
QP-Collide: A New Approach to Collision

Treatment

Laks Raghupathi
François Faure

EVASION/GRAVIR, INRIA Rhône-Alpes
655, Avenue de l’ Europe, 38334, Montbonnot
laks@imag.fr francois.faure@imag.fr

Abstract

Robust handling of collisions and contacts is important in physics-based
animation and simulation scenarios. We present a new approach which
handles dynamics and collision treatment simultaneously. We consider
the collisions as linear constraints and the dynamics equation as an ob-
jective function to be minimized. We thus get a unified equation modeled
as a quadratic programming (QP) problem and solve it using an active set
method. We iterate the QP until the solution satisfies all the constraints
with the appropriate sign of the Lagrange’s multipliers. Thus we get a solu-
tion to the dynamics equation which responds to all the collisions. Other
constraints such as assigning a constant velocity to a particle, limiting
strain/strain rate, etc. too can be easily modeled as linear constraints. In
this paper, we describe in detail on how such an approach can be integrated
within an existing dynamics simulation environment. In addition, we also
include implementation difficulties of this approach and discuss practical
tricks to overcome the same.

1 Introduction

The robust treatment of collisions and contacts finds an important place for
realistic dynamics simulation in virtual reality [PNTSD96], motion picture spe-
cial effects [BFA02], surgery simulation [RGF+04], computer games and other
graphics applications. A major problem in physically-based animation is how
to handle simultaneous collisions occurring between objects in the scene and
the self-collisions within each object itself. In this paper we present a novel
approach for treating multiple collisions and contacts.

1



2 BACKGROUND AND MOTIVATION 2

2 Background and Motivation

For a good introduction to the various techniques in collision detection, we refer
the reader to the survey papers by Lin and Gottschalk [LG98], Jiménez et al.
[JTT01] and more recently by Teschner et al. [TKH+05]. But we would like
to make a note on detecting collisions at discrete time intervals and continuous
collision detection. Most applications detect collisions at discrete time intervals
- i.e., we check for object intersections based on their current state (positions,
etc.). However such an approach may miss collisions in thin or fast-moving
objects or applications requiring large time-step simulations. In such cases,
it is worth detecting the collisions by checking the trajectory of the objects
in question to see if the objects crossed between the time intervals. A good
discussion on continuous collision detection techniques is presented in [MC00]
and [RKC02].

In this paper, we shall rather concentrate on the techniques for handling the
collisions once they are detected. Among existing techniques, a first approach
[Pro97] is to use only impulse-based collision response by instantaneous correct-
ing the displacements and velocities corrections. This method while being more
accurate nevertheless adds undesirable extra energy and strain into the system
and may also provoke new collisions thus warranting additional treatment. The
second approach [VT00] is by detecting the collisions at continuous intervals
and computing the forces needed to correct the accelerations, velocities and
positions of the present, next and next-to-next time steps. By directly manip-
ulating the positions, the above two methods may introduce large amounts of
strain and energy into the system. So, a third method [BFA02] was proposed
which intelligently combined both the impulse and penalty methods thus tak-
ing care of the different scenarios while overall not adding a significant amount
strain into the system. This approach while being the state-of-the-art is com-
plicated requiring several complex steps (Jacobi and Gauss-Seidel updates for
strain/strain rate control) and iterations. Note that in all the above methods,
the solution is iterated over a few times before which collisions are expected to
be resolved. But they nevertheless do not guarantee that all the collisions will
be resolved.

3 Our Approach

Typical dynamics problems formulated as an ordinary differential equation (ODE)
can be solved either by explicit integration techniques such as forward Euler,
Runge-Kutta, etc. or implicit techniques like the backward Euler. The latter is
especially useful for solving “stiff” set of equations and provides a stable solu-
tion even while simulating at large time-steps [BW98]. We make no assumption
on the type of integration method for our QP-based approach works with both
the approaches though we have used the implicit Euler for the advantages men-
tioned above. Typically we write the implicit Euler equation to solve for ∆v as



3 OUR APPROACH 3

[BW98]:
(

M− dt2
∂f

∂x
− dt

∂f

∂v

)

∆v = dt

(

f + dt
∂f

∂v
v

)

(1)

We integrate the new velocities v+∆v to get the new positions x+dt(v+∆v).
We usually then perform the collision detection and apply the correction

instantaneously to the positions and velocities (impulses) or apply stiff spring
forces in the next time step (penalty forces). Here, we propose a new method
by handling dynamics and collision treatment simultaneously. We consider the
collisions as linear constraints and the above dynamics equation as an objective
function to be minimized. We thus get a unified solution to the problem in
hand. Let us describe the method in detail:

First, we write the implicit equation (1) in a concise form:

K∆v = b (2)

We then write this equation as a quadratic function with linear constraints:
Minimize:

q(∆v) ≡
1

2
∆vT K∆v − bT ∆v (3)

subject to the constraints:
J∆v ≤ c (4)

where J and c are the constraint matrix and values respectively (cf. §4 on how
to compute the constraints). If (4) is an equality, this is a classical quadratic

programming (QP) problem which can be solved in a finite number of steps. In
practice, we consider the above inequality as an equality by means of an active

set method described in [Fle87]. Accordingly, those constraints belonging to the
active set A are considered as equalities while the remaining are temporarily
ignored. Thus, (4) is reduced to:

Ji∆vi = ci, i ∈ A (5)

From (3) and (5), we write the Lagrangian function as:

L(∆v, λ) =
1

2
∆vT K∆v − bT ∆v − λT (J∆v − c) (6)

∇∆vL = 0 ⇒ K∆v − b− JT λ = 0

∇λL = 0 ⇒ J∆v − c = 0
(7)

which can be rearranged as:
[

K −JT

−J 0

] (

∆v

λ

)

=

(

b

−c

)

(8)

The solution obtained (∆v, λ) is verified such that:

λi ≥ 0, i ∈ A (9)

Jk∆vk ≤ ck, k /∈ A (10)



4 ON MODELING THE CONSTRAINTS 4

At the end of each iteration, if (9) is not satisfied, the corresponding constraint
Ji is removed from the active set A and is put into A′. Viceversa if a non-active
constraint in (10) is violated, then the same is transfered from A′ to be part
of A. The iteration stops when we find a solution with satisfied both these
conditions. We describe the algorithm in detail in §6.

4 On Modeling the Constraints

4.1 Collision Constraints

Here, we assume that the reader is well-versed in applying any one of the suit-
able collision detection techniques. We encourage the interested readers to go
through the survey papers presented in §2. However, we would like to make a
brief point on detecting collisions at discrete and continuous time intervals. The
former approach which is quite the norm checks for collisions at each time step,
x(t),x(t + dt), etc. The latter on the other hand detects collisions between the
time steps checking for intersections in the trajectory between x(t) and x(t+dt),
by taking into account of the intermediate velocity ∆v(t + dt).

We approach the problem of collision response solely through velocity im-
pulse corrections on the lines of [BFA02]. We do not modify positions explicitly
thus avoid creating new collisions and also prevent introducing additional me-
chanical strain into the system. We now describe how to deal with the collision
primitives (vertex-triangle and edge-edge) once they are detected.

4.2 Vertex-Triangle Collision

Let a vertex xi with thickness ri moving at velocity vi collide with a triangle
(xj0,xj1,xx2) with thickness rj moving at (vj0,vj1,vj2) and normal n̂. The
above are the instantaneous values at time t. Our objective is to find the new
∆v at time t + dt. Assuming the barycentric coordinates are (w0, w1, w2) such
that velocity at the colliding point is vj = w0vj0 + w1vj1 + w2vj2. Let g be
the gap ‖ xi − xj ‖ such that distance which the vertex and triangle needs to
be separated into a non-interfering state is g − (ri + rj). Now the equation
constraining the new relative velocity change ∆vij = ∆vj−∆vi can be written
as:

(vij + ∆vij) · n̂ dt ≤ g − (ri + rj) (11)

It can be rearranged as:

(w0∆vj0 + w1∆vj1 + w2∆vj2 −∆vi).n̂ ≤ c (12)

where c = (g − (ri + rj))/dt + (w0vj0 + w1vj1 + w2vj2 − vi) · n̂. Each such
constraint corresponds to one row of the J matrix of (4). The structure of the
kth row Jk will then look as follows:

(

· · · j0 j1 j2 · · · i · · ·
· · · 0 w0n̂ w1n̂ w2n̂ · · · 0 · · · n̂ 0 · · ·

)

(13)



4 ON MODELING THE CONSTRAINTS 5

4.3 Edge-Edge Collision

Now, let an edge with end-points (xi0,xi1), thickness ri and velocities (vi0,vi1)
collide with another edge with end-points (xj0,xj1), thickness rj and velocities
(vj0,vj1) (again, all values at time t). The barycentric coordinates at the
collision point is [a, b] such that the velocities at the colliding point equals vi =
(1 − a)vi0 + avi1 and vj = (1 − b)vj0 + bvi1. The equations constraining the
relative velocity is same as (11). It can be further elaborated as:

((1− b)∆vj0 + b∆vj1 − (1− a)∆vi0 − a∆vi1) · n̂ ≤ c (14)

where n̂ is the normalized direction of the gap at time t (xi − xj)/ ‖ xi − xj ‖
and c = (g − (ri + rj))/dt + vij · n̂. Similar to the vertex-triangle case, the
structure of the kth row Jk will then look as follows:

(

· · · j0 j1 · · · i0 i1 · · ·
0 (1− b)n̂ bn̂ · · · 0 · · · −(1− a)n̂ −an̂ 0 · · ·

)

(15)

4.4 Fixed Constraints

Fixed constraints are those which can be used to assign a constant velocity
value. Once the constraint directions and values are set, it is considered as part
of the active set throughout the iteration and is thus treated as an equality all
along.

4.5 Strain Constraints

Some times we would like to control the strain values during the simulation
typically to avoid excessive elongation or compression of spring. Our approach
provides a straightforward means to implement this. We define the strain of a
mechanical element (say, a spring) as the change in its current length l relative
to its restlength l0, i.e. (l − l0)/l0. Let lmax be the maximum strain allowed
(say 10% over l0). For a spring connected by two end-points (i, j), this can be
written as:

‖ xi + dt(vi + ∆vi) − xj + dt(vj −∆vj) ‖< lmax (16)

The equation can be linearized with first order approximation and can be ex-
pressed as:

(∆vi −∆vj) · n̂ ≤ l(lmax − l)/dt (17)

where n̂ is the normalized direction of the spring elongation (xi−xj)/ ‖ xi−xj ‖.
A similar equation can be written so that the spring does not compress below
a certain length lmin.



5 ON USING THE CONJUGATE GRADIENT ALGORITHM 6

5 On Using the Conjugate Gradient Algorithm

5.1 Without Inverting K

We generally assume that the K matrix of (3) is symmetric and positive-definite.
Hence the composite matrix A in (3) is also symmetric and can be solved with
a standard Conjugate Gradient algorithm [PFTV92]. We also would prefer
A is positive semi-definite (PSD) so that we get the global solution to the
equation. However there are cases where the matrix is not full rank due to
linearly dependant constraints. We shall deal with such cases in detail in §7.1.
Otherwise, both the K and J matrices tend to be sparse and can be solved
by iterative methods such as the conjugate gradient algorithm in linear time
complexity. Hence it would make sense to create methods which perform the
product of the matrix vector y = A · x, where x consists of the vector triplet
∆v and the Lagrangian multiplier λ. This avoids the need for having an explicit
representation of the A matrix. Assuming that there are n equations and m
active constraints, the multiplication operators required for computing the left
hand side of (8) are:

yi = K ·∆v − JT · λ, i ∈ [1, · · · , n] (18)

yi = −J ·∆v, i ∈ [n + 1, · · · , n + m] (19)

For n particles and m constraints, the conjugate gradient should generally con-
verge within 3n + m iterations.

5.2 Inverting K

In certain cases, it is possible quickly invert K matrix using techniques such as
LU inversion. When K−1 exists, from (8) we find the solution λ and ∆v as
follows:

JK−1JT λ = c− JK−1b (20)

∆v = K−1(b + JT λ) (21)

(20) reduces the maximum CG iterations to m.

6 Overall Algorithm

The overall algorithm is described here:

7 Practical Difficulties

Throughout this method, we have tried to eliminate as many magic parameters
as possible. All the parameters of our system such as stiffness, thickness, etc.
are user-given physical parameters. But certain situations during simulations



7 PRACTICAL DIFFICULTIES 7

Algorithm 1 QP Collide

1: Solve (1) for ∆v

2: Find constraints (detect collisions) and populate the constraint matrix J

and values c

3: for all constraint Ji ∈ J[1 · · ·m] do

4: if Ji∆vi > ci then

5: Add ith constraint to A
6: else

7: Add ith constraint to A′

8: end if

9: end for

10: maxIter← 3n + m
11: k ← 0
12: endloop← true

13: Compute the new ∆v(k) and the Lagrange multipliers λ(k) by solving (8)

14: for all λ
(k)
q , q ∈ A do

15: if λ
(k)
q ≥ 0 then

16: Move q from A to A′ (active to non-active)
17: endloop ← false

18: end if

19: end for

20: for all ∆v
(k)
p , p ∈ A′ do

21: if Jp∆v
(k)
p > cp then

22: Move p from A′ to A (non-active to active)
23: endloop ← false

24: end if

25: end for

26: if endloop is false and k < maxIter then

27: k ← k + 1
28: Goto step (2)
29: else

30: ∆v∗ = ∆v(k)

31: Quit loop
32: end if

33: Compute final velocity v(t + dt)← v(t) + ∆v∗

34: Compute final position x(t + dt)← x(t) + dt · v(t + dt)



7 PRACTICAL DIFFICULTIES 8

cause numerical errors while computing the solution to the conjugate gradient
algorithm. We propose the following techniques to tackle against commonly
occurring numerical problems.

7.1 Linearly Dependant Constraints

There can be certain cases where there are linearly dependant rows in the J

matrix. A simple illustration of this situation is as follows. Let us imagine the
case of an edge colliding with a fixed plane where each end-points of the edge
collides with two adjacent triangles of the plane and the edge itself collides with
the edge of the plane shared by the two triangles (Fig. 1). If the direction of the
normal n̂ is (nx, ny, nz) and the barycentric coordinates of the colliding edge is
[a1, a2] where a2 = 1− a1, then the corresponding rows of J will be:





· · · 0 nx ny nz 0 0 0 0 · · ·
· · · 0 0 0 0 nx ny nz 0 · · ·
· · · 0 a1nx a1ny a1nz a2nx a2ny a2nz 0 · · ·



 (22)

This is a common occurrence in mechanical simulations and creates a singular
matrix. The applied mathematics community typically use sequential quadratic
programming approaches to deal with such problems [GMS02]. Unfortunately,
such methods are very expensive to compute in real-time applications using
standard workstations. Instead we introduce a small perturbation in J in order
to reduce the conditioning number of the matrix. Accordingly, we fill up the
bottom right part of A with a matrix L = (l1, · · · , lm) with each li’s value
around 10−3. Thus the new A will look like:

A =

[

K −JT

−J L

]

(23)

The corresponding matrix-vector multiplication routine in (19) is appropriately
modified as:

yi = −J ·∆v − L · λ, i ∈ [n + 1, · · · , n + m] (24)

This not only reduces the numerical errors but is also extremely easy to compute.
The cost of such calculation is m multiplications.

7.2 Suppressing Toggling Constraints

Other numerical errors results while trying to simulate very “stiff” objects. This
sometimes causes the constraint to toggle between the active set A and the
non-active set A′ causing the QP iteration in an endless loop. Hence such cases
should be put in a watch list and in case of repeated toggling, the constraint
should be permanently removed from A and A′. While this may not be the-
oretically justified, it nonetheless gives satisfactory results in our experiments
simulating a mechanical cable with large stiffness values (> 105 N/m).



8 RESULTS & CONCLUSIONS 9

n̂ n̂

vertex-triangle edge-edge vertex-triangle

Figure 1: A commonly occurring collision scenario which results in linearly
dependant constraints

8 Results & Conclusions

We have presented an elegant and novel solution for simultaneously treating
multiple collisions and contacts. We now present some results of our algorithm
(Fig. 2). We note that the algorithm handles both the collisions and fixed
constraints well for the case of a mechanical cable. More experiments are needed
to validate this method for other complex scenarios such as cloth, deformable
organs, etc.

There are some drawbacks of this method compared with a more classical
approach like penalty springs. The addition of the constraint matrices J and
JT somewhat degrades the conditioning of the matrix. Hence the solution given
by the QP is susceptible to numerical errors. Though we have proposed some
tricks to take care of them - they may not work for all the scenarios. Hence more
theoretical work is needed to analyze such problems. In addition, our algorithm
will not handle the case of multiple collisions such as a cloth colliding with
itself - we might need go through multiple QP passes which is computationally
expensive in order to deal with that. Nonetheless, we hope that this method be
further explored to solve the problem in hand.

(a) (b)

Figure 2: Snapshots of simulation using our algorithm. A stiff cable (a) falling
off a pulley and (b) suspended (constrained at the end points) over a cylinder



REFERENCES 10

References

[BFA02] R. Bridson, R. Fedkiw, and J. Anderson. Robust treatment of
collisions, contact and friction for cloth animation. In Proc. SIG-

GRAPH ’02, pages 594–603. ACM Press, 2002.

[BW98] D. Baraff and A. Witkin. Large steps in cloth simulation. In Proc.

SIGGRAPH ’98, pages 43–54. ACM Press, 1998.

[Fle87] R. Fletcher. Practical Methods of Optimization, chapter 10.3 :
Quadratic Programming, pages 229–241. John Wiley & Sons, New
York, second edition, 1987.

[GMS02] P. E. Gill, W. Murray, and M. A. Saunders. SNOPT: An SQP
algorithm for large-scale constrained optimization. SIAM J. on

Optimization, 12(4):979–1006, 2002.

[JTT01] P. Jiménez, F. Thomas, and C. Torras. 3D collision detection: A
survey. Computers and Graphics, 25(2):269–285, April 2001.

[LG98] M. Lin and S. Gottschalk. Collision detection between geometric
models: A survey. In Proc. IMA Conference on Mathematics of

Surfaces, pages 33–52, 1998.

[MC00] P. Meseure and C. Chaillou. A deformable body model for surgi-
cal simulation. Journal of Visualization and Computer Animation,
11(4):197–208, September 2000.

[PFTV92] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling.
Numerical Recipes in C. The Art of Scientific Computing, pages
83–89. Cambridge University Press, 1992.

[PNTSD96] P.Volino, N.Magnenat-Thalmann, S.Jianhua, and D.Thalmann.
The evolution of a 3d system for simulating deformable clothes
on virtual actors. IEEE Comp. Graph. & Appl., 16(5):42–50, 1996.

[Pro97] X. Provot. Collision and self collision handling in cloth model dedi-
cated to design garments. In Computer Animation and Simulation

’97, pages 177–189, 1997.

[RGF+04] L. Raghupathi, L. Grisoni, F. Faure, D. Marchal, M.-P. Cani, and
C. Chaillou. An intestinal surgery simulator: Real-time collision
processing and visualization. IEEE Trans. Vis. Comput. Graph.,
10(6):708–718, 2004.

[RKC02] S. Redon, A. Kheddar, and S. Coquillart. Fast continuous collision
detection between rigid bodies. In Proc. Eurographics ’02, 2002.



REFERENCES 11

[TKH+05] M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann, Laks
Raghupathi, A. Fuhrmann, Marie-Paule Cani, François Faure,
N. Magnetat-Thalmann, W. Strasser, and P. Volino. Collision
detection for deformable objects. Computer Graphics Forum,
24(1):61–81, March 2005.

[VT00] P. Volino and N. M-. Thalmann. Accurate collision response on
polygonal meshes. In Proc. Computer Animation, pages 154–163.
IEEE Computer Society, 2000.


