1(\omega_1, \omega_2, p) \leq f_1(\omega_1, x_2, p, t) \quad \text{and} \quad f_1(\Omega_1, x_2, p, t) \leq f_1(\Omega_1, \Omega_2, \overline{p})
\]
Nonlinear hybridization approach to reachability

Reachability computation via Müller’s theorem

Tight bracketing functions

Illustrative example

\[
\begin{align*}
\dot{x}_1 &= f_1(x_1, x_2, p, t), \quad x_1(t_0) \in [x_{1,0}, \bar{x}_{1,0}] \subset \mathbb{R}, \quad p \in [\underline{p}, \bar{p}] \quad t \geq t_0 \\
\dot{x}_2 &= f_2(x_1, x_2, p, t), \quad x_2(t_0) \in [x_{2,0}, \bar{x}_{2,0}] \subset \mathbb{R},
\end{align*}
\]

If \(\forall t \geq t_0, \forall x(t) \in [\omega(t), \Omega(t)] \subset \mathbb{R}^2, \forall p \in [\underline{p}, \bar{p}],\)

\[
\frac{\partial f_1}{\partial x_2} > 0 \land \frac{\partial f_1}{\partial p} > 0
\]

\[\downarrow\]

\[
f_1(\omega_1, \omega_2, p) \leq f_1(\omega_1, x_2, p, t) \quad \text{and} \quad f_1(\Omega_1, x_2, p, t) \leq f_1(\Omega_1, \Omega_2, \bar{p})
\]

\[\downarrow\]

\[
\dot{\omega}_1(t) \equiv f_1(\omega_1, \omega_2, p) \quad \text{and} \quad f_1(\Omega_1, \Omega_2, \bar{p}) \equiv \dot{\Omega}_1(t)
\]
Tight bracketing functions

Illustrative example

\[
\begin{align*}
\dot{x}_1 &= f_1(x_1, x_2, p, t), \quad x_1(t_0) \in [x_{1,0}, \bar{x}_{1,0}] \subset \mathbb{R}, \quad p \in [p, \bar{p}] \quad t \geq t_0 \\
\dot{x}_2 &= f_2(x_1, x_2, p, t), \quad x_2(t_0) \in [x_{2,0}, \bar{x}_{2,0}] \subset \mathbb{R},
\end{align*}
\]
Tight bracketing functions

Illustrative example

\[
\begin{align*}
\dot{x}_1 &= f_1(x_1, x_2, p, t), \quad x_1(t_0) \in [x_{1,0}, \overline{x}_{1,0}] \subset \mathbb{R}, \quad p \in [p, \overline{p}] \quad t \geq t_0 \\
\dot{x}_2 &= f_2(x_1, x_2, p, t), \quad x_2(t_0) \in [x_{2,0}, \overline{x}_{2,0}] \subset \mathbb{R},
\end{align*}
\]

If \(\forall t \geq t_0, \ \forall x(t) \in [\omega(t), \Omega(t)] \subset \mathbb{R}^2, \ \forall p \in [p, \overline{p}], \)

\[
\frac{\partial f_2}{\partial x_1} < 0 \land \frac{\partial f_2}{\partial p} > 0
\]

\[
\downarrow
\]

\[
f_2(\Omega_1, \omega_2, p) \leq f_2(x_1, \omega_2, p, t) \quad \text{and} \quad f_2(x_1, \Omega_2, p, t) \leq f_2(\omega_1, \Omega_2, \overline{p})
\]
Tight bracketing functions

Illustrative example

\[
\begin{align*}
\dot{x}_1 &= f_1(x_1, x_2, p, t), \quad x_1(t_0) \in [x_{1,0}, \bar{x}_{1,0}] \subset \mathbb{R}, \quad p \in [p, \bar{p}] \quad t \geq t_0 \\
\dot{x}_2 &= f_2(x_1, x_2, p, t), \quad x_2(t_0) \in [x_{2,0}, \bar{x}_{2,0}] \subset \mathbb{R},
\end{align*}
\]

A coupled system

\[
\begin{align*}
\dot{\omega}_1 &= f_1(\omega_1, \omega_2, p), \quad \omega_1(t_0) = x_{1,0} \\
\dot{\omega}_2 &= f_2(\Omega_1, \omega_2, p), \quad \omega_2(t_0) = x_{2,0} \\
\dot{\Omega}_1 &= f_1(\Omega_1, \Omega_2, p), \quad \Omega_1(t_0) = \bar{x}_{1,0} \\
\dot{\Omega}_2 &= f_2(\omega_1, \Omega_2, p), \quad \Omega_2(t_0) = \bar{x}_{2,0}
\end{align*}
\]
A rule for writing the bracketing functions

\[\dot{x}(t) = f(x, p, t), \quad t_0 \leq t \leq t_N, \quad x(t_0) \in [x_0], \quad p \in [p] \]

Formal expression of \(\overline{f}_i \):

- Study monotonicity \(\rightarrow \) Analyze the signs of partial derivatives of \(f_i \)

 For \(l \neq i \),

 \[
 \text{if } \frac{\partial f_i}{\partial x_l} \geq 0 \quad \text{then replace } x_l \leftarrow \Omega_l, \text{ in } f_i
 \]

 \[
 \text{else replace } x_l \leftarrow \omega_l
 \]

 For \(k = 1, \ldots, n_p \),

 \[
 \text{if } \frac{\partial f_i}{\partial p_k} \geq 0 \quad \text{then replace } p_k \leftarrow \overline{p}_k
 \]

 \[
 \text{else replace } p_k \leftarrow \underline{p}_k
 \]

Repeat for \(i = 1, \ldots, n \), \(\Rightarrow \)

\[
\begin{aligned}
\dot{\omega}(t) &= \overline{f}(\omega, \Omega, \underline{p}, \overline{p}, t), \quad \omega(t_0) = x_0 \\
\dot{\Omega}(t) &= \overline{f}(\omega, \Omega, \underline{p}, \overline{p}, t), \quad \Omega(t_0) = \overline{x}_0
\end{aligned}
\]
Nonlinear hybridization approach to reachability

Reachability computation via Müller’s theorem

Example

Biological System (*Mitogen-Activated Protein Kinase cascades*) (Sontag, 2005)

Nonlinear uncertain system

\[
\begin{align*}
\dot{x}_1 &= -\frac{v_2 x_1}{k_2 + x_1} + v_0 u + v_1 \\
\dot{x}_2 &= \frac{v_6 (y_{tot} - x_2 - x_3)}{k_6 + (y_{tot} - x_2 - x_3)} - \frac{v_3 x_1 x_2}{k_3 + x_2} \\
\dot{x}_3 &= \frac{v_4 x_1 (y_{tot} - x_2 - x_3)}{k_4 + (y_{tot} - x_2 - x_3)} - \frac{v_5 x_3}{k_5 + x_3} \\
\dot{x}_4 &= \frac{v_10 (z_{tot} - x_4 - x_5)}{k_{10} + (z_{tot} - x_4 - x_5)} - \frac{v_7 x_3 x_4}{k_7 + x_4} \\
\dot{x}_5 &= \frac{v_8 x_3 (z_{tot} - x_4 - x_5)}{k_8 + (z_{tot} - x_4 - x_5)} - \frac{v_9 x_5}{k_9 + x_5} \\
u &= g x_5
\end{align*}
\]

Use Interval Taylor Methods
Example
Biological System (*Mitogen-Activated Protein Kinase cascades*) (Sontag, 2005)

Flow pipe

![Flow pipe graph](image-url)
Example
Biological System (*Mitogen-Activated Protein Kinase cascades*) (Sontag, 2005)

Nonlinear uncertain system

\[
\begin{align*}
\dot{x}_1 &= -\frac{v_2 x_1}{k_2 + x_1} + v_0 u + v_1 \\
\dot{x}_2 &= \frac{v_6 (y_{tot} - x_2 - x_3)}{k_6 + (y_{tot} - x_2 - x_3)} - \frac{v_3 x_1 x_2}{k_3 + x_2} \\
\dot{x}_3 &= \frac{v_4 x_1 (y_{tot} - x_2 - x_3)}{k_4 + (y_{tot} - x_2 - x_3)} - \frac{v_5 x_3}{k_5 + x_3} \\
\dot{x}_4 &= \frac{v_{10} (z_{tot} - x_4 - x_5)}{k_{10} + (z_{tot} - x_4 - x_5)} - \frac{v_7 x_3 x_4}{k_7 + x_4} \\
\dot{x}_5 &= \frac{v_8 x_3 (z_{tot} - x_4 - x_5)}{k_8 + (z_{tot} - x_4 - x_5)} - \frac{v_9 x_5}{k_9 + x_5} \\
u &= g x_5
\end{align*}
\]

Find the bracketing systems and use Müller’s theorem?
Example

Biological System (*Mitogen-Activated Protein Kinase cascades*) (Sontag, 2005)

Bracketing systems \rightarrow a coupled systems of ODE

$$\begin{align*}
\dot{x}_1 &= -\frac{\nu_2 x_1}{k_2 + x_1} + \nu_0 u + \nu_1 \\
\dot{x}_2 &= \frac{\nu_6 (y_{tot} - x_2 - x_3)}{k_6 + (y_{tot} - x_2 - x_3)} - \frac{\nu_3 x_1 x_2}{k_3 + x_2} \\
\dot{x}_3 &= \frac{\nu_4 x_1 (y_{tot} - x_2 - x_3)}{k_4 + (y_{tot} - x_2 - x_3)} - \frac{\nu_5 x_3}{k_5 + x_3} \\
\dot{x}_4 &= \frac{\nu_10 (z_{tot} - x_4 - x_5)}{k_10 + (z_{tot} - x_4 - x_5)} - \frac{\nu_7 x_3 x_4}{k_7 + x_4} \\
\dot{x}_5 &= \frac{\nu_8 x_3 (z_{tot} - x_4 - x_5)}{k_8 + (z_{tot} - x_4 - x_5)} - \frac{\nu_9 x_5}{k_9 + x_5} \\
\dot{u} &= \frac{-\nu_2 x_1}{k_2 + x_1} + \nu_0 u + \nu_1 \\
\frac{u}{\dot{u}} &= \frac{g x_5}{g x_5}
\end{align*}$$
Example
Biological System (*Mitogen-Activated Protein Kinase cascades*) (Sontag, 2005)

Flow pipes

![Flow pipes graph](image-url)
Reachability computation

\[\dot{x}(t) = f(x, p, t), \quad t_0 \leq t \leq t_N, \quad x(t_0) \in [x_0], \quad p \in [p] \]

Time grid \[t_0 < t_1 < t_2 < \cdots < t_N \]

→ Analyse partial derivatives
→ Use Müller’s theorem
→ Solve the coupled dynamical system
→ \[[x](t) = [\operatorname{Inf}(\omega(t)), \operatorname{Sup}(\Omega(t))] \]

Bracketing functions in the general case

Signs of partial derivatives change with integration time
→ Hybridization: Hybrid automata as bounding systems
Outline

1. Introduction

2. Nonlinear hybridization approach to reachability
 - Reachability computation via Müller's theorem
 - Hybrid automata as bounding systems
 - Example
 - More on the hybrid bounding method

3. Nonlinear hybridization with order preserving dynamical systems

4. Extension to hybrid systems

5. Future work
Nonlinear hybridization

Illustrative example: \(\dot{x} = f(x, p_1, p_2, t) \quad x(t_0) \in [x_0, \bar{x}_0] \subset \mathbb{R}, \quad p_i \in [\underline{p}_i, \bar{p}_i] \)
Nonlinear hybridization approach to reachability

Hybrid automata as bounding systems

Nonlinear hybridization

Illustrative example: \(\dot{x} = f(x, p_1, p_2, t) \) \(x(t_0) \in [x_0, \bar{x}_0] \subset \mathbb{R} \), \(p_i \in [\underline{p}_i, \bar{p}_i] \)

\[g_i(.) = \frac{\partial f}{\partial p_i}(.) \]

\[[g]_1([\bar{x}], [p], [t_j, t_{j+1}]) \]

\[[g]_2([\bar{x}], [p], [t_j, t_{j+1}]) \]

\[[g]_1([x], [p], t) \]

\[[g]_2([x], [p], t) \]

\(q = 1 \quad q = 0 \quad q = 2 \quad q = 0 \quad q = 3 \quad q = 0 \quad q = 4 \)

N. Ramdani (PRISME)
Illustrative example: \(\dot{x} = f(x, p_1, p_2, t) \) \(x(t_0) \in [x_0, \bar{x}_0] \subset \mathbb{R}, \) \(p_i \in [\underline{p}_i, \overline{p}_i] \)

\[g_i(\cdot) = \frac{\partial f}{\partial p_i}(\cdot), \quad [\tilde{g}_i]_j = g_i([\tilde{x}_j], [p_1], [p_2], [t_j, t_{j+1}]) \]
Nonlinear hybridization

Illustrative example: \[\dot{x} = f(x, p_1, p_2, t) \quad x(t_0) \in [x_0, \bar{x}_0] \subset \mathbb{R}, \quad p_i \in [p_i, \bar{p}_i] \]

Mode switching

- **Full interval mode** \(q = 0 \) \(\rightarrow \) **Bracketing systems** mode \(q \neq 0 \)
 \[\rightarrow \text{switch and carry on} \]

- **Bracketing systems** mode \(q \neq 0 \) \(\rightarrow \) **Full interval** mode \(q = 0 \)
 \[\rightarrow \text{switch and re-do time step calculation} \]
Nonlinear hybridization

Illustrative example: \(\dot{x} = f(x, p_1, p_2, t) \) \(x(t_0) \in [x_0, \bar{x}_0] \subset \mathbb{R}, \quad p_i \in [p_i-, \bar{p}_i] \)

Time grid \(t_0 < t_1 < t_2 < \cdots < t_N \)

Hybrid Bounding algorithm

1. Initialize (select bounding systems)
2. Do loop
3. Integrate one step ahead \(\rightarrow [\tilde{x}_j], [x_{j+1}] \)
4. Check Switching \(\leftarrow \) \(\text{sign}(\frac{\partial f}{\partial x_l}(.)), \text{sign}(\frac{\partial f}{\partial p_k}(.)), [\tilde{x}_j], [t_j, t_{j+1}] \)
5. Switch mode if necessary (change bounding systems)
 end Do
Outline

1. Introduction

2. Nonlinear hybridization approach to reachability
 - Reachability computation via Müller’s theorem
 - Hybrid automata as bounding systems
 - Example
 - More on the hybrid bounding method

3. Nonlinear hybridization with order preserving dynamical systems

4. Extension to hybrid systems

5. Future work
Uncertain nonlinear system from bio-reactors

Haldane model. Biotechnological process in a stirred reactor

\[
\begin{align*}
\dot{x} &= f_x(x, s) = (\mu_0 \frac{s}{s + k_s + s^2/k_i} - \alpha d)x \\
\dot{s} &= f_s(x, s) = -k \mu_0 \frac{s}{s + k_s + s^2/k_i} x + (s_{in} - s)d
\end{align*}
\]

Biomass density: \(x\),

Substrate concentration: \(s\),

Concentration of input substrate: \(s_{in}(t) = s^0_{in} + 15 \cos(1/5t)\),

Uncertain parameters: \(\mu_0 = 0.75 \pm 1\%\), \(s^0_{in} = 65 \pm 1.5\%\).

Initial state: \(x(t_0) \times s(t_0) = [9.5, 10.5] \times [36, 44]\).

Coefficients: \(k = 42.14\), \(k_s = 9.28 mmol/l\), \(k_i = 256 mmol/l\), \(\alpha = 0.5\), \(d = 2\).
Uncertain nonlinear system from bio-reactors

Haldane model. Biotechnological process in a stirred reactor

\[
\begin{align*}
\dot{x} &= f_x(x, s) = (\mu_0 \frac{s}{s+k_s+s^2/k_i} - \alpha d)x \\
\dot{s} &= f_s(x, s) = -k\mu_0 \frac{s}{s+k_s+s^2/k_i}x + (s_{in} - s)d
\end{align*}
\]

Signs of partial derivatives

\[
\forall t > t_0, \quad
\frac{\partial f_x}{\partial \mu_0} > 0 \land \frac{\partial f_s}{\partial x} < 0 \land \frac{\partial f_s}{\partial \mu_0} < 0 \land \frac{\partial f_s}{\partial s_{in}^0} > 0
\]

\[
\text{sign}(\frac{\partial f_x}{\partial s}) = \text{sign}(k_s k_i - s^2)
\]
Nonlinear hybridization approach to reachability

Example

Uncertain nonlinear system from bio-reactors

\[q = 1, s > \sqrt{k_s k_2}, \partial f_x / \partial s < 0 \]

\[
\begin{align*}
\dot{x} &= \mu_0 \frac{s}{s + k_s + s^2 / k_i} x - \alpha d x \\
\dot{s} &= -k \mu_0 \frac{s}{s + k_s + s^2 / k_i} x + d(s_{in} - s) \\
\dot{x} &= \mu_0 \frac{s}{s + k_s + s^2 / k_i} x - \alpha d x \\
\dot{s} &= -k \mu_0 \frac{s}{s + k_s + s^2 / k_i} x + d(s_{in} - s)
\end{align*}
\]

\[q = 2, s < \sqrt{k_s k_2}, \partial f_x / \partial s > 0 \]

\[
\begin{align*}
\dot{x} &= \mu_0 \frac{s}{s + k_s + s^2 / k_i} x - \alpha d x \\
\dot{s} &= -k \mu_0 \frac{s}{s + k_s + s^2 / k_i} x + d(s_{in} - s) \\
\dot{x} &= \mu_0 \frac{s}{s + k_s + s^2 / k_i} x - \alpha d x \\
\dot{s} &= -k \mu_0 \frac{s}{s + k_s + s^2 / k_i} x + d(s_{in} - s)
\end{align*}
\]

\[q = 0. \text{Original uncertain model} \]

\[
\begin{align*}
\dot{x} &= f_x(x, s) = (\mu_0 \frac{s}{s + k_s + s^2 / k_i} - \alpha d) x \\
\dot{s} &= f_s(x, s) = -k \mu_0 \frac{s}{s + k_s + s^2 / k_i} x + (s_{in} - s) d
\end{align*}
\]
Uncertain nonlinear system from bio-reactors

Numerical implementation

- C++ Class Libraries

- Interval computation → Profil/BIAS

- Taylor coefficients and differentiation → FADBAD++

- Set integration with mean-value form + QR factorization (Lohner’s and Rihm’s methods)
Uncertain nonlinear system from bio-reactors

Time history of s component

$q = 2$ $q = 0$ $q = 1$
Uncertain nonlinear system from bio-reactors

Improve mode switching using state vector partitioning

Time history of s component
Uncertain nonlinear system from bio-reactors

Time history of x component
Uncertain nonlinear system from bio-reactors

Reachable space
Outline

1 Introduction

2 Nonlinear hybridization approach to reachability
 - Reachability computation via Müller’s theorem
 - Hybrid automata as bounding systems
 - Example
 - More on the hybrid bounding method

3 Nonlinear hybridization with order preserving dynamical systems

4 Extension to hybrid systems

5 Future work
Complexity analysis

- One single integration step with Hybrid bounding
 - complexity of solving twice dimensional IVP ODE

- Hybrid bounding vs interval Taylor series:
 - requires less integration time steps
 - do not need partitioning
Nonlinear hybridization approach to reachability

More on the hybrid bounding method

Stability analysis

A modified hybrid automaton

- active mode is a bounding mode, enclosure’s size

\[\xi(t) = \Omega(q)(t) - \omega(q)(t) \]

- dynamics

\[\dot{\xi}(t) = \overline{f}(q)(\omega, \Omega, \underline{p}, \bar{p}, t) - \underline{f}(q)(\omega, \Omega, \underline{p}, \bar{p}, t) \]

- active mode is an interval mode \(\rightarrow \) modified jump function

\[J'(q_{k-1}, q_k)(\cdot) \triangleq J(0, q_k) \circ J(q_{k-1}, 0)(\cdot) \]
Stability analysis

ε-practical stability of hybrid systems

Sufficient conditions which keep $\xi(t)$ trajectories within given bounds

(Xu & Zhai, 2005)
Stability analysis

\(\epsilon \)-practical stability of hybrid systems

Sufficient conditions which keep \(\xi(t) \) trajectories within given bounds (Xu & Zhai, 2005)

\[\forall \mathbf{x} \in X, \forall \mathbf{p} \in P, \ f(\mathbf{x}, \mathbf{p}, t) \triangleq A(t)\mathbf{x} + \psi(\mathbf{x}, \mathbf{p}, t) \]

- Bounding systems and original system share same stability properties, if
 - \(\psi(\mathbf{x}, ., t) \) and \(\psi(. , \mathbf{p}, t) \) Lipschitz continuous;
 - \(A(t) \) are Metzler matrices (\(A_{i,j}(t) \geq 0 \) for all \(i \neq j \))
 or \(A(t) \) are triangular matrices.
Outline

1 Introduction

2 Nonlinear hybridization approach to reachability

3 Nonlinear hybridization with order preserving dynamical systems

4 Extension to hybrid systems

5 Future work
Outline

1. Introduction

2. Nonlinear hybridization approach to reachability

3. Nonlinear hybridization with order preserving dynamical systems
 - Order preserving monotone dynamical systems
 - Reachable set via set integration
 - Applications

4. Extension to hybrid systems

5. Future work
Order preserving monotone dynamical systems

(Smith, 1995), (Hirsch et Smith, 2005), (Angeli et Sontag, 2003)

Definition: Order preserving monotone dynamical system

\[x(t_0) < y(t_0) \Rightarrow \forall t \geq t_0 \quad x(t) < y(t) \quad \in \{<, \leq, \geq, >\} \]

Example

\[
\begin{align*}
&\begin{cases}
 x_1(t_0) \leq y_1(t_0) \\
 x_2(t_0) \geq y_2(t_0) \\
 x_3(t_0) < y_3(t_0) \\
 x_4(t_0) > y_4(t_0) \\
 \ldots
\end{cases} \\
\Rightarrow \forall t > t_0, \quad \begin{cases}
 x_1(t) \leq y_1(t) \\
 x_2(t) \geq y_2(t) \\
 x_3(t) < y_3(t) \\
 x_4(t) > y_4(t) \\
 \ldots
\end{cases}
\end{align*}
\]
Order preserving monotone dynamical systems

(Smith, 1995), (Hirsch et Smith, 2005), (Angeli et Sontag, 2003)

Definition: Cooperative system

\[\dot{x}(t) = f(x, p, t), \quad x(t_0) \in [x_0] \subseteq \mathbb{D} \subseteq \mathbb{R}^n \]

\{ f, X_0 \} is cooperative over \(\mathbb{D} \) if

\[\forall i \neq j, t \geq 0 \text{ and } \forall x \in \mathbb{D}, \quad \frac{\partial f_i(x, p, t)}{\partial x_j} \geq 0 \]

A cooperative system is monotone order preserving.
Order preserving monotone dynamical systems

(Smith, 1995), (Hirsch et Smith, 2005), (Angeli et Sontag, 2003)

Incidence graph. A graphical test for monotonicity

MAPK

- Incidence graph with non-negative cycles ⇔
 Order preserving w.r.t. orthant cone of \mathbb{R}^n (Kunze & Siegel, 99)
Monotonicity w.r.t orthant cone of \mathbb{R}^n

If $\exists \mathbf{D} = diag[(-1)^{\varepsilon_1}, ..., (-1)^{\varepsilon_n}], \varepsilon_i \in \{0, 1\}$

s.t $\mathbf{x}(t, \mathbf{x}_0, t_0)$ and $\mathbf{y}(t, \mathbf{y}_0, t_0)$ satisfy

$$\mathbf{Dy}_0 \geq \mathbf{Dx}_0 \Rightarrow \mathbf{Dy}(t, \mathbf{y}_0, t_0) \geq \mathbf{Dx}(t, \mathbf{x}_0, t_0) \forall t \geq t_0.$$
Cooperative dynamical systems as bounding systems

\[t_0 \leq t \leq t_N \]
\[\dot{x}(t) = f(x, p, t), \quad x(t_0) \in [x_0] \subseteq D \subseteq \mathbb{R}^n, \quad p \in [p] \]

\[\dot{x}_1(t) = g_1(x_1, p, \overline{p}, t), \quad x_1(t_0) \in D, \text{ cooperative over } D \]
\[\dot{x}_2(t) = g_2(x_2, p, \overline{p}, t), \quad x_2(t_0) \in D, \text{ cooperative over } D \]

Comparison theorem

if \(\forall x \in D, \quad \forall t \geq t_0, \quad g_1(x, p, \overline{p}, t) \leq f(x, [p], t) \leq g_2(x, p, \overline{p}, t) \)
and \(x_1(0) \leq x_0 \leq x_2(0) \)
\[\Rightarrow \forall t \geq t_0, \quad x_1(t) \leq x(t) \leq x_2(t) \]

\[\Rightarrow \text{An inclusion function for } [x(t)] = \text{ConvexHull}[x_1(t), x_2(t)] \]
Bracketing functions

\[\dot{x}(t) = f(x, p, t), \quad t_0 \leq t \leq t_N, \quad x(t_0) \in [x_0], \quad p \in [p] \]

\(f \) cooperative over \(\mathbb{D} \)

Formal expression of \(\bar{f}_i \)

Study monotonicity → Analyze the signs of partial derivatives \(\frac{\partial f_i}{\partial p_k} \)

for \(k = 1, \ldots, n_p \), \(\text{if } \frac{\partial f_i}{\partial p_k} \geq 0 \) then replace \(p_k \leftarrow \bar{p}_k \)

else replace \(p_k \leftarrow p_k \)

Repeat for \(i = 1, \ldots, n \), ⇒ \[
\begin{cases}
\dot{x}(t) = f(x, p, \bar{p}, t), & x(t_0) = x_0 \\
\dot{x}(t) = \bar{f}(x, p, \bar{p}, t), & \bar{x}(t_0) = \bar{x}_0
\end{cases}
\]
Improved Bracketing functions

\[
\dot{x}(t) = f(x, p, t), \quad t_0 \leq t \leq t_N, \; x(t_0) \in [x_0], \; p \in [p]
\]

\(f \) cooperative over \(\mathbb{D} \)

Formal expression of \(\bar{f}_i \)

Study monotonicity \(\rightarrow \) Analyze the signs of partial derivatives \(\frac{\partial f_i}{\partial p_k} \)

for \(k = 1, \ldots, n_p \),

if \(\frac{\partial f_i}{\partial p_k} \geq 0 \) then replace \(p_k \leftarrow \bar{p}_k \)

else if \(\frac{\partial f_i}{\partial p_k} < 0 \) then replace \(p_k \leftarrow \underline{p}_k \)

else replace \(p_k \leftarrow [p_k] \)

\(\Rightarrow \) \(\dot{x}_i(t) = \bar{f}_i(\bar{x}, \ldots, \underline{p}_k, \bar{p}_{k'}, [p_{k''}], t), \quad k, k', k'' \in \{1, \ldots, n_p\} \)

Repeat for \(i = 1, \ldots, n \), \(\Rightarrow \) \[
\begin{align*}
\dot{x}(t) &= f(x, \underline{p}, \bar{p}, [p], t), \quad x(t_0) = x_0 \\
\dot{x}(t) &= \bar{f}(\bar{x}, \underline{p}, \bar{p}, [p], t), \quad \bar{x}(t_0) = \bar{x}_0
\end{align*}
\]
Outline

1. Introduction

2. Nonlinear hybridization approach to reachability

3. Nonlinear hybridization with order preserving dynamical systems
 - Order preserving monotone dynamical systems
 - Reachable set via set integration
 - Applications

4. Extension to hybrid systems

5. Future work
Reachable set via set integration

\[\dot{x}(t) = f(x, p, t), \quad t_0 \leq t \leq t_N, \quad x(t_0) \in [x_0], \quad p \in [p] \]

Time grid \(t_0 < t_1 < t_2 < \cdots < t_N \)

1. Use interval Taylor methods \(\rightarrow [x](t) \)
2. With monotone systems \(\rightarrow \text{Analyse partial derivatives} \)
 \(\rightarrow \text{Use comparison theorem} \rightarrow [x](t) = \text{ConvexHull} [x(t), \bar{x}(t)] \)

Bracketing functions in the general case

Signs of partial derivatives change with integration time

\(\rightarrow \text{Hybridization} : \text{Hybrid automata as bounding systems} \)
Outline

1. Introduction

2. Nonlinear hybridization approach to reachability

3. Nonlinear hybridization with order preserving dynamical systems
 - Order preserving monotone dynamical systems
 - Reachable set via set integration
 - Applications

4. Extension to hybrid systems

5. Future work
Numerical implementation

- C++ Class Libraries

- Interval computation → Profil/BIAS

- Taylor coefficients and differentiation → FADBAD++

- Set integration via Interval Taylor methods → Nedialkov’s VNODE
Thermal conductivity and diffusivity of composite materials
An infinite-dimensional system

The experimental set-up

Model reduction \rightarrow finite-state model
Nonlinear hybridization with order preserving dynamical systems

Applications

Thermal conductivity and diffusivity of composite materials

Nonlinear ordinary differential equations

\[
\begin{align*}
\dot{x}_1 &= \alpha_1 (x_2 - 2x_1 + u_0 + u(t)) \\
\dot{x}_2 &= 2\alpha_1 (x_1 - (1 + \frac{\rho_1}{\rho_2})x_2 + \frac{\rho_1}{\rho_2} x_3) \\
\dot{x}_3 &= 2(p_0 + p_1 x_3)(x_4 - x_3 + p_2 \frac{\delta_2}{\rho_2} (x_2 - x_3)) \\
\dot{x}_i &= (p_0 + p_1 x_i)(x_{i+1} - 2x_i + x_{i-1}) \quad i = 4, \ldots, 9 \\
\dot{x}_{10} &= 2(p_0 + p_1 x_{10})(x_9 - x_{10} + p_2 \frac{\delta_2}{\rho_2} (x_{11} - x_{10})) \\
\dot{x}_{11} &= 2\alpha_2 (x_{12} - (1 + \frac{\rho_3}{\rho_2})x_{11} + \frac{\rho_3}{\rho_2} x_{10}) \\
\dot{x}_{12} &= \alpha_3 (x_{13} - 2x_{12} + x_{11}) \\
\dot{x}_{13} &= 2\alpha_3 (x_{12} - (1 + \frac{\rho_3}{\rho_4})x_{13} + \frac{\rho_3}{\rho_4} u_0) \\
u(t) &= \sum_{l=1}^{5} u_l \sin(2^{l-1}\omega_0 t + \phi_0)
\end{align*}
\]

Uncertain parameters and initial state vector

\[p = [p_0 \ p_1 \ p_2]^T \in \mathbb{P}_0 \quad p_0 \in [0.7, 1.23] \times [0.01, 0.015] \times [0.23, 0.64] \]
\[x_{0i} \in [90, 110].\]
Thermal conductivity and diffusivity of composite materials

Interval Taylor methods

→ method fails
Thermal conductivity and diffusivity of composite materials

Interval Taylor methods
→ method fails

Comparison theorem + Nonlinear hybridization
→ Analyse the signs of the partial derivatives $\frac{\partial f_i}{\partial p_k}$
Bracketing functions
→ Hybrid automaton with $1 + 3^{10}$ bracketing modes
only few modes activated
Nonlinear hybridization with order preserving dynamical systems

Thermal conductivity and diffusivity of composite materials

Nonlinear hybridization

→ Switching sequence for Upper bounding modes
Nonlinear hybridization with order preserving dynamical systems

Applications

Thermal conductivity and diffusivity of composite materials

Nonlinear hybridization

→ Switching sequence for Lower bounding modes
Thermal conductivity and diffusivity of composite materials

Nonlinear hybridization \(\rightarrow x_{12} \)-component time-history
Outline

1. Introduction
2. Nonlinear hybridization approach to reachability
3. Nonlinear hybridization with order preserving dynamical systems
4. Extension to hybrid systems
5. Future work
Outline

1. Introduction

2. Nonlinear hybridization approach to reachability

3. Nonlinear hybridization with order preserving dynamical systems

4. Extension to hybrid systems
 - Hybrid reachability
 - Interval Constraint Propagation Techniques
 - Hybrid Transitions
 - Example

5. Future work
Hybrid Reachability Computation

Hybrid automaton (Alur, et al., 95)

\[H = (Q, D, P, \Sigma, A, \text{Inv}, \mathcal{F}), \]

flow(q) : \[\dot{x}(t) = f_q(x, p, t), \]
Inv(q) : \[\nu_q(x(t), p, t) < 0, \]

e : \[(q \rightarrow q') = (q, \text{guard}, \sigma, \rho, q'), \]
guard(e) : \[\gamma_e(x(t), p, t) = 0, \]

t_0 \leq t \leq t_N, \quad x(t_0) \in X_0 \subseteq \mathbb{R}^n, \quad p \in P
Hybrid Reachability Computation

Set reachable in finite time

\[\rho(x_{e}) = 0 \]

\[\nu_{0}(.) < 0 \]

\[\nu_{1}(.) < 0 \]

\[\rho_{0}(X_{e}) \]

Reach.

Forbidden

N.Ramdani (PRISME)
Our contributions

Main ideas

- **ODE bounding methods** *(Interval Taylor series. Hybrid bounding approach. ...)*
 - ⇒ Analytical expressions for the boundaries of the continuous flows,

- **Interval constraint propagation techniques**
 - ⇒ Solve event detection/localization problems
 - ⇒ Flow/sets intersection.
Outline

1. Introduction

2. Nonlinear hybridization approach to reachability

3. Nonlinear hybridization with order preserving dynamical systems

4. Extension to hybrid systems
 - Hybrid reachability
 - Interval Constraint Propagation Techniques
 - Hybrid Transitions
 - Example

5. Future work
Constraint Satisfaction Problems

Numerical constraint satisfaction problem

CSP : \((\mathcal{Z}, C)\)
- \(\mathcal{Z}\) is a domain for \(z, z \in \mathbb{R}^{n_1}\)
- \(C : \land_{1 \leq i \leq m_1} (h_i(z) < 0), \prec \in \{=, <\},\)

Solution set

\[S = \{z \in \mathcal{Z} | \land_{1 \leq i \leq m_1} (h_i(z) < 0)\}, \]
Interval Solving

Branch-and-Prune approach

\[S = \{ z \in \mathbb{Z}, \ | \ h_i(z) < 0 \} \]

\[\rightarrow S \subseteq S \subseteq S \]

\[\text{Sup}(h_i([z])) < 0 \Rightarrow [z] \subseteq S \]
\[\text{Inf}(h_i([z])) \geq 0 \Rightarrow [z] \not\subseteq S \]

otherwise partition . . .
Interval narrowing operators

Prune inconsistent parts

Gauss-Seidel, Newton & Krawczyk intervalles

Interval constraint propagation (Waltz, 75) (Davies, 87) (Cleary, 87) (Jaulin, 01)

Consistency filtering techniques (Collavizza, 99)
Consistency filtering techniques
(Collavizza, 99)

3B consistency. \textit{Shaving}
Technical improvement

Function monotonicity

\[\rightarrow \operatorname{Sup}(h_i([z])) < 0 ? \]

- Use the gradient

\[
\text{if } \operatorname{Inf}(\frac{\partial h_i([z])}{\partial z_k}) > 0 \Rightarrow \operatorname{Sup}(h_i([z])) = h_i(\ldots, \operatorname{Sup}([z_k]), \ldots)
\]

recursive algorithm
Outline

1. Introduction
2. Nonlinear hybridization approach to reachability
3. Nonlinear hybridization with order preserving dynamical systems
4. **Extension to hybrid systems**
 - Hybrid reachability
 - Interval Constraint Propagation Techniques
 - Hybrid Transitions
 - Example
5. Future work
Computing flow/guards intersection

Time grid → $t_0 < t_1 < t_2 < \cdots < t_N$

Use analytical expression ...
Computing flow/guards intersection

Time grid → $t_0 < t_1 < t_2 < \cdots < t_N$

Compute $[t^*, \overline{t^*}] \times [\mathcal{X}_j^*]$
Computing flow/guards intersection

Time grid \(t_0 < t_1 < t_2 < \cdots < t_N \)

- \([x](t) = \text{Interval Taylor Series (ITS)}(t, [x_j], [\bar{x}_j])\)
- \(\gamma([x](t)) = 0\)

\[\Rightarrow \gamma \circ \text{ITS}(t, x_j, \bar{x}_j) \rightarrow \psi(t, x_j)\]

Solve CSP \(([t_j, t_{j+1}] \times [x_j], \psi(., .) \ni 0)\)
Outline

1. Introduction

2. Nonlinear hybridization approach to reachability

3. Nonlinear hybridization with order preserving dynamical systems

4. **Extension to hybrid systems**
 - Hybrid reachability
 - Interval Constraint Propagation Techniques
 - Hybrid Transitions
 - Example

5. Future work
Example

flow(1) : $f_1(x_1, x_2) = (x_2, -px_2 - g \sin(x_1))$
inv(1) : $\nu_1(x_1, x_2) = \cos(x_1) - x_2/10 - 0.7$
flow(2) : $f_2(x_1, x_2) = (x_2, -3px_2 - g \sin(x_1))$
inv(2) : $\nu_2(x_1, x_2) = -\nu_1(x_1, x_2)$

guard(1) : $\gamma_1(x_1, x_2) = \nu_1(x_1, x_2)$
reset(1) : $\rho_1(x_1, x_2) = (\alpha_1 x_1, \alpha_2 x_2)$

$x_0 \in [-0.9, -0.8] \times [3, 3.5], \quad \alpha_1 = -1, \quad \alpha_2 \in [-2.05, -2], \quad g = 10, \quad p \in [6, 6.3].$
Example

CPU time = 12.9s PIV 2GHz
Example

![Diagram showing discrete and flow transitions, reachable sets, and frontiers with a time axis. The diagram illustrates the dynamics of a hybrid system over time.]

- Discrete transitions
- Flow transitions
- Reachable sets
- Frontiers

Time (s) vs. x_2
Outline

1. Introduction
2. Nonlinear hybridization approach to reachability
3. Nonlinear hybridization with order preserving dynamical systems
4. Extension to hybrid systems
5. Future work
Future work

Continuous reachability computation

- Nonlinear hybridization approach to reachability computation with uncertain nonlinear continuous dynamical systems.

 → Develop an open source toolbox package.

 → How to improve the rule for building bracketing systems? Use convex relaxations?
Future work

Continuous reachability computation

- Nonlinear hybridization approach to reachability computation with uncertain nonlinear continuous dynamical systems.

 → Develop an open source toolbox package.

 → How to improve the rule for building bracketing systems? Use convex relaxations?

 → Monotone systems approach restricted to systems which are monotone w.r.t some orthant of \mathbb{R}^n. How to extend?
Future work

Continuous reachability computation

- Nonlinear hybridization approach to reachability computation with uncertain nonlinear continuous dynamical systems.
 - Develop an open source toolbox package.
 - How to improve the rule for building bracketing systems? Use convex relaxations?
 - Monotone systems approach restricted to systems which are monotone w.r.t some orthant of \mathbb{R}^n. How to extend?
 - Use alternate robust integration methods. Bound truncation error?
Future work

Continuous reachability computation

- Nonlinear hybridization approach to reachability computation with uncertain nonlinear continuous dynamical systems.

 → Develop an open source toolbox package.
 → How to improve the rule for building bracketing systems? Use convex relaxations?
 → Monotone systems approach restricted to systems which are monotone w.r.t some orthant of \mathbb{R}^n. How to extend?
 → Use alternate robust integration methods. Bound truncation error?
 → Extend hybrid bounding method to DAE.
Future work

Continuous reachability computation

- Nonlinear hybridization approach to reachability computation with uncertain nonlinear continuous dynamical systems.

- Develop an open source toolbox package.
- How to improve the rule for building bracketing systems? Use convex relaxations?
- Monotone systems approach restricted to systems which are monotone w.r.t some orthant of \mathbb{R}^n. How to extend?
- Use alternate robust integration methods. Bound truncation error?
- Extend hybrid bounding method to DAE.
- Extend hybrid bounding method to PDE and infinite-dimensional systems.
Hybrid reachability computation

- Use of constraint programming for hybrid reachability computation with uncertain nonlinear dynamical systems.

→ Extend nonlinear hybridization approach to truly hybrid systems?
Future work

Future work, cont’d

Hybrid reachability computation

- Use of constraint programming for hybrid reachability computation with uncertain nonlinear dynamical systems.

→ Extend nonlinear hybridization approach to truly hybrid systems?
→ Better CSP tools?
Hybrid reachability computation

- Use of constraint programming for hybrid reachability computation with uncertain nonlinear dynamical systems.

→ Extend nonlinear hybridization approach to truly hybrid systems?
→ Better CSP tools?
→ Embed within state-of-the-art Bounded Model Checkers
 - Satisfiability checkers
 - SAT modulo ODE formulae
Future work

Future work, cont’d

Hybrid reachability computation

- Use of constraint programming for hybrid reachability computation with uncertain nonlinear dynamical systems.

→ Extend nonlinear hybridization approach to truly hybrid systems?
→ Better CSP tools?
→ Embed within state-of-the-art Bounded Model Checkers
 - Satisfiability checkers
 - SAT modulo ODE formulae

→ Use for verification, synthesis and estimation with actual complex and cyber-physical systems
State and Parameter estimation with Hybrid systems

- Bounded-error (hybrid) state estimation with hybrid systems
 - Extend and use hybrid reachability tools
 - Unknown switching sequence ...
State and Parameter estimation with Hybrid systems

- Bounded-error (hybrid) state estimation with hybrid systems
 - Extend and use hybrid reachability tools
 - Unknown switching sequence...
- Bounded-error Error-in-Variables problems for hybrid systems
 - Convex relaxations...
References

Nonlinear Hybridization

Nonlinear Hybridization with Monotone Systems

Nonlinear Hybridization approach to State Estimation

References

Hybrid Reachability Computation
