Inference for the Wiener process with random initiation time

Christian Paroissin

Laboratoire de Mathématiques et de leurs Applications Université de Pau et des Pays de l’Adour

AMMSI Workshop, Troyes (France), January 2015
1 Introduction and model
2 Parameters estimation
3 Time-to-failure estimation
4 Application to a dataset
5 Bibliography
1 Introduction and model
2 Parameters estimation
3 Time-to-failure estimation
4 Application to a dataset
5 Bibliography
Introduction

- **Objective:** study of stochastic models to a better understanding of component/system ageing
Introduction

- **Objective**: study of stochastic models to a better understanding of component/system ageing

- **Degradation models vs. Lifetime models?** highly reliable components, use of complex preventive maintenance policies, etc.

References:
- Guo et al. (13)
- Nelson (10)
Introduction

- **Objective**: study of stochastic models to a better understanding of component/system ageing

- **Degradation models vs. Lifetime models?** highly reliable components, use of complex preventive maintenance policies, etc.

- **Current models**: component degradation initiated when put in service!
Objective: study of stochastic models to a better understanding of component/system ageing

Degradation models vs. Lifetime models? highly reliable components, use of complex preventive maintenance policies, etc.

Current models: component degradation initiated when put in service!

Need of some new models: models with an initiation period (deterministic or random)
See Guo *et al.* (13), Nelson (10)
Degradation model

Degradation model with random initiation period \((X(t))_{t \geq 0}\):

\[
X(t) = \left[\mu(t - S) + \sigma B(t - S) \right] \mathbb{I}_{t \geq S}
\]

where

- \(t = 0\) is the instant where the component is put in service
- \((B(t))_{t \geq 0}\) is a standard Brownian motion
- \(S\) is an absolutely continuous and positive random variable, independent of \((B(t))_{t \geq 0}\)
For degradation model, time-to-failure $T_c = \text{first-time to reach a given and known critical level } c$:

$$T_c = \inf\{ t \geq 0; X(t) \geq c \}$$
For degradation model, time-to-failure $T_c = \text{first-time to reach a given and known critical level } c$:

$$T_c = \inf\{ t \geq 0; X(t) \geq c \}$$

Special case: S exponentially distributed, see Schwarz (01, 02) with an application in psychology
Simulation of three sample paths:
black circles = degradation initiations
red dash line = critical level.
1 Introduction and model

2 Parameters estimation

3 Time-to-failure estimation

4 Application to a dataset

5 Bibliography
Statistical model

Observations?
Statistical model

Observations?

- n independent components: n copies X_1, \ldots, X_n of X
Observations?

- n independent components: n copies X_1, \ldots, X_n of X

- discrete-time sampling at regular instants $0, \delta, 2\delta, \ldots, m\delta = \tau$
Observations?

- n independent components: n copies X_1, \ldots, X_n of X

- discrete-time sampling at regular instants $0, \delta, 2\delta, \ldots, m\delta = \tau$

Consequence: random number of non-null observations
Observations?

- n independent components: n copies X_1, \ldots, X_n of X

- discrete-time sampling at regular instants $0, \delta, 2\delta, \ldots, m\delta = \tau$

Consequence: random number of non-null observations

Model assumptions? Parametric model for the distribution of S, with unknown parameter $\theta \in \Theta \subseteq \mathbb{R}^p$
Random variable R_i such $(R_i - 1)\delta < S_i \leq R_i\delta$.
Notations (1/3)

Random variable R_i such $(R_i - 1)\delta < S_i \leq R_i\delta$.

1. if $R_i > m$, $S_i > m\delta = \tau$ and $X_i(j\delta) = 0$ for any $j \in \{0, \ldots, m\}$
Notations (1/3)

Random variable R_i such $(R_i - 1)\delta < S_i \leq R_i\delta$.

1. If $R_i > m$, $S_i > m\delta = \tau$ and $X_i(j\delta) = 0$ for any $j \in \{0, \ldots, m\}$
 Information only on θ (right-censoring)
Random variable R_i such $(R_i - 1)\delta < S_i \leq R_i\delta$.

1. If $R_i > m$, $S_i > m\delta = \tau$ and $X_i(j\delta) = 0$ for any $j \in \{0, \ldots, m\}$
 Information only on θ (right-censoring)

2. If $R_i = m$, $(m - 1)\delta < S \leq m\delta$ and $X_i(j\delta) = 0$ for any $j \in \{0, \ldots, m - 1\}$ but $X_i(m\delta) \neq 0$
Notations (1/3)

Random variable R_i such $(R_i - 1)\delta < S_i \leq R_i\delta$.

1. If $R_i > m$, $S_i > m\delta = \tau$ and $X_i(j\delta) = 0$ for any $j \in \{0, \ldots, m\}$
 Information only on θ (right-censoring)

2. If $R_i = m$, $(m - 1)\delta < S \leq m\delta$ and $X_i(j\delta) = 0$ for any $j \in \{0, \ldots, m - 1\}$ but $X_i(m\delta) \neq 0$
 Information only on θ (interval-censoring)
Notations (1/3)

Random variable R_i such $(R_i - 1)\delta < S_i \leq R_i\delta$.

1. if $R_i > m$, $S_i > m\delta = \tau$ and $X_i(j\delta) = 0$ for any $j \in \{0, \ldots, m\}$
 Information only on θ (right-censoring)

2. if $R_i = m$, $(m - 1)\delta < S \leq m\delta$ and $X_i(j\delta) = 0$ for any $j \in \{0, \ldots, m - 1\}$ but $X_i(m\delta) \neq 0$
 Information only on θ (interval-censoring)

3. if $R_i < m$, at least two non-null degradation measures observed
Random variable R_i such $(R_i - 1)\delta < S_i \leq R_i\delta$.

1. if $R_i > m$, $S_i > m\delta = \tau$ and $X_i(j\delta) = 0$ for any $j \in \{0, \ldots, m\}$
 Information only on θ (right-censoring)

2. if $R_i = m$, $(m - 1)\delta < S \leq m\delta$ and $X_i(j\delta) = 0$ for any $j \in \{0, \ldots, m - 1\}$ but $X_i(m\delta) \neq 0$
 Information only on θ (interval-censoring)

3. if $R_i < m$, at least two non-null degradation measures observed
 Information on θ (interval-censoring), μ and σ^2
Three random subsets of the individuals:

- N_0: set of individuals with zero non-null degradation measure: $N_0 = \{ i; R_i > m \} \subseteq \{1, \ldots, n\}$ and $N_0 = \divides N_0 \divides$

- N_1: set of individuals with exactly one non-null degradation measure: $N_1 = \{ i; R_i = m \} \subseteq \{1, \ldots, n\}$ and $N_1 = \divides N_1 \divides$

- N_2^+: set of individuals with exactly at least two degradation measures: $N_2^+ = \{ i; R_i < m \} \subseteq \{1, \ldots, n\}$ and $N_2^+ = \divides N_2^+ \divides$
Notations (2/3)

Three random subsets of the individuals:

- \mathcal{N}_0: set of individuals with zero non-null degradation measure:

 $$
 \mathcal{N}_0 = \{ i; R_i > m \} \subseteq \{ 1, \ldots, n \}
 \text{ and } N_0 = |\mathcal{N}_0|
 $$
Three random subsets of the individuals:

- \mathcal{N}_0: set of individuals with zero non-null degradation measure:
 \[
 \mathcal{N}_0 = \{ i; R_i > m \} \subseteq \{1, \ldots, n\} \quad \text{and} \quad N_0 = |\mathcal{N}_0|
 \]

- \mathcal{N}_1: set of individuals with exactly one non-null degradation measure:
 \[
 \mathcal{N}_1 = \{ i; R_i = m \} \subseteq \{1, \ldots, n\} \quad \text{and} \quad N_1 = |\mathcal{N}_1|
 \]
Three random subsets of the individuals:

- \mathcal{N}_0: set of individuals with zero non-null degradation measure:
 \[\mathcal{N}_0 = \{ i; R_i > m \} \subseteq \{1, \ldots, n\} \quad \text{and} \quad N_0 = |\mathcal{N}_0| \]

- \mathcal{N}_1: set of individuals with exactly one non-null degradation measure:
 \[\mathcal{N}_1 = \{ i; R_i = m \} \subseteq \{1, \ldots, n\} \quad \text{and} \quad N_1 = |\mathcal{N}_1| \]

- \mathcal{N}_{2+}: set of individuals with exactly at least two degradation measures:
 \[\mathcal{N}_{2+} = \{ i; R_i < m \} \subseteq \{1, \ldots, n\} \quad \text{and} \quad N_{2+} = |\mathcal{N}_{2+}| \]
Random vector $\mathcal{K} = (\mathcal{K}_r)_{r \in \mathbb{N}^*}$ such that, for $r \in \mathbb{N}^*$,

$$\mathcal{K}_r = \sum_{i=1}^{n} \mathbb{I}_{(r-1)\delta < R_i \leq r\delta} = \sum_{i=1}^{n} \mathbb{I}_{R_i = r}$$
Random vector $\mathcal{K} = (\mathcal{K}_r)_{r \in \mathbb{N}^*}$ such that, for $r \in \mathbb{N}^*$,

$$\mathcal{K}_r = \sum_{i=1}^{n} \mathbb{I}_{(r-1)\delta < R_i \leq r\delta} = \sum_{i=1}^{n} \mathbb{I}_{R_i = r}$$

Remark: $\sum_{r=1}^{m} K_r = n - N_0$
Random vector $\mathcal{K} = (\mathcal{K}_r)_{r \in \mathbb{N}^*}$ such that, for $r \in \mathbb{N}^*$,

$$\mathcal{K}_r = \sum_{i=1}^{n} \mathbb{I}_{(r-1)\delta < R_i \leq r\delta} = \sum_{i=1}^{n} \mathbb{I}_{R_i = r}$$

Remark: $\sum_{r=1}^{m} K_r = n - N_0$

Random number Q_n of non-null increments: if Q_n non empty set,

$$Q_n = \sum_{i \in \mathbb{N}_{2+}} (m - R_i) = \sum_{j=1}^{m-1} (m - j) K_j$$

taking values in $\{1, \ldots, (m - 1)n\}$
An important result

Lemma

1. For any $\alpha \in [0, 1)$,

$$\frac{Q_n}{n^\alpha} \xrightarrow{Pr} \infty$$

as $n \to \infty$.

Let $\alpha (m, \tau) = \frac{1}{m} \sum_{j=0}^{m-1} F_{S_j} (\tau / m)$. We have

$$
\frac{Q_n}{n^\alpha (m, \tau)} \xrightarrow{Pr} 0
$$

as $n \to \infty$.

Lemma

1. For any $\alpha \in [0, 1)$,

\[
\frac{Q_n}{n^{\alpha}} \xrightarrow{Pr \ \ n \to \infty} \infty
\]

2. Let $\alpha(m, \tau) = \frac{1}{m} \sum_{j=0}^{m-1} F_S(j\tau/m)$. We have

\[
\frac{Q_n}{n} \xrightarrow{Pr \ \ n \to \infty} m\alpha(m, \tau)
\]
Lemma

1. For any $\alpha \in [0, 1)$,

$$\frac{Q_n}{n^\alpha} \xrightarrow{Pr_{n \to \infty}} \infty$$

2. Let $\alpha(m, \tau) = \frac{1}{m} \sum_{j=0}^{m-1} F_S(j\tau/m)$. We have

$$\frac{Q_n}{n} \xrightarrow{Pr_{n \to \infty}} m\alpha(m, \tau)$$

3. $\mathbb{E}[Q_n^{-1} | Q_n > 0] \xrightarrow{n \to \infty} 0$
Estimation of the distribution of S (1/2)

- Survival function of S: $F_S(t; \theta) = \mathbb{P}[S \leq t]$
Estimation of the distribution of S (1/2)

- Survival function of S: $\bar{F}_S(t; \theta) = \mathbb{P}[S \leq t]$
- Log-likelihood function:

$$
\ell(\theta|\text{data}) = N_0 \log \bar{F}_S(\tau; \theta) + \sum_{r=1}^{m} K_r \log \left(\bar{F}_S((r-1)\delta; \theta) - \bar{F}_S(r\delta; \theta) \right)
$$
Estimation of the distribution of S (1/2)

- Survival function of S: $\overline{F}_S(t; \theta) = \mathbb{P}[S \leq t]
- Log-likelihood function:

$$\ell(\theta|\text{data}) = N_0 \log \overline{F}_S(\tau; \theta) + \sum_{r=1}^{m} K_r \log \left(\overline{F}_S((r - 1)\delta; \theta) - \overline{F}_S(r\delta; \theta) \right)$$

- Maximum likelihood estimator:

$$\hat{\theta}_n = \arg\max_{\theta \in \Theta} \ell(\theta|\text{data}).$$

No closed-form expression in general
Estimation of the distribution of S (2/2)

Asymptotic normality for $\hat{\theta}_n$ as $n \to \infty$?
Estimation of the distribution of S (2/2)

Asymptotic normality for $\hat{\theta}_n$ as $n \to \infty$? Yes...
Estimation of the distribution of S (2/2)

Asymptotic normality for $\hat{\theta}_n$ as $n \to \infty$? Yes. . .

- MLE = root of the equation:

$$0 = N_0 \frac{\partial_\theta \overline{F}_S(\tau; \hat{\theta}_n)}{\overline{F}_S(\tau; \hat{\theta}_n)} + \sum_{r=1}^{m} K_r \frac{\partial_\theta \overline{F}_S((r - 1)\delta; \hat{\theta}_n) - \partial_\theta \overline{F}_S(r\delta; \hat{\theta}_n)}{\overline{F}_S((r - 1)\delta; \hat{\theta}_n) - \overline{F}_S(r\delta; \hat{\theta}_n)}$$
Estimation of the distribution of S (2/2)

Asymptotic normality for $\hat{\theta}_n$ as $n \to \infty$? Yes...

- MLE = root of the equation:

$$0 = N_0 \frac{\partial \theta \bar{F}_S(\tau; \hat{\theta}_n)}{\bar{F}_S(\tau; \hat{\theta}_n)} + \sum_{r=1}^{m} K_r \frac{\partial \theta \bar{F}_S((r - 1)\delta; \hat{\theta}_n) - \partial \theta \bar{F}_S(r\delta; \hat{\theta}_n)}{\bar{F}_S((r - 1)\delta; \hat{\theta}_n) - \bar{F}_S(r\delta; \hat{\theta}_n)}$$

- Convergence of (K_1, \ldots, K_m) to a Gaussian distribution
Estimation of the distribution of S (2/2)

Asymptotic normality for $\hat{\theta}_n$ as $n \to \infty$? Yes...

- MLE = root of the equation:

$$
0 = N_0 \frac{\partial \theta \bar{F}_S(\tau; \hat{\theta}_n)}{\bar{F}_S(\tau; \hat{\theta}_n)} + \sum_{r=1}^{m} K_r \frac{\partial \theta \bar{F}_S((r-1)\delta; \hat{\theta}_n) - \partial \theta \bar{F}_S(r\delta; \hat{\theta}_n)}{\bar{F}_S((r-1)\delta; \hat{\theta}_n) - \bar{F}_S(r\delta; \hat{\theta}_n)}
$$

- Convergence of (K_1, \ldots, K_m) to a Gaussian distribution

- δ-method for implicitly defined random variables (Benichou and Gail, 89)
Asymptotic normality for $\hat{\theta}_n$ as $n \to \infty$? Yes...

- MLE = root of the equation:

$$0 = N_0 \frac{\partial \theta \overline{F}_S(\tau; \hat{\theta}_n)}{\overline{F}_S(\tau; \hat{\theta}_n)} + \sum_{r=1}^{m} K_r \frac{\partial \theta \overline{F}_S((r - 1)\delta; \hat{\theta}_n) - \partial \theta \overline{F}_S(r\delta; \hat{\theta}_n)}{\overline{F}_S((r - 1)\delta; \hat{\theta}_n) - \overline{F}_S(r\delta; \hat{\theta}_n)}$$

- Convergence of (K_1, \ldots, K_m) to a Gaussian distribution

- δ-method for implicitly defined random variables (Benichou and Gail, 89)

- Closed expression for the Fisher information
Example: exponential distribution

- Closed expression for the MLE:

\[\hat{\lambda}_n = \frac{1}{\delta} \log \left(\frac{N_0 \tau + \delta \sum_{r=1}^{m} rK_r}{N_0 \tau + \delta \sum_{r=1}^{m} (r - 1) K_r} \right) \]
Example: exponential distribution

- Closed expression for the MLE:

\[
\hat{\lambda}_n = \frac{1}{\delta} \log \left(\frac{N_0 \tau + \delta \sum_{r=1}^{m} rK_r}{N_0 \tau + \delta \sum_{r=1}^{m} (r - 1)K_r} \right)
\]

- Asymptotic variance:

\[
\rho^2 = \frac{(e^{\lambda \delta} - 1)^2}{\delta^2 e^{\lambda \delta} (1 - e^{-\lambda \tau})}
\]
Example: exponential distribution

- Closed expression for the MLE:

\[\hat{\lambda}_n = \frac{1}{\delta} \log \left(\frac{N_0 \tau + \delta \sum_{r=1}^{m} rK_r}{N_0 \tau + \delta \sum_{r=1}^{m} (r - 1) K_r} \right) \]

- Asymptotic variance:

\[\rho^2 = \frac{(e^{\lambda \delta} - 1)^2}{\delta^2 e^{\lambda \delta} (1 - e^{-\lambda \tau})} \]

Remark: \(\rho^2 \xrightarrow{\delta \to 0} \frac{\lambda^2}{1 - e^{-\lambda \tau}} \)
Estimation of μ and σ^2 (1/2)

- Natural estimator of μ:

$$\hat{\mu}_n = \frac{\sum_{i \in \mathcal{N}_{2+}}^{m-R_i} \sum_{j=1}^{\Delta X_{i,j}}}{\delta \sum_{i \in \mathcal{N}_{2+}} (m - R_i)} = \frac{1}{\delta Q_n} \sum_{h=1}^{Q_n} Z_h,$$

where Z_1, \ldots, Z_{Q_n} are the increments between two non-null degradation measures: random number of iid Gaussian random variables with mean $\mu \delta$ and variance $\sigma^2 \delta$.
Estimation of μ and σ^2 (1/2)

- Natural estimator of μ:

$$\hat{\mu}_n = \frac{1}{\delta} \sum_{i \in \mathcal{N}_{2+}} \left(\sum_{j=1}^{m-R_i} \Delta X_{i,j} \right) = \frac{1}{\delta Q_n} \sum_{h=1}^{Q_n} Z_h,$$

where Z_1, \ldots, Z_{Q_n} are the increments between two non-null degradation measures: random number of iid Gaussian random variables with mean $\mu \delta$ and variance $\sigma^2 \delta$

- Natural estimator of σ^2:

$$\hat{\sigma}_n^2 = \frac{1}{\delta(Q_n - 1)} \sum_{h=1}^{Q_n} (Z_h - \delta \hat{\mu}_n)^2.$$
Proposition

1. \(\hat{\mu}_n \) is asymptotically normal:

\[
\sqrt{Q_n} (\hat{\mu}_n - \mu) \xrightarrow{d} N \left(0, \frac{\sigma^2}{\delta} \right)
\]
Proposition

1. \(\hat{\mu}_n \) is asymptotically normal:

\[
\sqrt{Q_n}(\hat{\mu}_n - \mu) \xrightarrow{d} \frac{\sigma^2}{\delta} N\left(0, \frac{\sigma^2}{\delta}\right)
\]

and

\[
\sqrt{n}(\hat{\mu}_n - \mu) \xrightarrow{d} \frac{\sigma^2}{\tau \alpha(m, \tau)} N\left(0, \frac{\sigma^2}{\tau \alpha(m, \tau)}\right)
\]

where \(\alpha(m, \tau) \) is given in the Lemma
Estimation of μ and σ^2 (2/2)

Proposition

1. $\hat{\mu}_n$ is asymptotically normal:

$$\sqrt{Q_n} (\hat{\mu}_n - \mu) \xrightarrow{d} \frac{\sigma^2}{\delta} N \left(0, \frac{\sigma^2}{\delta} \right)$$

and

$$\sqrt{n} (\hat{\mu}_n - \mu) \xrightarrow{d} \frac{\sigma^2}{\tau \alpha(m, \tau)} N \left(0, \frac{\sigma^2}{\tau \alpha(m, \tau)} \right)$$

where $\alpha(m, \tau)$ is given in the Lemma

2. $\hat{\sigma}_n^2$ is asymptotically normal:

$$\sqrt{Q_n} (\hat{\sigma}_n^2 - \sigma^2) \xrightarrow{d} N \left(0, 2\sigma^4 \right)$$
1. Introduction and model

2. Parameters estimation

3. Time-to-failure estimation

4. Application to a dataset

5. Bibliography
Mean time-to-failure estimation

- Mean time-to-failure:

\[MTTF = \mathbb{E}[S] + \frac{c}{\mu} \]
Mean time-to-failure estimation

- Mean time-to-failure:

\[
MTTF = \mathbb{E}[S] + \frac{c}{\mu}
\]

- Plug-in estimator for MTTF:

\[
\overline{MTTF}_n = \int_0^\infty F_S(u; \hat{\theta}_n) du + \frac{c}{\hat{\mu}}
\]
Mean time-to-failure estimation

- Mean time-to-failure:
 \[\text{MTTF} = \mathbb{E}[S] + \frac{c}{\mu} \]

- Plug-in estimator for MTTF:
 \[\widehat{\text{MTTF}}_n = \int_0^\infty \bar{F}_S(u; \hat{\theta}_n) du + \frac{c}{\hat{\mu}} \]

- Asymptotic normality?
Mean time-to-failure estimation

- Mean time-to-failure:

\[MTTF = \mathbb{E}[S] + \frac{c}{\mu} \]

- Plug-in estimator for MTTF:

\[\overline{MTTF}_n = \int_0^\infty F_S(u; \hat{\theta}_n) \, du + \frac{c}{\hat{\mu}} \]

- Asymptotic normality? Yes!
Mean time-to-failure estimation

- Mean time-to-failure:

\[MTTF = \mathbb{E}[S] + \frac{c}{\mu} \]

- Plug-in estimator for MTTF:

\[\overline{MTTF}_n = \int_0^\infty F_S(u; \hat{\theta}_n) \, du + \frac{c}{\hat{\mu}} \]

- Asymptotic normality? Yes! Asymptotic variance:

\[l(\theta)^{-1} \left(\int_0^\infty \partial_\theta F_S(u; \theta) \, du \right)^2 + \frac{c^2 \sigma^2}{\mu^4 \tau \alpha(m, \tau)} \]
Guo et al. data

Black lines: observed degradation paths
Red dashed line: critical level
Blue dashed line: MTTF estimation
Fitted parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimation</th>
<th>95% confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
<td>0.023</td>
<td>[0.013, 0.032]</td>
</tr>
<tr>
<td>μ</td>
<td>0.108</td>
<td>[0.097, 0.119]</td>
</tr>
<tr>
<td>σ^2</td>
<td>0.041</td>
<td>[0.033, 0.048]</td>
</tr>
<tr>
<td>$MTTF$</td>
<td>88.332</td>
<td>[69.438, 107.227]</td>
</tr>
</tbody>
</table>
Estimated survival function
Estimated hazard function
1 Introduction and model
2 Parameters estimation
3 Time-to-failure estimation
4 Application to a dataset
5 Bibliography
Some references

W.B. Nelson.
Defect initiation, growth, and failure – A general statistical model and data analyses.

A. Rényi.
On the central limit theorem for the sum of a random number of independent random variables.
W. Schwarz.
The ex-Wald distribution as a descriptive model of response time.

W. Schwarz.
On the convolution of inverse Gaussian and exponential random variables.