Properties of the Weibull-ARA\(_\infty\) virtual age model and application in maintenance policy optimization

Yann Dijoux, Mitra Fouladirad, Tuan Nguyen

AMMSI Troyes 2015
1. Context

2. Modelling the maintenance process

3. The Weibull-ARA$_\infty$ model

4. Inference on the WARA$_\infty$ model on an observation window

5. Optimal preventive maintenance strategy

6. Conclusion
Context

1. Context
2. Modelling the maintenance process
3. The Weibull-ARA\(_\infty\) model
4. Inference on the WARA\(_\infty\) model on an observation window
5. Optimal preventive maintenance strategy
6. Conclusion
Context

• Complex industrial systems subjected to corrective maintenances (CM, repair), carried out after a failure.

• Maintenance are imperfect. Virtual age models are employed to characterize the general wear-out of the systems.
Motivations

- Adjusting an optimal preventive maintenance policy (periodic or dynamic) is rarely addressed in the literature considering imperfect maintenance only.

- The systems are not necessarily new at the beginning of the observations.
 - Second-hand unit.
 - Previous maintenances times are not recorded, observations are missing.
 - Consistency of the observations (new maintenance policy, systems after a burn-in period)

→ To develop theoretical properties of a classical virtual age model.

→ To develop inference procedures when the initial age of the system is unknown.

→ To present an optimal preventive maintenance strategy.
Modelling the maintenance process

1. Context
2. Modelling the maintenance process
3. The Weibull-ARA_∞ model
4. Inference on the WARA_∞ model on an observation window
5. Optimal preventive maintenance strategy
6. Conclusion
Modelling the maintenance process

- Failure times: $\{T_i\}_{i \geq 1}$
- Inter-failure times: $X_i = T_i - T_{i-1}$, $i \geq 1$
- Counting failure process: $\{N_t\}_{t \geq 0}$, $N_t =$ number of failures occurred at time t
- Durations of repair are not taken into account.
- Two failures cannot occur at the same time.
Stochastic modelling

→ Considering H_{t-} as the history of the failure process up to time t, the failure intensity λ_t is defined as:

$$\lambda_t = \lim_{dt \rightarrow 0} \frac{1}{dt} P(N_{t+dt} - N_{t-} = 1 | H_{t-})$$

→ For a self-excited point process: $H_{t-} = \sigma \left(\{N_s\}_{0 \leq s < t} \right)$ and λ_t completely defines the failure process.

→ Before the first failure, the failure intensity is a deterministic and continuous function of time $\lambda(t)$, called initial intensity, the failure rate of T_1.

Considering industrial or software systems, a Weibull distribution is frequently used.

$$\lambda(t) = \alpha \beta t^{\beta-1} , \; \alpha > 0 , \; \beta > 0$$
Classical models

Minimal Repair or As Bad As Old model (ABAO)
- Each maintenance leaves the system in the same state as it was before failure.
- The failure process is a Non Homogeneous Poisson Process (NHPP).

\[\lambda_t = \lambda(t) \]

Perfect repair or As Good As New model (AGAN)
- Each maintenance perfectly repairs the system and leaves it as if it were new.
- The failure process is a Renewal Process (RP).

\[\lambda_t = \lambda(t - T_{N_t^-}) \]

Reality is between the case ABAO and AGAN.
Virtual age models

After the \(i^{th} \) repair, the system performs as a new one having survived until \(A_i \).

\[
\forall i \geq 0, \quad \forall t \geq 0 P(X_{i+1} > t | X_1, \ldots, X_i, A_i) = P(Y > A_i + t | Y > A_i) = \frac{S(A_i + t)}{S(A_i)}
\]

where \(Y \) has the same distribution as \(X_1 \).

\[
\lambda_t = \lambda(t - T_{N_t^-} + A_{N_t^-})
\]

The \(A_i \) are called the **effective ages**. \(A_0 = 0 \).

- **ABAO** : \(A_i = T_i \)
- **AGAN** : \(A_i = 0 \)

The Brown-Proshchan model: repairs are either perfect (AGAN) with a probability \(\rho \), or minimal (ABAO) with a probability \(1-\rho \).

- The Arithmetic Reduction of Age model with memory 1 (\(ARA_1 \)):
 \[
 A_i = (1 - \rho) T_i
 \]

\(\rightarrow \) A virtual age model is characterized by the initial intensity and by the evolution of the effective ages.
Failure intensities of virtual age models

Figure: BP model and a Weibull initial intensity
\((\alpha = 0.001, \beta = 3, \rho = 0.5) \)

Figure: ARA_1 model and a Weibull initial intensity
\((\alpha = 0.001, \beta = 3, \rho = 0.5) \)

\(\rightarrow \rho \in [0, 1] \) describes the maintenance efficiency.

\(\rightarrow \) Exponential distributions are not adapted as initial intensities (no ageing).
The ARA_∞ assumption

\rightarrow Arithmetic Reduction of Age model with infinite memory.

Assumption: The age of a system after maintenance is proportional to its age just before maintenance.

$$A_i = (1 - \rho)(A_{i-1} + X_i)$$

$$A_i = (1 - \rho)^i A_0 + \sum_{j=1}^{i} (1 - \rho)^{i+1-j} X_j$$

\rightarrow Existence of a potential stationary regime of the process (Last and Szekli (1998)).
The Weibull-ARA_∞ model

1. Context
2. Modelling the maintenance process
3. The Weibull-ARA_∞ model
4. Inference on the $WARA_\infty$ model on an observation window
5. Optimal preventive maintenance strategy
6. Conclusion
Definition and simulation

We consider a Weibull initial intensity $\lambda(t) = \alpha \beta t^{\beta-1}$ and the ARA_∞ assumption.

The corresponding model is denoted Weibull-ARA_∞ model or $WARA_\infty$ model.

Simulation of effective ages under ARA_∞ assumption

$$A_{i+1} = (1 - \rho) \Lambda^{-1} (\Lambda(A_i) + \xi_{i+1})$$

where Λ is the cumulative initial intensity and Λ^{-1} its inverse, and where ξ_{i+1} is an exponential r.v. $\mathcal{E}(1)$ independent of $\{\xi_j\}_{j=1..i}$

$\Lambda(t) = \alpha t^\beta$ considering a Weibull initial intensity.
Effective ages for the WARA_∞ model

Proposition 1: General expression of A_n

$$A_n = (1 - \rho) \alpha^{-\frac{1}{\beta}} \left(\sum_{i=1}^{n} (1 - \rho)^{\beta(n-i)} \xi_i \right)^{\frac{1}{\beta}}$$

with $\{\xi_j\}_{j=1}^n$ sample of exponential distribution of parameter 1.

\rightarrow Proof by induction.

\rightarrow A series of exponential distributions with different parameters follow an hypoexponential distribution.

Notation $q = (1 - \rho)^\beta$

Notation q-Pochhammer series:

$$(x, x)_k = \prod_{i=1}^{k} (1 - x^i), x \in \mathbb{R}, k \in \mathbb{N}$$
Effective age distributions for the WARA_∞ model

Proposition 2: Survival function of A_n

$$R_{A_n}(t) = \sum_{k=1}^{n} \frac{1}{(q, q)_{n-k}(\frac{1}{q}, \frac{1}{q})_{k-1}} e^{-\frac{\alpha k}{q k}}$$

\rightarrow “Hypo-Weibull” distribution.

\rightarrow Given the effective A_n, the distribution of the next inter-failure time can be determined.

Proposition 3: (Marginal) Survival function of X_{n+1}

$$R_{X_{n+1}}(t) = \sum_{k=1}^{n} \frac{\alpha \beta}{q^k (q, q)_{n-k}(\frac{1}{q}, \frac{1}{q})_{k-1}} \int_0^{\infty} x^{\beta-1} e^{-\alpha(x+t)} dx + \alpha(1-q^{-k})x^\beta$$
Effective age distributions for the WARA_∞ model

Proposition 4: Limiting survival distribution of A_n

$$R_{\text{A}_\infty}(t) = \sum_{k=1}^{\infty} \frac{1}{(q, q)_\infty (\frac{1}{q}, \frac{1}{q})_{k-1}} e^{-\frac{\alpha t}{q^k}}$$

→ Explicit expression of R_{X_∞}.

Proposition 5: Expected value of the age

$$E[A_n] = \alpha^{-1/\beta} \Gamma(\frac{1}{\beta} + 1) \sum_{k=1}^{n} \frac{q^k}{(q, q)_{n-k}(\frac{1}{q}, \frac{1}{q})_{k-1}}$$

→ Derive $E[X_{n+1}], E[A_\infty], E[X_\infty]$

→ Derive the distribution of the age of the system just before the failure and its expected value in the transient and steady regime: $A_n^-, E[A_n^-], A_\infty^-, E[A_\infty^-]$.

17 / 37
Inference on the WARA∞ model on an observation window

1. Context
2. Modelling the maintenance process
3. The Weibull-ARA∞ model
4. Inference on the WARA∞ model on an observation window
5. Optimal preventive maintenance strategy
6. Conclusion
The actual observations

The process is recorded on an observation window $[s, s + t]$ and no information on the failure process is available prior to s.

No model associated to imperfect maintenance on an observation window has been developed.

Under the ARA_∞ assumption, the only necessary information to derive the likelihood function is the initial virtual age a_0.

$$
\mathcal{L}_{s,t,a_0}(x_1, \ldots, x_n) = \prod_{i=1}^{n} \lambda(a_{i-1} + x_i) \times \exp(-\sum_{i=1}^{n+1} [\Lambda(a_{i-1} + x_i) - \Lambda(a_{i-1})])
$$

with $a_i = (1 - \rho)^i a_0 + \sum_{j=1}^{i} (1 - \rho)^{i+1-j} x_j$
Choice of initial age

→ In the literature, the initial age a_0 is assumed to be 0 (new system).

→ This assumption is relatively valid for a large dataset (renewal aspects of the WARA_∞ model).

→ For a small dataset, the actual ageing of the system should be taken into account.
Steady regime assumption

Figure: Survival functions of A_n with $(\alpha = 1, \beta = 2, \rho = 0.2)$

→ If it is likely that few maintenances have occurred, it is realistic to assume that the system is already in its stationary state.

→ The first effective age is assumed to follow the distribution of A_∞.
Proposition 6: Likelihood function under steady regime

\[L^\infty(t_1, t_2, \ldots, t_n, t) = \]

\[= - \int_{(1-\rho)t_1}^{\infty} \prod_{i=1}^{n} \lambda(a_{i-1} + x_i) \exp \left(- \sum_{i=1}^{n+1} \Lambda(a_{i-1} + x_i) - \Lambda(a_{i-1}) \right) dR_{A_{\infty}}(h) \]

with \(a_i = (1 - \rho)^i h + \sum_{j=1}^{i} (1 - \rho)^{i+1-j} x_j \).

\[\longrightarrow \text{No explicit expression of the ML estimators}. \]
Simulations

Configuration (Example)

- $\alpha = 1$, $\beta = 4.5$, $\rho = 0.2$, $n \in \{10, 20, 30, 50\}$.
- The failure times $(t_1, \ldots, t_n) \in [s, s + t]$ are generated so that there are an average of 100 failures before s.

Objective: Assess the surplus value of the new model

- First model (Simulated): Assume that the system is in steady regime.
- Second model: Assume that the system is As Good As New at the beginning of the observations.

\rightarrow Comparison criteria: Bias and MSE.
Results

Figure: Bias and MSE with $A_0 \sim A_\infty$ (plain) and $A_0 = 0$ (dashed) of α, β and ρ
Analysis

• As the number of observations increases, the empirical bias and MSE decrease to 0.

• The estimation from the first model is always more efficient than the second model ($A_0 = 0$).

• For small ρ, the added value of the new modelling is significant.

• As ρ tends to 1, results in terms of MSE and Bias become similar for both models.
Optimal preventive maintenance strategy

1. Context
2. Modelling the maintenance process
3. The Weibull-ARA_{∞} model
4. Inference on the $WARA_{\infty}$ model on an observation window
5. Optimal preventive maintenance strategy
6. Conclusion
Context

A repairable system is observed with the following assumptions on the history of the process:

- The ageing and the maintenance efficiency are consistent with the WARA_∞ model.

- Sufficient maintenances have occurred in the past of the process so that the system is assumed to be in its stationary regime.

- Parameters of the model are assumed to be known.

→ A planned preventive maintenance (PM) policy is established on the system for maintenance cost reduction.
Assumptions

- After a maintenance (corrective or preventive) has restored the system, a new PM is scheduled after a duration a.

- If a failure is observed before a duration a, a corrective maintenance is carried out with cost C_c.

- Otherwise a PM is carried out with cost C_p ($C_p < C_c$).

- The PM efficiency and the CM efficiency are identical: ARA_∞ with same parameter ρ.

\rightarrow Multiple strategies on the choice of the "age-based" duration a have been investigated.
First policy: Age-dependent policy

→ The duration \(a \) is constant during the whole process.

→ The renewal aspects of the WARA\(_\infty\) model ensure that this strategy makes sense and that the long-run average cost per unit of time for an infinite horizon is finite.

\[
C(a) = \lim_{t \to \infty} \frac{C_a(t)}{t} < \infty
\]

→ Two choices for \(a \) have been studied:

- The optimal age \(a^* \) minimizing the cost function \(C(a) \) is obtained by Monte Carlo simulations.

- As the process has similarities with a Renewal Process with generic distribution \(X_\infty \), it is possible to approach the optimal solution by optimizing the classical age-based maintenance strategy and to obtain an age \(\hat{a} \).

\[
\hat{a} = \arg \min_{a} \frac{C_p + (C_c - C_p)(1 - R_{X_\infty}(a))}{\int_0^a R_{X_\infty}(u)du}
\]
Evolution of the cost for a static policy

Figure: $\alpha = 1, \beta = 4.5, C_c = 10C_p$
Second policy: Dynamic policy

The duration is adaptative and depends on the past of maintenance process.
Dynamic policy (II)

→ At the beginning, the initial age follows the limiting distribution A_{∞}.

→ Given the initial age u, the age after the ith maintenance is

$$A_i(u) = (1 - \rho)^i u + \sum_{j=1}^{i} (1 - \rho)^{i-j+1} x_j$$

→ The distribution of the next inter-failure time can be computed.

$$R_{Z_{i+1}}(z) = -\int_{0}^{\infty} \frac{e^{-\alpha(A_i(u)+z)^{\beta}}}{e^{-\alpha A_i(u)^{\beta}}} dR_{A_{\infty}}(u)$$

→ The optimal PM should be carried out after a duration a_{i+1}^*.

$$a_{i+1}^* = \arg \min_{a} \frac{C_p + (C_c - C_p)(1 - R_{Z_{i+1}}(a))}{\int_{0}^{a} R_{Z_{i+1}}(u) du}$$
Third policy: Failure limit policy

→ After a maintenance (corrective or preventive) has restored the system, a new PM is scheduled when the virtual age of the system exceeds a threshold A.

→ "Virtual age limit" policy.
Comparing the costs

Table: Optimal maintenance strategies (\(\alpha = 1, C_c = 10C_p\))

<table>
<thead>
<tr>
<th>(\beta)</th>
<th>(\rho)</th>
<th>Static age</th>
<th>Failure limit</th>
<th>Variant I age</th>
<th>Dynamic</th>
<th>no PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>0.2</td>
<td>17.72 0.18</td>
<td>17.69</td>
<td>20.81 0.84</td>
<td>20.76</td>
<td>22.01</td>
</tr>
<tr>
<td>1.5</td>
<td>0.5</td>
<td>12.30 0.26</td>
<td>12.28</td>
<td>13.51 0.62</td>
<td>13.11</td>
<td>15.68</td>
</tr>
<tr>
<td>1.5</td>
<td>0.8</td>
<td>9.71 0.33</td>
<td>9.71</td>
<td>9.97 0.48</td>
<td>9.72</td>
<td>12.74</td>
</tr>
<tr>
<td>3</td>
<td>0.2</td>
<td>15.50 0.09</td>
<td>15.48</td>
<td>25.00 0.23</td>
<td>23.64</td>
<td>40.70</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>7.54 0.20</td>
<td>7.54</td>
<td>8.02 0.26</td>
<td>7.62</td>
<td>20.72</td>
</tr>
<tr>
<td>3</td>
<td>0.8</td>
<td>4.92 0.30</td>
<td>4.92</td>
<td>4.92 0.30</td>
<td>4.92</td>
<td>13.90</td>
</tr>
<tr>
<td>4.5</td>
<td>0.2</td>
<td>12.51 0.10</td>
<td>12.51</td>
<td>16.51 0.15</td>
<td>16.10</td>
<td>46.87</td>
</tr>
<tr>
<td>4.5</td>
<td>0.5</td>
<td>5.49 0.23</td>
<td>5.48</td>
<td>5.51 0.22</td>
<td>5.49</td>
<td>21.39</td>
</tr>
<tr>
<td>4.5</td>
<td>0.8</td>
<td>3.46 0.37</td>
<td>3.46</td>
<td>3.49 0.34</td>
<td>3.46</td>
<td>13.68</td>
</tr>
</tbody>
</table>
• The failure limit (virtual age limit) policy (III) is the most efficient.
• The age-dependent policy (I) is almost as powerful.
• In practice, the age-dependent policy seems simpler to implement than the failure limit policy.
• The dynamic policy (II) is locally optimal, but is outperformed by the previous static policies.
• The approximation of the age-dependent policy (I’) offers decent results.
• As this approximation does not take into account the dependency between consecutive inter-failure times, its validity is poor with small ρ.
Conclusion

1. Context
2. Modelling the maintenance process
3. The Weibull-ARA∞ model
4. Inference on the WARA∞ model on an observation window
5. Optimal preventive maintenance strategy
6. Conclusion
Future work

- Add estimation procedures within the optimal PM strategy.
- Dissociate the maintenance efficiencies.
- Take into account the downtime costs.
- Application to real dataset
- Develop goodness of fit procedures for the WARA_∞ model.