PRESENTATION

  • The director words
  • Organigram
  • People
  • Contacts & Access
  • Intranet

RESEARCH

  • Geometry & Images
  • Deterministic Models and Algorithms
  • Data and Stochastic: Theory and Applications

PRODUCTION

  • Seminars & Colloquiums
  • Academical defenses
  • Key Works
  • Publications
  • Sofware
  • Gallery

JOBS

  • Masters & Doctoral studies
  • Job Opportunities
  • UFR-IMA
  • ENSIMAG

LINKS

  • LJK Forge Platform
  • INRIA Rhône-Alpes
  • Maimosine
  • AMIES
  • LSI
  • Persyval-lab

LJK-Deterministic Models and Algorithms: EDP-MOISE-MGMI Seminar

 

On Thursday September 4 2014 at 11h00 in Salle 1 - Tour IRMA

 

Seminary of Mr Pierre JOLIVET (Laboratoire Jacques-Louis Lions)

 

Méthodes de décomposition de domaine. Application au calcul haute performance

 

Summary

 

Cette présentation introduit une vision unifiée de plusieurs méthodes de décomposition de domaine : celles avec recouvrement, dites de Schwarz, et celles basées sur des compléments de Schur, dites de sous-structuration. Il est ainsi possible de changer de méthodes de manière abstraite et de construire différents préconditionneurs pour accélérer la résolution de grands systèmes linéaires creux par des méthodes itératives. On rencontre régulièrement ce type de systèmes dans des problèmes industriels ou scientifiques après discrétisation de modèles continus. Bien que de tels préconditionneurs exposent naturellement de bonnes propriétés de parallélisme sur les architectures distribuées, ils peuvent s'avérer être peu performants numériquement pour des décompositions complexes ou des problèmes physiques multi-échelles. On peut pallier ces défauts de robustesse en calculant de façon concurrente des problèmes locaux creux ou denses aux valeurs propres généralisées. D'aucuns peuvent alors identifier des modes qui perturbent la convergence des méthodes itératives sous-jacentes a priori. En utilisant ces modes, il est alors possible de définir des opérateurs de projection qui utilisent un problème dit grossier. L'utilisation de ces outils auxiliaires règle généralement les problèmes sus-cités, mais tend à diminuer les performances algorithmiques des préconditionneurs. Dans cette présentation, on montre en trois points que la nouvelle construction développée est performante : 1) grâce à des essais numériques à très grande échelle sur Curie-un supercalculateur européen, puis en le comparant à des solveurs de pointe 2) multi-grilles et 3) directs.

 

Mentions légales - contact: Webmaster