On the acceleration of some empirical means with application to nonparametric regression

Bernard Delyon and François Portier

Let (X_1, \ldots, X_n) be an i.i.d. sequence of random variables in \mathbb{R}^d, $d \geq 1$, for some function $\varphi : \mathbb{R}^d \to \mathbb{R}$, under regularity conditions, we show that

$$n^{1/2} \left(n^{-1} \sum_{i=1}^n \frac{\varphi(X_i)}{f^{(i)}(X_i)} - \int \varphi(x) dx \right) \overset{P}{\longrightarrow} 0,$$

where $\hat{f}^{(i)}$ is the classical leave-one-out kernel estimator of f the density of X_1. This result is surprising because it speeds up traditional rates, in root n, derived from the central limit theorem when $\hat{f}^{(i)} = f$. As a consequence, it improves the classical Monte Carlo procedure for integral approximation. The paper is largely concerned with theoretical issues related to the later result (rates of convergence, bandwidth choice, regularity of φ) but is also interested in some statistical applications dealing with random design regression. In particular, we provide the asymptotic normality of the estimation of the linear functionals of a regression function on which the only requirement is the Hölder regularity. This leads us to a corrected version of the average derivative estimator introduced by Härdle and Stoker (hardle1989) that estimates the index of a regression with less variance.