Semidefinite Approximations of Invariant Measure Supports and Reachable Sets for Discrete-time Polynomial Systems

Given a compact semialgebraic set X_0 included in \mathbb{R}^n, a polynomial map f from \mathbb{R}^n to \mathbb{R}^n, we consider the problem of approximating the union X^* of X_{inv} and X_{invf}, where X_{inv} is the maximal support of Lebesgue dominated invariant measures w.r.t. f and X_{invf} is the reachable set for the discrete-time polynomial system $x_{t+1} = f(x_t)$, $t \in \mathbb{N}$, $x_0 \in X_0$. Assuming that X^* is included in X, with X being a “simple” set (box or ellipsoid), we provide a method to compute certified outer approximations of X^*.

Here, the proposed method consists of building a hierarchy of relaxations for the infinite dimensional moment problem whose optimal value is the volume of X^* and whose optimum is the restriction of the Lebesgue measure on X^*. Then, one can outer approximate X^* as closely as desired with a hierarchy of super level sets of the form $X^r := \{x \in X : \nu r(x) \geq 0\}$, for some polynomials νr of increasing degrees $2r$. For each fixed r, finding the coefficients of the polynomial νr boils down to computing the optimal solution of a semidefinite program. We provide guarantees of strong convergence to X^* in $L1(X) - norm$, when the degree of the polynomial approximation tends to infinity and prove in particular that $\lim [\text{vol}(X^r \cap X^*)] = 0$ when r tends to infinity. We also present some application examples together with numerical results.