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Abstract

This work is concerned with the algorithmic reachability analysis of continuous-
time linear systems with constrained initial states and inputs. We propose an
approach for computing an over-approximation of the set of states reachable on
a bounded time-interval. The main contribution over previous works is that it
allows us to consider systems whose sets of initial states and inputs are given
by arbitrary compact convex sets represented by their support functions. We
actually compute two over-approximations of the reachable set. The first one is
given by the union of convex sets with computable support functions. As the
representation of convex sets by their support function is not suitable for some
tasks, we derive from this first over-approximation a second one given by the
union of polyhedrons. The overall computational complexity of our approach is
comparable to the complexity of the most competitive available specialized al-
gorithms for reachability analysis of linear systems using zonotopes or ellipsoids.
The effectiveness of our approach is demonstrated on several examples.

Key words: reachability analysis, support functions, computational methods,
linear systems

1. Introduction

Computers have become ubiquitious in control systems design, offering the
opportunity for the development of new techniques for synthesis and analysis.
One of these approaches, inspired by the algorithmic verification of discrete
systems (i.e. model checking [1]), has emerged from hybrid systems research
and is based on reachability analysis. It consists in computing the set of states
reachable by a system; thus making it possible to examine all its possible be-
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haviours. This information can then be used either for algorithmic verification
or controller synthesis (see e.g. [2, 3]).

Numerous techniques have been developped in the latest decade for reach-
ability analysis of continuous and hybrid systems (see e.g. [4, 5, 6, 7, 8]).
The standard hybrid reachability algorithm alternates computations of the sets
reachable under the discrete dynamics and of the sets reachable under the con-
tinuous dynamics. Reachability under the continuous dynamics is often consid-
ered as the most challenging part of the job and it has been the main focus of
the work on hybrid systems reachability.

In this paper, we consider the computation of the set of states reachable by
a linear system with constrained initial states and inputs. More precisely, we
consider continuous-time systems of the form:

ẋ(t) = Ax(t) + Bu(t), u(t) ∈ U, x(0) ∈ X0

where U and X0 are compact convex sets denoting the sets of inputs U and initial
states X0, respectively. Several approaches have been proposed for reachability
analysis of this class of systems assuming that the sets U and X0 belong to
the class of ellipsoids [9, 7, 12], polytopes [4, 5, 6] or zonotopes [10, 11, 12].
Our work extends and unifies these techniques as we do not assume that U
and X0 belong to some special class of sets. U and X0 are just assumed to be
compact and convex sets specified by their support function. Support functions
are classical tools of convex analysis and can be computed efficiently for a fairly
large class of sets including ellipsoids, polytopes and zonotopes.

We propose an approach for the computation of an over-approximation of
the set of states reachable on a bounded time interval [0, T ]: R[0,T ](X0). It
is based on a discretization of time; given a time step τ = T/N with N ∈ N,
we compute convex over-approximations Ωi of the sets of states reachable on
time intervals of the form [iτ , (i + 1)τ ]. The result is an over-approximation of
R[0,T ](X0) given by the union of compact convex sets with computable support
functions. Furthermore, the over-approximation can be made arbitrarily close
by choosing the time step τ small enough.

As the representation of convex sets by their support function is not suitable
for some tasks, especially when an explicit representation is needed, we propose
a method for computing tight polyhedral over-approximations Ωi of the convex
sets Ωi. Thus, our approach allows us to compute an over-approximation of
R[0,T ](X0) given by the union of polyhedrons. The faces of the polyhedrons can
be made arbitrarily close from the actual reachable set by choosing the time step
τ small enough. Moreover, the overall computational complexity of our approach
is comparable to the complexity of the most competitive available specialized
algorithms for reachability analysis of linear systems using zonotopes [11] or
ellipsoids [12]. The effectiveness of our approach is demonstrated on several
examples.

The results presented in this paper, appeared in preliminary form in [13].
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2. Convex Sets and Support Functions

The support function of a convex set is a classical tool of convex analysis.
In the following, we shall use support functions as a representation of arbitrary
complex convex sets. In this section, we present some properties of support
functions and show how they can be used for the computation of polyhedral
approximations of convex sets. The results are stated without the proofs that are
quite straightforward and can be found in several textbooks on convex analysis
(see e.g. [14, 15, 16]).

2.1. Support Functions

Definition 1. Let Ω ⊆ R
d be a compact convex set; the support function of Ω,

denoted ρΩ, is defined as:

ρΩ : R
d → R

ℓ 7→ maxx∈Ω ℓ · x

The notion of support function is illustrated in Figure 1. It can be shown
that the support function of a compact convex set is a convex function.

ℓ1

ℓ2

ℓ4

F1 : ℓ1 · x = ρΩ(ℓ1)

F2 : ℓ2 · x = ρΩ(ℓ2)

F3 : ℓ3 · x = ρΩ(ℓ3)

F4 : ℓ4 · x = ρΩ(ℓ4)

Ω ℓ3

Figure 1: Illustration of the notion of support function of a convex set Ω.

It is to be noted that the set Ω is uniquely determined by its support function
as the following equality holds:

Ω =
⋂

ℓ∈Rd

{x ∈ R
d : ℓ · x ≤ ρΩ(ℓ)} (1)

which means that any convex set Ω is the intersection of the infinite set of
halfspaces with normal vector l ∈ R

d and distance value ρΩ(l).

Proposition 1. For the following compact convex sets, the support function
can be computed.

3



• The unit ball for the 1-norm: B1 = {x ∈ R
d : ‖x‖1 ≤ 1}. Then,

ρB1
(ℓ) = ‖ℓ‖∞.

• The unit ball for the usual Euclidean norm: B2 = {x ∈ R
d : ‖x‖2 ≤ 1}.

Then,
ρB2

(ℓ) = ‖ℓ‖2.

• The unit ball for the ∞-norm: B∞ = {x ∈ R
d : ‖x‖∞ ≤ 1}. Then,

ρB∞
(ℓ) = ‖ℓ‖1.

• An ellipsoid: Ω =
{

x ∈ R
d : x⊤Q−1x ≤ 1

}

where Q is a positive definite
symmetric matrix. Then,

ρΩ(ℓ) =
√

ℓ⊤Qℓ.

• A hyper-rectangle: Ω = [−h1;h1]× . . .× [−hd;hd] where h1, . . . , hd ∈ R
+.

Then,

ρΩ(ℓ) =

d
∑

j=1

|hjℓj |

where ℓj denotes the jth coordinate of ℓ.

• A zonotope: Ω = {α1g1 + · · ·+ αrgr : αj ∈ [−1, 1], j = 1, . . . , r} where
the generators g1, . . . , gr ∈ R

d. Then,

ρΩ(ℓ) =

r
∑

j=1

|gj · ℓ|.

• A polytope: Ω =
{

x ∈ Rd : Cx ≤ d
}

where C and d are a matrix and
vector of compatible dimension. Then, computing ρΩ(ℓ) is equivalent to
solving the linear program:

{

Maximize ℓ · x
Subject to Cx ≤ d

Thus, support functions and support vectors can be computed efficiently for a
quite large class of sets. Further, more complex sets can be considered using
operations on elementary convex sets. Given a compact convex set Ω ⊆ R

d

and a matrix A, AΩ denotes the image of Ω by A. Given a positive scalar λ,
λΩ = (λI)Ω where I is the identity matrix. Let Ω, Ω′ ⊆ R

d, CH(Ω,Ω′) denotes
the convex hull of Ω and Ω′ and Ω ⊕ Ω′ denotes the Minkowski sum of Ω and
Ω′:

Ω⊕ Ω′ = {x + x′ : x ∈ Ω, x′ ∈ Ω′}.

The support function of sets defined using these operations can be computed
using the following properties:
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Proposition 2. For all compact convex sets Ω, Ω′ ⊆ R
d, for all matrices A,

all positive scalars λ, and all vectors ℓ ∈ R
d, we have:

ρAΩ(ℓ) = ρΩ(A⊤ℓ)

ρλΩ(ℓ) = ρΩ(λℓ) = λρΩ(ℓ)

ρCH(Ω,Ω′)(ℓ) = max(ρΩ(ℓ), ρΩ′(ℓ))

ρΩ⊕Ω′(ℓ) = ρΩ(ℓ) + ρΩ′(ℓ).

Using these properties, one can easily consider convex sets of unusual shape.
Figure 2 illustrates how the support function of the Minkowski sum of a ball
with the convex hull of two polytopes can be computed.

Q

P

ℓ

C

Figure 2: Computation of the support function of the Minkowski sum of a ball C with the
convex hull of two polytopes P and Q: ρCH(P,Q)⊕C(ℓ) = max(ρP (ℓ), ρQ(ℓ)) + ρC(ℓ).

2.2. Polyhedral Approximations of Convex Sets

In this paper, we shall consider two notions of approximation of sets based
on two distances. Given Ω and Ω′ two compact subsets of R

d, we define the
distance between Ω and Ω′:

d(Ω,Ω′) = inf
x∈Ω

inf
x′∈Ω′

‖x− x′‖.

We also define the Hausdorff distance between Ω and Ω′:

dH(Ω,Ω′) = max

(

sup
x∈Ω

inf
x′∈Ω′

‖x− x′‖, sup
x′∈Ω′

inf
x∈Ω
‖x− x′‖

)

.

Let us remark that only the Hausdorff distance is a metric in the usual sense.
Particularly, dH(Ω,Ω′) = 0 if and only if Ω = Ω′ whereas d(Ω,Ω′) = 0 if and
only if Ω ∩ Ω′ is not empty.

From equation (1), it is easy to see that polyhedral over-approximation of
an arbitrary compact convex set can be obtained by “sampling” its support
function.
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Proposition 3. Let Ω be a compact convex set and ℓ1, . . . , ℓr ∈ R
d be arbitrarily

chosen vectors; let us define the following halfspaces:

Hk = {x ∈ R
d : ℓk · x ≤ ρΩ(ℓk)}, k = 1, . . . , r

and the polyhedron

Ω =
r

⋂

k=1

Hk.

Then, Ω ⊆ Ω. Moreover, we say that this over-approximation is tight as Ω
touches the faces F1, . . . , Fr of Ω:

d(Ω, Fk) = 0, k = 1, . . . , r.

An example of such polyhedral over-approximation of a convex set can be
seen in Figure 1.

3. Convex Approximations of Reachable Sets

In this paper, we consider continuous-time linear systems of the form:

ẋ(t) = Ax(t) + Bu(t), u(t) ∈ U

where U ⊆ R
d′

is a compact convex set specified by its support function ρU , A
and B are matrices of compatible dimensions. For simplicity of the notations,
we shall define the set V = BU ⊆ R

d with support function ρV (ℓ) = ρU (B⊤ℓ)
and consider the equivalent system:

ẋ(t) = Ax(t) + v(t), v(t) ∈ V

Given a subset X ⊆ R
d, we denote by Rs(X) ⊆ R

d the set of states reachable
by the system at time s from states in X:

Rs(X) = {x(s) : ẋ(t) = Ax(t) + v(t), v(t) ∈ V,∀t ∈ [0, s] and x(0) ∈ X} .

Then, the reachable set on the time interval [s, s′] is defined as

R[s,s′](X) =
⋃

t∈[s,s′]

Rt(X).

Let X0 ⊆ R
d be a specified compact convex set of initial states specified by its

support function ρX0
. In the following, we are interested in computing an over-

approximation of the reachable set on the time interval [0, T ] from the initial
states X0, that is R[0,T ](X0). Let ‖.‖ be a norm. We shall denote

RX0
= max

x∈X0

‖x‖, DX0
= max

x,y∈X0

‖x− y‖, and RV = max
v∈V
‖v‖.

If only the support function of X0 and V are known, these values might be hard
to compute for some norms. Then, the norm ‖.‖ should be chosen appropriately.
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As an example, if ‖.‖ is the infinity norm, RX0
can be derived easily from the

evaluation of ρX0
at the d canonical generators of R

d and their opposite.
In this section, we show how the reachable set can be over-approximated by

the union of convex sets given by their computable support functions. Further,
the Hausdorff distance between the reachable set and its approximation can be
made arbitrarily small.

3.1. Time-Discretization Scheme

Our approach is based on a discretization of the time. Let τ = T/N be the
time step (with N ∈ N). Then, we have:

R[0,T ](X0) =

N−1
⋃

i=0

R[iτ,(i+1)τ ](X0).

In order to compute an over-approximation of R[0,T ](X0), we shall compute
over-approximations of all the sets R[iτ,(i+1)τ ](X0). The results presented in
this part are adapted from [10], though significantly improved to be applied to
general convex sets of inputs and initial states. The proofs are quite technical
and are stated in appendix for a better readability. We consider the first element
of the sequence, R[0,τ ](X0):

Lemma 1. Let Ω0 be the convex set defined by:

Ω0 = CH
(

X0, e
τAX0 ⊕ τV ⊕ ατB

)

(2)

where ατ = (eτ‖A‖ − 1− τ‖A‖)(RX0
+ RV

‖A‖ ) and B denotes the unit ball for the

considered norm. Then, R[0,τ ](X0) ⊆ Ω0 and

dH(Ω0,R[0,τ ](X0)) ≤
1

4
(eτ‖A‖ − 1)DX0

+ 2ατ . (3)

This lemma can be roughly understood as follows, eτAX0⊕τV is an approx-
imation the reachable set at time τ ; a bloating operation followed by a convex
hull operation gives an approximation of R[0,τ ](X0). The bloating factor ατ is
chosen to ensure over-approximation. The approximation error can be made ar-
bitrarily small by choosing τ small enough. We now consider the other elements
of the sequence R[iτ,(i+1)τ ](X0). Let us remark that we have

R[(i+1)τ,(i+2)τ ](X0) = Rτ

(

R[iτ,(i+1)τ ](X0)
)

, i = 0, . . . , N − 2.

Given a subset Ω ⊆ R
d, the following lemma provides us with an over-approximation

of Rτ (Ω):

Lemma 2. Let Ω ⊆ R
d, let Ω′ be the set defined by:

Ω′ = eτAΩ⊕ τV ⊕ βτB

where βτ = (eτ‖A‖−1−τ‖A‖) RV

‖A‖ and B denotes the unit ball for the considered

norm. Then, Rτ (Ω) ⊆ Ω′ and

dH(Ω′,Rτ (Ω)) ≤ 2βτ . (4)
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The set eτAΩ⊕τV is an approximation the reachable set at time τ ; bloating
this set using the ball of radius βτ ensures over-approximation. Again, the
approximation error can be made arbitrarily small by choosing τ small enough.

We shall now define the sequence of convex sets Ωi over-approximating
R[iτ,(i+1)τ ](X0) as follows. Ω0 is given by equation (2) and

Ωi+1 = eτAΩi ⊕ τV ⊕ βτB, i = 0, . . . , N − 2. (5)

Theorem 1. Let us consider the sequence of sets Ωi defined by equations (2)
and (5); then, for all i = 0, . . . , N − 1, R[iτ,(i+1)τ ](X0) ⊆ Ωi and

dH(Ωi,R[iτ,(i+1)τ ](X0)) ≤ τeT‖A‖

(

‖A‖

4
DX0

+ τ‖A‖2RX0
+ eτ‖A‖RV

)

.

This theorem essentially states that the reachable set R[0,T ](I) can be over-
approximated by the union of convex sets Ω0 ∪ · · · ∪ ΩN−1. Further, the error
bound for the Hausdorff distance is in O(τ) and thus can be made arbitrarily
small by choosing τ small enough.

3.2. Support Functions of the Approximate Reachable Sets

We now consider the computation of the support functions of the approxi-
mate reachable sets Ω0 . . . ΩN−1 defined in the previous section. For simplicity
of the notations, let us introduce the matrix Φτ and the set Wτ defined by

Φτ = eτA, Wτ = τV ⊕ βτB. (6)

Using the proposition 2, it follows that the support function of Wτ is given by

ρWτ
(ℓ) = τρV (ℓ) + βτρB(ℓ) (7)

where ρB is the support function of the unit ball for the chosen norm. The
following proposition gives the expression of ρΩ0

. . . ρΩN−1
.

Proposition 4. Let Ω0 . . . ΩN−1 be the sets defined by equations (2) and (5).
Then, for all ℓ in R

d,

ρΩ0
(ℓ) = max

(

ρX0
(ℓ), ρX0

(Φτ
⊤ℓ) + τρV (ℓ) + ατρB(ℓ)

)

(8)

and for i = 0, . . . , N − 1,

ρΩi
(ℓ) = ρΩ0

(

(Φτ
⊤)iℓ

)

+

i−1
∑

j=0

ρWτ

(

(Φτ
⊤)jℓ

)

. (9)

Proof. Equation (8) is a direct application of proposition 2 to equation (2).
Let us prove equation (9) by induction. The equation is true for i = 0. Let us
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assume that it holds for some i; from equation (5), we have Ωi+1 = ΦτΩi +Wτ .
It follows from proposition 2 that

ρΩi+1
(ℓ) = ρΩi

(Φτ
⊤ℓ) + ρWτ

(ℓ)

=



ρΩ0

(

(Φτ
⊤)iΦτ

⊤ℓ
)

+
i−1
∑

j=0

ρWτ

(

(Φτ
⊤)jΦτ

⊤ℓ
)



 + ρWτ
(ℓ)

= ρΩ0

(

(Φτ
⊤)i+1ℓ

)

+

i
∑

j=0

ρWτ

(

(Φτ
⊤)jℓ

)

which proves, by induction, equation (9). �

Hence, we showed that the reachable set of a linear system can be over-
approximated arbitrarily close by a union of compact convex sets with com-
putable support functions.

4. Polyhedral Approximations of the Reachable Sets

The representation of convex sets by their support function is not suitable for
some tasks, especially when an explicit representation is needed. From propo-
sition 3, polyhedral approximations of the sets Ω0, . . . ,ΩN−1 can be obtained
by evaluating their support functions in several directions. These sets provide
with polyhedral approximations of the reachable sets:

Theorem 2. Let ρΩ0
, . . . , ρΩN−1

be the functions defined in proposition 4. Let
ℓ1, . . . , ℓr ∈ R

d be arbitrarily chosen vectors; let us define the following halfs-
paces:

Hi,k = {x ∈ R
d : ℓk · x ≤ ρΩi

(ℓk)}, i = 0, . . . , N − 1, k = 1, . . . , r

and the polyhedrons

Ωi =

r
⋂

k=1

Hi,k.

Then, for all i = 0, . . . , N − 1, R[iτ,(i+1)τ ](X0) ⊆ Ωi. Let Fi,1, . . . , Fi,r denote
the faces of polyhedron Ωi, then

d(R[iτ,(i+1)τ ](X0), Fi,k) ≤ τeT‖A‖

(

‖A‖

4
DX0

+ τ‖A‖2RX0
+ eτ‖A‖RV

)

.

Proof. From theorem 1, R[iτ,(i+1)τ ](X0) ⊆ Ωi and from proposition 3, Ωi ⊆

Ωi. Therefore, the first part of the theorem holds. Let us consider a face Fi,k

of the polyhedron Ωi; from proposition 3, d(Ωi, Fi,k) = 0. Then,

d(R[iτ,(i+1)τ ](X0), Fi,k) ≤ d(R[iτ,(i+1)τ ](X0),Ωi) + d(Ωi, Fi,k)

d(R[iτ,(i+1)τ ](X0), Fi,k) ≤ dH(R[iτ,(i+1)τ ](X0),Ωi).

The second part of the theorem follows from theorem 1. �
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Theorem 2 states that by evaluating the functions ρΩ0
, . . . , ρΩN−1

, we can
compute a union of polyhedrons over-approximating the reachable setR[0,T ](X0).
Moreover, the distance between each face of the approximating polyhedrons and
the actual reachable set can be made arbitrarily small. Let us remark that the
polyhedral over-approximation Ωi is not computed from the previous polyhedra
of the sequence but from the support function of Ωi. As a consequence, the
proposed algorithm is not subject to the wrapping effect (i.e. the successive
over-approximations do not propagate in the computations).

4.1. Efficient Algorithm for the Computation of the Polyhedral Approximations

In this part, we consider the problem of computing efficiently the poly-
hedral over-approximations of the reachable set defined in the previous para-
graph. We present an efficient algorithm that evaluates the support functions
ρΩ0

, . . . , ρΩN−1
in a given direction ℓ. It is based on the following observa-

tion: let us introduce the following auxiliary sequences r0, . . . , rN−1 ∈ R
d and

s0, . . . , sN−1 ∈ R:

r0 = ℓ, ri+1 = Φτ
⊤ri,

s0 = 0, si+1 = sk + ρWτ
(ri).

Equivalently, we have

ri = (Φτ
⊤)iℓ and si =

i−1
∑

j=0

ρWτ

(

(Φτ
⊤)jℓ

)

.

Therefore,
ρΩi

(ℓ) = ρΩ0
(ri) + si.

Algorithm 1 Evaluation of ρΩ0
(ℓ), . . . , ρΩN−1

(ℓ).

Input: The matrix Φτ given by (6), the support functions ρΩ0
and ρWτ

given
by (8) and (7), the vector ℓ and an integer N .

Output: ρi = ρΩi
(ℓ) for i in {0, . . . , N − 1}

1: r0 ← ℓ
2: s0 ← 0
3: ρ0 ← ρΩ0

(r0)
4: for i from 0 to N − 2 do

5: ri+1 ← Φτ
⊤ri

6: si+1 ← si + ρWτ
(ri)

7: ρi+1 ← ρΩ0
(ri+1) + si+1

8: end for

9: return {ρ0, . . . , ρN−1}

Algorithm 1 implements efficiently the evaluation of ρΩ0
(ℓ), . . . , ρΩN−1

(ℓ). It
performs, at each of the N − 1 iterations, the product of a matrix with a vector
and the evaluation of the support functions ρΩ0

and ρWτ
given by (8) and (7).
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The global time complexity of algorithm 1 is therefore O(N(d2+CX0
+CV +CB))

where CX0
, CV and CB denote the complexity of evaluating ρX0

, ρV , and ρB,
respectively1.

Then, the evaluation of the support functions in r directions, allowing us
to compute polyhedral over-approximations Ω0, . . . ,ΩN−1 of the reachable sets
R[0,τ ], . . . ,R[(N−1)τ,Nτ ] defined as intersections of r halfspaces has time com-
plexity:

O(rN(d2 + CX0
+ CV + CB)). (10)

Let us remark that the complexity is linear in the time horizon N and poly-
nomial in the dimension d; this is comparable to the complexity of the most
competitive available algorithms for reachability analysis of linear systems us-
ing zonotopes [11] or ellipsoids [12]. In the following, we show how the efficiency
of the reachability analysis can be further improved.

4.2. Improvements of the Algorithm

An important advantage of our approach is that it can be trivially paral-
lelized. Indeed, the support function can be evaluated independently in the
different directions ℓ1, . . . , ℓr. Thus, running the reachability analysis on α pro-
cessors makes the overall complexity drops to

O
(⌈ r

α

⌉

N(d2 + CX0
+ CV + CB)

)

.

The second improvement is more sophisticated. Let us assume that the
different directions of approximation ℓ1, . . . , ℓr have been chosen such that:

ℓk = (Φτ
⊤)pkℓ, k = 1, . . . , r where p1 < · · · < pr.

As an example, one can choose the indices pk iteratively, taking pk+1 such that
the angle between (Φτ

⊤)pk+1ℓ and vectors the (Φτ
⊤)piℓ is bigger than some

value, or:

∀i ≤ k,

∣

∣

∣

∣

(Φτ
⊤)pk+1ℓ · (Φτ

⊤)piℓ

‖(Φτ
⊤)pk+1ℓ‖‖(Φτ

⊤)piℓ‖

∣

∣

∣

∣

≤ ε.

Then, from proposition 4, it follows that for all i = 0, . . . , N − 1, k = 1, . . . , r:

ρΩi
(ℓk) = ρΩ0

(

(Φτ
⊤)i(Φτ

⊤)pkℓ
)

+

i−1
∑

j=0

ρWτ

(

(Φτ
⊤)j(Φτ

⊤)pkℓ
)

= ρΩ0

(

(Φτ
⊤)i+pkℓ

)

+

i−1
∑

j=0

ρWτ

(

(Φτ
⊤)j+pkℓ

)

= ρΩ0

(

(Φτ
⊤)i+pkℓ

)

+

i+pk−1
∑

j=pk

ρWτ

(

(Φτ
⊤)jℓ

)

= ρΩ0
(ri+pk

) + si+pk
− spk

.

1If X0 and V are ellipsoids or zonotopes with O(d) generators, and if the chosen norm is
one of the classical norms (1, 2, or ∞), the time complexity of algorithm 1 becomes O(Nd2).
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Thus, it is sufficient to compute the sequences r0, . . . , rN+pr−1 and s0, . . . , sN+pr−1.
Then, the complexity of the reachability analysis drops to

O((N + pr)(d
2 + CX0

+ CV + CB + r)).

If ℓ is an eigenvector of Φτ
⊤ associated to a real eigenvalue, it is clear that the

vectors ℓk = (Φτ
⊤)pkℓ will be colinear. In this case, the previous improvement

cannot be used. However, evaluating the support function in the direction of an
eigenvector ℓ can be interesting as it can be done very efficiently. If Φτ

⊤ℓ = λℓ,
with λ ≥ 0 then:

ρΩi
(ℓ) = ρΩ0

(λiℓ) +

i−1
∑

j=0

ρWτ
(λjℓ)

= λiρΩ0
(ℓ) + ρWτ

(ℓ)
i−1
∑

j=0

λj .

Then, only the evaluation of ρΩ0
(ℓ) and ρWτ

(ℓ) are needed. Hyperplanes bound-
ing the reachable sets, in the direction given by an eigenvector are computed in
only O(N + CX0

+ CV + CB). Similarly, if λ < 0, ρΩi
(ℓ) can be computed from

ρΩ0
(ℓ), ρΩ0

(−ℓ), ρWτ
(ℓ) and ρWτ

(−ℓ).

4.3. Comparison with a Related Approach
Reachability analysis of linear systems based on the use of support functions

has already been proposed in [9]. We would like to discuss here the differences
between the two approaches. In [9], the support functions of the reachable sets
are computed recursively using the relation:

ρΩi+1
(ℓ) = ρΩi

(Φτ
⊤ℓ) + ρWτ

(ℓ).

Then, the polyhedral over-approximation Ωi is defined as

Ωi =

r
⋂

k=1

{x ∈ R
d : ℓi,k · x ≤ ρΩi

(ℓi,k)}

where ℓi,k = ((Φτ
⊤)−1)iℓ0,k. This means that the directions used for the ap-

proximation are not the same for all reachable sets Ωi. There are two reasons
that makes this point potentially problematic.

The first reason is numerical. Let us fix ℓ0,k, then the directions used for the
approximation of Ωi are ℓi,k = ((Φτ

⊤)−1)iℓ0,k. For simplicity, we assume that
the eigenvalue of (Φτ

⊤)−1 with largest modulus is real and denote ℓ∗ the associ-
ated eigenvector. Then all the vectors ℓi,1, . . . , ℓi,r tend to point towards the di-
rection of ℓ∗ when i grows. This means that the polyhedral over-approximation
Ωi is likely to be ill-conditioned for large values of i2.

2One could argue that the second proposed improvement in section 4.2 suffers from the
same problem. Indeed, given a direction ℓ, the vectors (Φτ

⊤)pℓ will point towards the same
direction as p grows. For that reason the indices p1, . . . , pr must be chosen carefully, using
for instance a criterium based on angles as suggested in the previous section.
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The second reason is more practical. Sometimes, for instance for visualiza-
tion, we are not interested in approximating the reachable sets but rather the
projection of the reachable sets on an output subspace. Let us consider, for
instance the single output system:

{

ẋ(t) = Ax(t) + v(t), v(t) ∈ V, x(0) ∈ X0

y(t) = cx(t)

where c⊤ ∈ R
d. Then, in order to compute an over-approximation of the interval

reachable by y(t) it is sufficient to run Algorithm 1 with ℓ = c⊤. Similarly, when
dealing with hybrid systems with switching conditions given by hyperplanes, it
is interesting to choose the directions of approximation given by the normal
vectors to the hyperplanes.

The main advantage of the algorithm presented in [9] over algorithm 1 is that
it can be extended very easily to time-varying linear systems. Algorithm 1 does
not extend to this class of systems as proposition 4 holds only for time-invariant
linear systems.

5. Numerical Experiments

In this section, we show the effectiveness of our approach on some examples.
Algorithm 1 has been implemented in OCaml, without any of the improvements
proposed in section 4.2. All computations were performed on a Pentium IV
3.2GHz with 1GB RAM.

5.1. RLC Model of a Transmission Line

The first example we consider is a verification problem for a transmission line
borrowed from [17]. The goal is to check that the transient behavior of a long
transmission line is acceptable both in terms of overshoot and of response time.
Figure 3 shows a model of the transmission line, which consists of a number of
RLC components (R: resistor, L: inductor, C: capacitor) modelling segments of
the line. The left side is the sending end and the right side is the receiving end
of the transmission line.

Figure 3: RLC model of a transmission line

The dynamics of the system are given by the single-input single-output linear
dynamical system

{

ẋ(t) = Ax(t) + buin(t), uin(t) ∈ U, x(0) ∈ X0,
uout(t) = cx(t)

13



where x(t) ∈ R
d with d = 81 is the state vector containing the voltage of the

capacitors and the current of the inductors and uin(t) ∈ U ⊆ R is the voltage
at the sending end. The output of the system is the voltage uout(t) ∈ R at the
receiving end, since uout(t) = cx(t) we will take ℓ = c⊤.

Initially, the system is supposed to be in an ε-neighborhood (with ε = 0.01)
of the set of steady states for an input voltage inside [−0.2; 0.2]. Then, at time
t = 0, the input voltage is switched to a value in [0.99; 1.01]:

X0 = −A−1b [−0.2; 0.2]⊕ εB, U = [0.99; 1.01].

Figure 4: Reachable values by uout(t) against time t.

Figure 4 shows the reachable values of the output voltage for a time horizon
of 3ns, it was computed in 0.10s using 0.234MB.

5.2. Extensive Experiments

Our implementation has also been tested on randomly generated examples
of different dimension. Tables 1 and 2 summarize the results of our experimen-
tations. We computed polyhedral over-approximations of the reachable sets
R[0,τ ](X0), . . . ,R[(N−1)τ,Nτ ](X0) with N = 100, for random matrices A of di-
mension d. We either used the algorithm from [11] (denoted as direct in the
tables), or algorithm 1 (denoted as sf in the tables); initial and inputs set were
given either as zonotopes of order 1 (Z) or ellipsoids (E); and the computed
tight over-approximation consisted in the intersection of 1, d, or d2 half-spaces.
The program was terminated after 90s.

We can see that the new algorithm has great performances for systems with
a single output: it can compute exact bounds on this output for the first 100
timesteps in less than a third of a second for a 500 dimensionnal system, while
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d = 10 20 50 100 200 500
direct Z 1 < 0.01 0.01 0.13 1.00 5.44 85.9
sf Z 1 < 0.01 < 0.01 0.01 0.01 0.05 0.28
direct E 1 < 0.01 0.02 0.27 1.71 11.8
sf E 1 < 0.01 < 0.01 < 0.01 0.02 0.05 0.31
direct Z d < 0.01 0.02 0.27 1.86 11.4
sf Z d < 0.01 0.02 0.23 1.5 11.1
direct E d 0.01 0.04 0.41 2.82 21.9
sf E d < 0.01 0.02 0.19 1.48 8.98
direct Z d2 0.04 0.35 7.38 90.6
sf Z d2 0.04 0.36 9.83
direct E d2 0.03 0.26 6.69
sf E d2 0.03 0.32 9.16

Table 1: Execution time (in seconds) for N = 100 for several linear systems of different
dimensions

d = 10 20 50 100 200 500
direct Z 1 0.234 0.234 0.234 0.703 2.258 13.43
sf Z 1 0.234 0.234 0.234 0.469 1.480 8.707
direct E 1 0.234 0.234 0.469 1.172 4.961
sf E 1 0.234 0.234 0.234 0.703 2.332 12.53
direct Z d 0.234 0.234 0.469 1.172 3.195
sf Z d 0.234 0.234 0.234 0.703 2.184
direct E d 0.234 0.469 0.937 3.281 7.332
sf E d 0.234 0.234 0.234 0.703 3.035
direct Z d2 0.703 2.812 18.28 77.81
sf Z d2 0.234 0.469 3.75
direct E d2 0.703 3.047 18.98
sf E d2 0.234 0.469 3.75

Table 2: Memory consumption (in MB) for N = 100 for several linear systems of different
dimensions

the fastest previously known algorithm, to the best of the authors knowledge,
takes more than a minute. For a larger number of directions of tightness, Algo-
rithm 1 compares well to one of the most competitive available algorithms. Its
theoretical complexity (10), linear in the number of timesteps and the number
of directions of tightness, is confirmed by table 1.

6. Conclusion

We have presented an approach for the computation of over-approximations
of the reachable set of a continuous-time linear system with contrained initial
states and inputs. We showed that it can handle arbitrary compact convex sets.
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We actually compute two over-approximations of the reachable set, the first one
given by the union of convex sets defined by their support functions, the second
one given by the union of polyhedrons. The complexity is comparable to the
complexity of the most competitive available specialized algorithms for reacha-
bility analysis of linear systems using zonotopes or ellipsoids. The effectiveness
of our approach is demonstrated on several examples.

Future work should focus on the integration of our techniques in an algorithm
for reachability analysis of hybrid systems.

Acknowledgements The authors would like to thank Thao Dang, Goran
Frehse and Oded Maler for numerous valuable discussions on reachability anal-
ysis and Zhi Han for providing them with transmission line example.
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Appendix: Proofs of Section 3.1

Proof of Lemma 1

Proof. To prove the lemma, we need to introduce the following sets:

P =
{

λx + (1− λ)(eτAx + τv) : λ ∈ [0, 1], x ∈ X0, v ∈ V
}

and Q = CH
(

X0, e
τAX0 ⊕ τV

)

. Let us remark that P ⊆ Q, which implies that

dH(P,Q) = sup
z∈Q

inf
z′∈P

‖z − z′‖.

Let z ∈ Q, then there exists x ∈ X0, y ∈ X0, v ∈ V and λ ∈ [0, 1] such that

z = λx + (1− λ)(eτAy + τv).

Since X0 is convex, λx + (1− λ)y ∈ X0. Then, let us consider the point z′ ∈ P
defined

z′ = λ(λx + (1− λ)y) + (1− λ)
(

eτA(λx + (1− λ)y) + τv
)

.

Then, we have
z − z′ = λ(1− λ)(eτA − I)(y − x).

We showed that for all z ∈ Q, there exists z′ ∈ P such that

‖z − z′‖ ≤
1

4
(eτ‖A‖ − 1)DX0

.
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It follows that

dH(P,Q) ≤
1

4
(eτ‖A‖ − 1)DX0

.

Now, let us consider x(.) a trajectory of the system, then there exists an initial
state x0 ∈ X0 and an input v(.) such that for all t, v(t) ∈ V and

x(t) = etAx0 +

∫ t

0

e(t−s)Av(s)ds

= etAx0 +

∫ t

0

v(s)ds +

∫ t

0

(e(t−s)A − I)v(s)ds

= etAx0 + tv∗(t) +

∫ t

0

(e(t−s)A − I)v(s)ds

where v∗(t) = 1
t

∫ t

0
v(s)ds. Since V is a convex set, it follows that v∗(t) ∈ V .

For t ∈ [0, τ ], let us consider the point z(t) ∈ P given by

z(t) =
τ − t

τ
x0 +

t

τ
(eτAx0 + τv∗(t)) = x0 +

t

τ
(eτA − I)x0 + tv∗(t).

Then,

x(t)− z(t) = etAx0 − x0 −
t

τ
(eτA − I)x0 +

∫ t

0

(e(t−s)A − I)v(s)ds.

Let us remark that

etAx0 − x0 −
t

τ
(eτA − I)x0 =

t

τ

+∞
∑

k=2

τ(tk−1 − τk−1)

k!
Akx0

It follows that

‖etAx0 − x0 −
t

τ
(eτA − I)x0‖ ≤

t

τ
(eτ‖A‖ − 1− τ‖A‖)RX0

.

We also have

‖

∫ t

0

(e(t−s)A − I)v(s)ds‖ ≤

∫ t

0

‖e(t−s)A − I‖‖v(s)‖ds

≤ RV

∫ t

0

(e(t−s)‖A‖ − 1)ds

≤ (et‖A‖ − ‖A‖t− 1)
RV

‖A‖

≤
t

τ
(eτ‖A‖ − ‖A‖τ − 1)

RV

‖A‖

by convexity of et‖A‖ − ‖A‖t − 1. Then, from the two previous inequalities we
have

‖x(t)− z(t)‖ ≤
t

τ
ατ .
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It follows that there exists y(t) in ατB such that:

x(t) =
τ − t

τ
x0 +

t

τ
(eτAx0 + τv∗(t) + y(t))

thus R[0,τ ](X0) ⊆ CH
(

X0, e
τAX0 ⊕ τV ⊕ ατB

)

= Ω0, which proves the first
part of the lemma.

For the second part of the lemma, let us note that

R[0,τ ](X0) ⊆ Ω0 ⊆ Q⊕ ατB,

which implies that:

dH(Ω0,R[0,τ ](X0)) ≤ dH(Q⊕ ατB,R[0,τ ](X0)).

Moreover, since ‖x(t) − z(t)‖ ≤ t
τ
ατ ≤ ατ , we have dH

(

P,R[0,τ ](X0)
)

≤ ατ

and dH(P ⊕ ατB,R[0,τ ](X0)) ≤ 2ατ . By the triangular inequality:

dH(Q⊕ ατB,R[0,τ ](X0)) ≤ dH(Q⊕ ατB, P ⊕ ατB)

+ dH(P ⊕ ατB,R[0,τ ](X0))

≤ dH(Q,P ) + 2ατ

≤
1

4
(eτ‖A‖ − 1)DX0

+ 2ατ .

Thus,

dH(Ω0,R[0,τ ](X0)) ≤
1

4
(eτ‖A‖ − 1)DX0

+ 2ατ .

�

Proof of Lemma 2

Proof. Let us consider x(.) a trajectory of the system, then there exists an
initial state x0 ∈ Ω and an input v(.) such that for all t, v(t) ∈ V and

x(τ) = eτAx0 +

∫ τ

0

e(τ−s)Av(s)ds

= eτAx0 +

∫ τ

0

v(s)ds +

∫ τ

0

(e(τ−s)A − I)v(s)ds

= eτAx0 + τv∗ +

∫ τ

0

(e(τ−s)A − I)v(s)ds

where v∗ = 1
τ

∫ τ

0
v(s)ds. Since V is a convex set, it follows that v∗ ∈ V . Let us

consider the point z ∈ eτAΩ ⊕ τV given by z = eτAx0 + τv∗. Then, similar to
lemma 1 we can show that ‖x(τ)− z‖ ≤ βτ . It follows that

dH

(

eτAΩ⊕ τV,Rτ (Ω)
)

≤ βτ

which implies that Rτ (Ω) ⊆ Ω′ and dH(Ω′,Rτ (Ω)) ≤ 2βτ . �
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Proof of Theorem 1

Proof. From lemma 1, R[0,τ ](X0) ⊆ Ω0. Assume R[iτ,(i+1)τ ](X0) ⊆ Ωi, then

R[(i+1)τ,(i+2)τ ](X0) = Rτ

(

R[iτ,(i+1)τ ](X0)
)

⊆ Rτ (Ωi) ⊆ eτAΩi ⊕ τV ⊕ βτB.

Therefore, R[(i+1)τ,(i+2)τ ](X0) ⊆ Ωi+1 and the first part of the Theorem holds.
Let us note δi = dH(Ωi,R[iτ,(i+1)τ ](X0)), then

δi+1 = dH(Ωi+1,Rτ

(

R[iτ,(i+1)τ ](X0)
)

)

≤ dH(Ωi+1,Rτ (Ωi)) + dH(Rτ (Ωi) ,Rτ

(

R[iτ,(i+1)τ ](X0)
)

)

From lemma 2, dH(Ωi+1,Rτ (Ωi)) ≤ 2βτ and it is easy to show that

dH(Rτ (Ωi) ,Rτ

(

R[iτ,(i+1)τ ](X0)
)

) ≤ eτ‖A‖dH(Ωi,R[iτ,(i+1)τ ](X0)).

Thus, we have that δi+1 ≤ eτ‖A‖δi + 2βτ . Therefore, for all i = 0, . . . , N − 1

δi ≤ eiτ‖A‖δ0 + 2βτ

i−1
∑

k=0

ekτ‖A‖.

Then, from lemma 1,

δi ≤ eiτ‖A‖

(

eτ‖A‖ − 1

4
DX0

+ 2ατ

)

+ 2βτ

i−1
∑

k=0

ekτ‖A‖

≤ eiτ‖A‖

(

eτ‖A‖ − 1

4
DX0

+ 2(eτ‖A‖ − 1− τ‖A‖)RX0

)

+

2(eτ‖A‖ − 1− τ‖A‖)
RV

‖A‖

i
∑

k=0

ekτ‖A‖

≤ eiτ‖A‖

(

τ‖A‖eτ‖A‖

4
DX0

+ τ2‖A‖2eτ‖A‖RX0

)

+

τ2‖A‖2eτ‖A‖ RV

‖A‖

e(i+1)τ‖A‖ − 1

eτ‖A‖ − 1

≤ τe(i+1)τ‖A‖

(

‖A‖

4
DX0

+ τ‖A‖2RX0

)

+

τ2‖A‖2eτ‖A‖ RV

‖A‖

e(i+1)τ‖A‖

τ‖A‖

≤ τe(i+1)τ‖A‖

(

‖A‖

4
DX0

+ τ‖A‖2RX0
+ eτ‖A‖RV

)

.

This leads to the estimate of the theorem since (i + 1)τ ≤ T . �

20


